
lrttt;l
E RTANG

Proceedings of the Fifth International

Erlang/OTP

User Conference

Septernber 30, 1999, Älvsjö, Stockholm

_t

rr

fll

LUJ
E RI.ANG

Erlang User Conference 1999 - Programme

08.00

09.00

09.15

10.00

10.30

r 1.00

11.30

t2.o0

t2.30
14.00

14.30

15.00

15. l5
16.00

16.30

17.00

18.00

Demo

Demo

Poster

Poster

Prof Bengt Jonsson, Uppsala University, chairman

Registration

Welcome Address
Bjarne Däcker, Ericsson Utvecklings AB
Telia CallGuide
Hans Nahringbauer, Telia Promotor AB
Use of Erlang/OTP in the Brainpool IW3 Communication System
Fredrik Ström, Brainpool AB
Coffee and Demos

Status Report on the ETOS Erlang to Scheme Compiler
Patrick Piché, Université de Montréal

Mail Robustifier Product based on Erlang/OTP
Hfüan Millroth, Bluetail AB
Hatchet
Per Bergqvist, Ericsson Radio AB
Lunch

A Modular WAP Reference Stack Protocol Implementation
Johan Blom, Ericsson'Wireless Internet AB
An Experimental SIP Implementation in Erlang
Hans Nilsson, Ericsson Utvecklings AB
Coming Releases of Erlang/OTP
Magnus Karlson, Ericsson Utvecklings AB
Coffee and Demos

Towards an Event Modelling Language
Maurice Castro, SERC

Proposals for and Experiments with an Erlang Bit Syntax
Claes Wikström, Bluetail AB
Bus Transfer to Waxholm III
Conference Dinner
Brainpool N,I/3 Communication System
Fredrik Ström, Brainpool AB
HACT - High Availability Computer Telephony
Stefan Björnelund, Ericsson Utvecklings AB
Erlang Verification System
Thomas Arts, Ericsson Utvecklings AB
HiPE - High Performance Erlang
Mikael Pettersson, Uppsala University

1,"

?

!
I'

f-l

Lu{
Fifth International Erlang/OTP

fJser Conference

rn

E RLANG Stockholm - September 30r 1999
-.r-. *^& !*.!4J', :!i: &

Location: Älvsjö Conference Center, Ericsson, Götalandsv ägen 230,
Stockholm, Sweden.

September 30,1999. Registration opens 08.00,
programme starts at 09.00.

950 SEK (including Swedish V.A.T). This includes
printed material,lunch, coffee and conference dinner.

Credit g¿¡d; ryISA or MasterCard). Please mail or fax a signed
copy of the registration form. The receipt will be
returned at the registration.

Invgice: Please fax a copy of the registration form or send a

mail to euc99@erlang.ericsson.se stating the address
where to send the invoice.

Date:

Fee:

Registration:

Registrform: http://www.erlang.orglinvitation-euc99.html

Conference adm: euc99@erlang.ericsson.se

Conference scope: This is the first Erlang/OTP User Conference since Erlang/OTP was
made available "open source" and the first part of the conference will
be spent on describing exciting new applications. The second part
deals with new technical developments primarily in the area of
protocol implementations.

Conference Programme

.\,+ Registratioll ¡,'r,

I

;

Telia CallGuide
Hans Nahringbauer, Telia Promotor

Telia Promotor shares their experiences from the development and maintenance of a successful
commercial Computer Telephony Integrated (CTI) system based on Erlang/OTP. Their
experiences are accumulated from more than one year of different customer installations.

The core of Telia CallGuide is a CTl-server developed in Erlang/OTP, operating on a

Windows NT Server. Telia CallGuide is the next generation CTl-system, which integrates
telephony, email, fax and IP telephony, with far more functionality than the first generation of
CTl-systems based on PBX technology.

The use of Erlang/OTP in the Brainpool lW3
communication system

Fredrik Ström, Brainpool AB

Brainpool AB decided during 1998 to make a new version of the Brainpool MMS product due
to new customer demands and ideas about how to exploit Erlang/OTP on the NT platform. The
MMS is a software server that is used to send text messages to GSM/SMS and pagers from
client software in a computer network. The communication server uses one or several modems
or X.25 circuits and is preconfigured to communicate with service providers in the Nordic
countries. New demands for the new version include scaleability, robustness, the ability to run
on multiple computers, dynamic load balancing, two-way communication and country
independence.

Brainpool chose to use Erlang/OTP for the development of the new generation of the product -
the Brainpool lvl/3. We based this choice on what this platform promised, and on earlier
experience using the Erlang language. The M/3 sends SMS messages through an Ericsson
GM l2 GSM module, which makes the M/3 easy to deploy in different countries. This also
allows mobile phones to send messages to the server and connected computer applications, thus
permitting two-way communication.

This presentation discusses why Erlang/OTP was chosen and our experience with this platform.
We also plan to make a demonstration of the Brainpool M/3 communication system.

Status report on the ETOS Erlang to Scheme comp¡ler
Patrick Piché, Université de Montréal

The ETOS compiler for Standard Erlang has been under development for the past two years at
Universite de Montreal. The current state of the compiler (including benchmarks) and future
plans will be discussed. rr¡/e will focus on the compilation approach which allows it to generate
high-performance executable code, in particular: pattern matching compilation, tail recursion in
C, real-time GC and native code generation.

H

tgllt

broimool

-1"-

.!r, Coffee +,+

Mail robustifier product based on Erlang/OTP
Hfüan Millroth, Bluetail AB

BLUETnTq

Bluetail Mail Robustifier is a softwa¡e product that makes handling of e-mail more efficient for

Internet Service Providers. The product was released on July l, 1999 and is in now in operation

at large Internet Service Providers in Sweden. In this presentation we focus on the role of
Erlang in the development of this product: how it affected time-to-market, software quality, etc.

¡f

Hatchet
Per Bergqvist, Ericsson Radio AB

Hatchet or MicroMTX (the first AXE 1 l0 application) is the

smallest AXE l0 application and it is based on only two boards

One runs the AXE CP-software (written in Plex) using an

emulator (SIMAX) and the other consists of SwitchBoard plus

daughter boards, a complete switch with processor, which
emulates the AXE l0 hardware. SwitchBoard is scalable and

controlled through Distributed Erlang.

-

The talk will focus on experiences from using Erlang to create this system and to tie all the

different subcomponents together

^,r, Lunch and Demos ,lz¡.

A modular WAP reference stack protocol
implementation

Johan Blom, Ericsson V/ireless Internet AB
rRãc55&$; ##

This presentation focuses on a reference implementation of a subset of the de facto standard,

Vy'ireless Application Protocol (WAP), for wireless information and telephony services on

digital mobile phones and other wireless terminals'

In this project a client and server stack, including a session (Wireless Session Protocol, WSP),

and transport (Wireless Transport Protocol, WTP), have been implemented in Erlang. In
addition, the basic management functions for starting and stopping the stacks etc. have also

been implemented. The protocol stacks have been designed in a very modular way and as a

result they have been used in the development of a number ofdifferent projects.

ì:

t

An experimental SIP implementation in Erlang
Hans Nilsson, Ericsson Utvecklings AB

SIP - Session Initiation Protocol - is a new IETF Protocol for
initiating, modyfing and terminating multimedia conferences.
One simple example is so called Computer Telephony. The
protocol is text based (like HTTP) and is carried by either
UDP/IP or TCP/IP.

This talk presents why Erlang/OTP was chosen as the basis for the experiments, how the
software was organized and some of the results.

äffiry

Coming releases of Erlang/OTP
Magnus Karlson, Ericsson Utvecklings AB @Ð5

Presentation of the Erlang/OTP R6 release which will be available on October 27 and includes
for example a new compiler for BEAM, ASN.I extended standard support, Corba transactions
and security in Corba using SSL. In addition there are many improvements for example in
release handling.

This release will become available as 'open source' shortly after

,î^, Coffee .rt

Towards an event modelling language
Maurice Castro, Michael Dwyer and Geoff Wong,

SERC RMIT

Object-oriented programming owes part of its popularity to Booch's
notation, Rumbaugh's OMT, and UML. These notations allow object
oriented designs to be expressed graphically and furthermore have enabled
the development ofcase tools for object oriented languages.

The lack ofa suitable high level graphical notation has been identified as one ofthe factors

discouraging the uptake of functional programming and in particular the language Erlang.

This paper represents a first step in designing a graphical modeling language for functional
programming that encourages sound programming practices. The initial target language is

Erlang but it is hoped that the notation can be extended to other functional languages.

Proposals for and experiments with an Erlang bit syntax
Claes Wikström, Bluetail AB /-ItrI

Efficient programming of communication protocols like CCITT SS7 requires

above all;
ERLANG

- Some method to handle concurrency,
- Some method to describe state-machines,
- Timers,
- Some way to efficently and beautifully encode and decode PDUs
- An effient way to manage buffers and avoid unnecessary copying'

At present Erlang is excellent with regard to the first three aspects and can lead highly
declarative programs running fast. The so called "bit syntax" is an extension for dealing with
the latter two aspects.

The talk will describe the bit syntax and the buffer mechanism and report from an experimental

implementation and from experiences in using them for the implementation of actual protocols.

Plans are that the bit syntax (possibly in som revised form) will be included in a future release.

(This work was carried out at the Computer Science Laboratory.)

.r , Bus from Alvsjö to Dinner Event .r,+

Conference chairman: Prof. Bengt Jonsson
Dept of Computer Systems
Uppsala University.

Demonstrations:

Conference Dinner:

Organization
Committee:

Brainpool IW3 communication system, WAP
and HACT (High Availability Telephony).

On a boat trip with
m/s V/axholm III.

Bjarne Däcker, Computer Science Laboratory
Ericsson Utvecklings AB

Lilian Å,hlberg, Open Systems Consulting
Ericsson Utvecklings AB

Anna Fedoriw, Open Systems Product Management
Ericsson Utvecklings AB

Torbj örn Ke isu, Software Architecture Laboratory
Ericsson Utvecklings AB

l.

How to get there: By air

1. From A¡landa airport you take the bus (Flygbussarna) to
Stockholm. This costs about SEK 60 and takes about 35

minutes. The bus stop (Cityterminalen) is almost on top of
Stockholms Central Railway Station. Going by taxi is not
much more convenient or faster, but much more expensive
(about SEK 350). Ifyou do go by taxi, be sure to agree on
the price before starting the trip! It is quite likely that you
otherwise will have to pay towards SEK 1000!

2. You then walk down to the railway station and take the local
train, see below. Alternatively you could take a taxi but that
would cost you almost SEK 200.

Via local train (pendeltåg)

l. Take the "pendeltåg" from Stockholms Central Station (the
train station) south to Älvsjti. This takes about 7 minutes and
costs about SEK 20. (Ifyou intend to stay a few days, it is
worthwhile to buy a strip, "rabattkuponger", instead.)

2. tù/hen you exit the station: turn right (not left to the
Stockholm International Fair).

3. Walk down the stairs, turn right and cross Johan Skyttes väg
and walk towards "Handelsbanken" and some other shops.
The big road you have to cross to get to Handelsbanken is
Götalandsvägen. However, don't cross the road: Go to the
left and follow Götalandsvägen about 200 meters. You will
bump into the main gate of the Ericsson buildings in Älvsjö.
This is where you enter.

By car

1. Drive the E4 road south from the city and take off towards
Älvsjti about 5 kilometers from Stockholm center.

2. At the first roundabout/circulation place on Älvsjövägen turn
left. Park you car and enter the main gate.

^(itli
l ì fi,¡

V}D'RT

ffi H¡:

.Idv(s'
i Èr tr ,û!rù þi¿J

f'

å¡rr$ô ¡(J tG
Crill

't}¡
Tcllurhrryrrir¡¡r¡ llJ - IiL

Às
td

,\L
tl0

&åþ

.Êâ
,)

Fax +46 8 719 89 40

EUC99
Ericsson Utvecklings AB
P.O. Box 1214
SE-lg 28 Kista
SWEDEN

rrttI;I
E RTANG

Erlang [Jser Conference 1999 - Participants

Chairman and speakers

Sweden bengt @ minsk.docs.uu. seUppsala UniversityProf Bengt Jonsson

per.bergqvist @ era.eric sson. seEricsson Radio
Systems AB

SwedenPer Bergqvist

johan.blom @ewi.ericsson.seEricsson Radio
Systems AB

SwedenJohan Blom

SERC Australia maurice @ serc.rmit.edu.auMaurice Castro

Sweden mk @ erlang.ericsson.seMagnus Karlson UAB/Open Systems

Sweden hakanm@bluetail.comHåkan Millroth Bluetail AB
hans. h.nahringbauer @ telia. seTelia Promotor AB SwedenHans Nahringbauer

UAB/CSLab Sweden hans @ erix.ericsson.seHans Nilsson

Université de
Montréal

Canada piche @ iro.umontreal.caPatrick Piché

Sweden fredrik. strom @ brainpool.seFredrik Ström Brainpool AB
Sweden klacke@bluetail.comClaes Wikström Bluetail AB

Participants

Ericsson Inc. USA jukka.alapoikela @ ericsson.comJukka Alapoikela

Sweden j orgen. andersson @ switchboard.ericsson. seJörgen Andersson
Ericsson Radio
Systems

kristoffer. andersson @ brainpool. seBrainpool AB SwedenK¡istoffer
Andersson

Marcus Arendt AB Sweden marcus@arendt.seMarcus Arendt

Sweden ioe@bluetail.comJoe Armstrong Bluetail AB
thomas @erix.ericsson.seUAB/CSLab SwedenThomas Arts

Ireland michael.begley @ etx.ericsson. seMike Begley
Ericsson Systems
Expertise

Sweden per.x.bengtsson @ telia.sePer Bengtsson Telia Promotor AB

ib@bluetail.comBluetail AB SwedenJohan Bevemyr

Bluetail AB Sweden mbj@bluetail.comMartin Björklund

UAB/Open Systems Sweden stefanb @ erlang.ericsson. seStefan Björnelund

Sweden bj ornfot @ erix.ericsson.seLars Biörnfot UAB/SARC

Sweden hasse @ erix.ericsson.seHans Bolinder UAB/Open Systems

kent @ erlang.ericsson.seKent Boortz UAB/Open Systems Sweden

Ericsson Radio
Systems AB

Sweden goran.bage @ era-t.ericsson.seGöran Båge

Uppsala University Sweden richardc @ csd.uu.seRichard Carlsson

Sweden tuula @ erix.ericsson.seTuula Carlsson UAB/Open Systems

Francesco Cesarini UAB/Open Systems Sweden cesarini @ erlang.ericsson.se

Gennady Chugunov SICS Sweden gena@sics.se

Sweden marcus.claus @ brainpool. seMarcus Claus Brainpool AB

mats.cronqvist @ etx.ericsson.seMats Cronqvist Ericsson Telecom AB Sweden

Mary Daly-Scanlon
Ericsson Systems
Expertise

Ireland Mary.DalyScanlon @ eei.ericsson.se

UAB/CSLab Sweden bi arne @ erix.ericsson. seBjarne Däcker

Enea Data AB Sweden tommy.fagerberg @enea.seTommy Fagerberg

anna @ erlang.ericsson.seAnna Fedoriw UAB/Open Systems Sweden

Henrik Forsgren UAB/Open Systems Sweden henrik @ erlang.ericsson.se

SICS Sweden fred@sics.seLars-Äke Fredlund

Sweden magnus@bluetail.comMagnus Fröberg Bluetail AB

iocke@bluetail.comJoakim Grebenö Bluetail AB Sweden

d95-rer@d.kth.seRickard Green UAB/CSLab Sweden

Dan Gudmundsson UAB/Open Systems Sweden dgud @ erix.ericsson. se

Dilian Gurov SICS Sweden dilian@sics.se

Sweden biorn @erix.ericsson.seBjörn Gustavsson UAB/Open Systems

Lars-Erik
Gustavsson

Ericsson Business
Networks

Sweden lars-erik. gustavsson @ ebc.ericsson. se

Radosman Gutierrez Ericsson Telecom AB Sweden etxgura @ kk.etx.ericsson. se

Thomas Verner
Hansen

LM Ericsson A/S Denmark thomas.v.hansen @ lmd.ericsson.se

Sweden per@erix.ericsson.sePer Hedeland UAB/CSLab

Joakim Hirsch UAB/Open Systems Sweden joke @ erlang.ericsson.se

Bengt Holmström Ericsson Telecom AB Sweden bengt. holmstrom @ etx.ericsson. se

gunilla @ erlang.ericsson.seGunilla Hugosson UAB/Open Systems Sweden

Anders Jacobsson
Ericsson Business
Networks

Sweden anders j acobsson @ ebc.ericsson. se

Erik Johansson Uppsala University Sweden happi@csd.uu.se

Ylva Johansson Sjöland & Thyselius Sweden ylvajohansson@st.se

Torbiörn K Johnson Sweden torbi orn.k. i ohnson @ swipnet. se

Sweden henrikjonasson @ ebc.ericsson. seHenrik Jonasson
Ericsson Business
Networks

Sweden per-j ohan j osefsson @ sth. frontec. seFrontec Tekniksystem
ABPer-Johan Josefsson

Sweden bmk@erix.ericsson.seUAB/Open SystemsMicael Karlberg

d95-bka@d.kth.seUAB/CSLab SwedenBertil Karlsson

lagga@ erlang.ericsson. seUAB/Open Systems SwedenMagnus Karlsson

Sweden mikael.karlsson @ creado.comMikael Karlsson Creado Systems

Sweden roland @ erix.ericsson.seUAB/CSLabRoland Karlsson

UAB/SARC Sweden keisu @ erix.ericsson.seTorbjörn Keisu

Norway kj ell.k¡istiansen @ kvatro.noKiell K¡istiansen Kvatro Telecom AS

Sweden markus @ erlang.ericsson. seUAB/Open SystemsMarkus Kvisth
thomas.lange @ switchboard.ericsson.seEricsson Radio AB SwedenThomas Lange

Sweden magnus.lennartsson @ ericsson.comMagnus Lennartsson Ericsson Telecom AB

Sweden andreas.lindgren @ st.seAndreas Lindgren Sjöland & Thyselius

Sweden thomasl@bluetail.comThomas Lindgren Bluetail AB
etxstlz @ kk.etx.ericsson.seEricsson Telecom AB SwedenStefan Lorenz

Ericsson Radio
Systems AB

Sweden Peter.Lund @ era.ericsson. sePeter Lund

Ericsson Telecom AB Sweden peter.lundell @ ericsson.comPeter Lundell

Sweden kenneth @ erix.ericsson.seKenneth Lundin UAB/Open Systems

Sweden mml@erix.ericsson.seMatthias Läng UAB/CSLab

stefan.martinsson @ etx.ericsson. seEricsson Telecom AB SwedenStefan Martinsson

UAB/CSLab Sweden hakan @ erix.ericsson.seHåkan Mattsson

Ericsson Systems
Expertise

lreland eeicmui @ eei.ericsson.seChandry Mullaparthi

Sweden patrik.niklasson @ ebc.eric sson. sePatrik Niklasson
Ericsson Business
Networks

Sweden nibe @ erix.ericsson.seBengt Nilsson UAB/Open Systems

UAB/CSLab Sweden raimo @erix.ericsson.seRaimo Niskanen

Sweden svenolof@csd.uu.seSven-Olof Nyström Uppsala University

i anine. okeefe @ etx.ericsson. seJanine O'Keeffe Ericsson Telecom AB Sweden

Ericsson Business
Networks AB

Sweden arne.ohlsson @ ebc.ericsson. seArne Ohlsson

Sweden simon.olofsson @ etx.ericsson.seSimon Olofsson Ericsson Telecom AB

Uppsala University Sweden mikpe@csd.uu.seMikael Pettersson

Sweden dan @erix.ericsson.seDan Sahlin UAB/CSLab

Ola Samuelsson Cyberode IT AB Sweden ola@cyberode.se

Ericsson Systems
Expertise

Ireland eeidsk @eei.ericsson.seDenise Stack

l:.
i

'.:

Per Sternas
Ericsson Business
Networks

Sweden per.sternas @ebc.ericsson.se

Hishmat Sultani Telia Promotor AB Sweden Hishmat.S.Sultani @ telia.se

Henrik Swerin UAB/Open Systems Sweden henriks @ erlang.ericsson.se

Sebastian Strollo UAB/Open Systems Sweden seb@erix.ericsson.se

Erik Strtimback Ericsson Radio AB Sweden erik. stromback @ switchboard.ericsson. se

Göran Stupalo UAB/Open Systems Sweden stupalo @ erlang.eric sson. se

Ulf Svarte Bagge Ericsson Radio AB Sweden ulf.svarte-bagge @ switchboard.ericsson. se

Lars Thorsén UAB/CSLab Sweden lars @ erix.ericsson.se

Magnus Thoäng Ericsson Telecom Sweden etxmagt @etxb.ericsson.se

Johan Tjäder Ericsson Telecom Sweden @etxb.ericsson.se

r@al.etx.ericsson.se

@connecta.se

@erix.ericsson.se

Robert Tiärnström Ericsson Telecom AB Sweden

Markus Torpvret Connecta Teknik AB Sweden

Christoffer
Törnkvist

UAB/SARC Sweden

Åte u¿¿¿n Ericsson Telecom AB Sweden etxaal @kk.etx.ericsson.se

Robert Virding Bluetail AB Sweden rv@bluetail.com

Jane Walerud Bluetail AB Sweden iane@bluetail.com

Carl V/ilhelm V/elin UAB/CSLab Sweden @erix.ericsson.se

h @kvatro.no

@erix.ericsson.se

wl @etx.ericsson.se

Per Harald W

Sverker V/i

f V/iger

Kvatro Telecom AS Norway

UAB/CSLab Sweden

Ericsson Telecom AB Sweden

Jerker Wilander Ericsson Radio AB Sweden i erker.wilander @ era.eric sson. se

Mike Williams UAB/Open Systems Sweden mike @ erix.ericsson.se

Patrik Winroth Bluetail AB Sweden patrik@bluetail.com

Lulseged Zerfu Ericsson Telecom AB Sweden etxluze @ kk.etx.ericsson. se

Lennart Ohman Sjöland & Thyselius Sweden lennart.ohman@st.se

UAB = Ericsson Utvecklings AB
CSLab = Computer Science Laboratory
SARC = Software Architecture Laboratory

!

a

Telia CallGuide@

' PBX ¡ndePendènt

CTI platform for contact centers
t ',_

t, ,r.
il ,*.,. . r:l i ,l . n,,.t'i' frl,.

e] ,,. .. ,,, ij r.,.j ¡. i.

'' ' t-; d¡¿ e'iþ \¿ ' ' qJ

'ìq\ *Î ' :'i-r' -':

rer¡ap,omoro, ll.;:t lri¡ifl t*- t,r' v. qr,.

)i.. r¡. r,' t,-
. rf{i,' ¡r¡. É'ttili

:,ì (l.i,, f.
n

i

Customer care

and service

i ncrease co m pet¡tiveness

Top-quality customer care and customer service

keep you ahead of the competition. And a con-

tact center is the best way to manage customer

care and service. How? By uniting computer-

integrated telephony with other lT solutions.

Telia Promotor offers Telia CallGuide - a techni-

cal platform for contact centers. With this plat-

form, your company can meet the most stringent

requirements for accessibility and service,

regardless of whether your customers conlact
-

you by phone, fax, or e-mail. The platform is also

prepared for lnternet telephony.

Telia CallGuide provides all necessary tools for

effectively communicating with and following up

on customers.

--.--¿{,1
¿å ''-'

þ

f4*

Ç

2

lndependent of phone branch exchange

Telia CallGuide is a service solution with audio

response (lVR) that can be connected to a phone

branch exchange (PBX) with TAPI support. You can

also rnix different PBXs in the same customer-service.

You need no private PBX. Telia CallGuide can be

connected directly to AXE or ùo an analog telephone.

Customer-service reps af€ not tied to a permanent

ôffice; they can work from their homes.

Simple installation without an PBX link

Most CTI solutions require an PBX link for communica-

tion with the ælephone PBX.

PBX links are expensive and generally quite complex

to insøll.

With Telia CallGuide, you need not purchase costly

PBX links nor update the exchanges. Installation is

much easier and more secure.

Open interfaces and standard software

Tþlia CallGuide is based on open interfaces, which sim-

plifies inægration into customer databases, HR systems,

and action-request (message) systems.

Telia CallGuide uses standard software, such as

MS SQL Server, MS Windows Nl and CrystalReports.

The applications use a Windows-based interface without

scripting language.

lntelligent call control

Because calls are virnrally queued using IVR, ACDs

are not required. You can queue an unlimited number of

calls and competence groups at your customer-service

sites.

You can also provide each customer with a personal

customer-service rep to whom the customer is always

fonvarded automati cal ly.

3

IVR - automat¡c serv¡ces

r IVR with customer-specific menus and functions.

o Automatic services with connections to arbitrary

support systems.

o Customers receive continuous updaæs concerning"

their place in the queue and estimated time of wait.

o Voice mailboxes.

o Fax.

o Analog or digital connection of IVR ûo the exchange.

Gompetence-based call control

¡ Calls are forwarded to:

- the customer-service rep with the right competence.

- an available customer-service rep who recently

helped the customer.

- a personal customer-service rep.

- external numbers when, for example, load is high

or queues are long.

o During operations, customer-service reps can be

assigned to an area of competence and to a gfoup.

ues

o Escalation/overflow of calls between queues.

o Different queue priorities.

Screen-based telephony - Telia CallGuide

."-..-TeleList" .-"
¡ Telia CallGuide Telelist provides ûelephony functions

in a Windows-based environment.

o Customer-service reps can monitor queue lengths and

determine how many active cusùomer-service reps

fall within a certain competence ar€4.

¡ Customer-service penonnel can:

- creat€ a personal telephone book.

- refer themselves via a referr¿l fr¡nction.

o Customer-service feps can put the customer on

hold - to confer with a colleague. They can send

questions to a competence afea or group, which

4

!¡:- ,

Tel e Li st ær een -based te lepho ne.

I û

rneans that they need not know the names of their

colleagues; this is particularly advanageous when

customer-service is distributed among several loca-

tions and serves many competence areas.

o Calls can be transferred to a customer-service

rep, to a competence area, or Ûo a group.

o Three-party conferences.

o Oscillation between calls.

. Pause-connection and post-service follow-up.

o Confidentiality.

Screen pop

e Information on the incoming call is retrieved from

the support system and presented on the scr€en

(screen pop) as the call arrives.

o The screen pop is shared during conference calls

and accompanies calls that are transferred to a

new cusûomer-service rep.

Outgoing telephony - prev¡ew dialing

. With CallMeBack:

- IVR - the customer can, via audio response, ask ûo

be called back at a mol€ convenient time.

- Web - the cusûomer can, via a Web page, ask to be

called back immediaæþ or at a morc convenient time.

o Calling lists are:

- used for CallMeBack and during campaigns.

- sorted by priority, requesûed action, daúe, and so on'

CentraMäntelisla r

Ç t

. Campaigns - customer-service staffare reminded to

survey their cusùomers regarding action requests and

company campaigns.

. Competence-based control also applies to outgoing

ælephony.

E-mail

¡ Competence-based control of incoming e-mail via

Telia CallGuide Mail.

¡ Campaigns in the form of e-mail, which reminds

customer-sen,ice reps to follow up cusûomer requests.

t I

I

Saknas

:lrùggdp¡1 tf¡r¡t iAn¡üûlC$rih2:ã1

920211021 0¡dinarie 100

5

J

¡É

r'

F
a,

f

-

"T
,tË¡

q*
{

¡

r

I'i

r Ës,.

tb,

J :h
D ^eJ ¡

!+
f

i

lh
{,

_d'

t

Example of a campaign list.

Surma kct*,læ 1 -':

Ofl'Real-time informat

statistics and other funct¡ons

Administrative program

¡ Tþlia CallGuide Admin pennits cusûomer-

service managers ûo administer queues,

compeûencies, gmups, and extensions via

a simple Windows-based interface.

o Cusûomer-service r€ps can be removed from

and added ûo CallGuide Admin. Managers

can easiþ create and change the profiles of

cusùomer-service staff.

o Personal customer-service reps or groups

can be defined for certain cusûomers.

o Business hours can be set in IVR

¡ Messages can be sent ûo every customer-

service rep.

Statistics

¡ Call-relaæd. Number of incoming calls, num-

ber of dropped calls, and number of calls per

requested action. Statistics are generaÞd per halÊhour,

day, and uæek.

o Stañrelated. Call duration, number of calls, total

time per requested action, available status in percent,

and percent of calls per customer-service rep.

r Outgoing ælephony-related. Staff-related statistics

and call-related statistics for campaigns.

¡ Seagate's CrystalReport, one of the world's rnost

commonþ used reporting tools, is included in the

platform, along with several standanJ, customer-

service reports.

o Telia CallGuide Stat generates statistics and enables

managers ûo manþlate the information in standard

business sofüvafe, such as Excel and Word.

Real-time information on the contact center

¡ Cu¡rent information is displayed in real time. Telia

CallGuide Fulse reports on the number of queued

calls, answered calls, abandoned calls, average queue

time, number of reps logged into the system, repre-

sentative status, and so on.

o The real-time information is presenæd numerically

and graphically and may be displayed on screen.

6

**1r úft

tYa i
¡l O f grtrvúl |a.h.l i.r-|¡d

CatlGuide Pulse, real -time superuision.

Other functions

o Cusûomer-service reps arc not required Ûo work frrom

a permanent site. The system registen the extension

from which a repf€s€ntative is currently working (hot

desking).

o Unlimited number of cusûomer-service staffmembers

or work sites.

¡ Distribuæd work siæs; for example, horne-based

work sites can connect to the system via LAN, ISDN'

or modem.

o The number of IVR lines can be expanded

dynamically.

!r¡

:tr I ¡lI5

:te lrltn tðra tË¡al

Operating system

¡ CallGuide Server runs under MS rWindows NT 4'0

and uses MS SQL-Server as a database. See

http: //wwwmicrosoft . com

¡ All client software is installed on Windows 95/98 or

Windows NT 4.0.

Dependability

¡ Telia Prornotor is the marketJeading supplier of

computer-integrated telephony in the Nordic region'

In 1998, Tþlia Promotor delivered advanced CTI

solutions for more than 2,500 cusÙomer-service reps.

. Dependable server æchnology with double RAID

disks and Ericsson's Erlang/OTP technology.

Ericsson uses Erlang code in its new-generation,

public-network, AIM exchanges. Erlang offers many

unique advantages, for example, the software code

can be updated while in frrll operation.

¡ Tested audio response with nearly 1,000 insøllations

in Sweden.

. System supervision with Telia CallGuide Alarm'

Alarms are generated whenever any part of the

system fails. Telia CallGuide can be based on IBM's

Netfinity software.

Telia Callcuide' ¡s a rggistsred trademark of Telia AB' MS SOL Server

and MS Windows NT are tradomarks of Microsoft. Netfinity is a trade-

mark of lBM. CrystalReports is a trademark of Seagate'

Acronyms and what theY stand for

System overveiw

t
lFET

Þ

i!,.

n

l¡-.

1.

ACD:

ATM:

CTI:

DDE:

IVR:

LAN:

Automat¡c call d¡stributor
Asynchronous transfer
mode
Computer telsphony
integrat¡on
Dynam¡c data exchange

Audio response

Local area network

OTP: Open telecom Platform
PBX: Phone branch exchange

RAID: Redundant arraY of
independent disks

TAPI: TelePhonY API

7

I¡,.ry.*

EGIr¡**p*rl

lr¡
t{
lr1l
t{
ù¡!
G

l-¡1. I
lr¡¡

IT ÐI
a-är S

, ùil¡û¡r.dd
d¡l¡Þ

Goreborg

SE 411 04 Goreborg

'46
31 77r 2¡ 00

8ox lffi
5E 136 ?3 Hânin0e

,¡6a707 35 00

So!ñ¡

80x 2069

SE 1?1 02 Soln¡
,¡6876¿ 35 00

8o¡ 1214

SE 751 42 UDpsal¡
,¡6 18 189¡ 00

,-'*tel¡a

r46 40 g0 100

l€l¡a Promorot
M,promotof lel¡å.s

SE 205 21 M¿lñô

!li

Fredrik Ström M.sc.

Vice President

Senior Consultant

brdn¡ool
L/ !conrullrng

Brainpool at a glance #
. lT Consulting company
. 23 consultants
. Business Areas:

- - Information Systems

- - Internet

- -'Workflow

- - Mobility

brdncool
,,/ lconsultins

What is a MMS? #
lnlorm.ton prorrdar Oü.r .y¡t ñl F FFF

b
l¡ng

Brainpool MMS #
. 16 b¡t DOS

. Poor scalability

. Modem

. Country dependent

. One-way communication

liñg

¡

i'
Ir
¡r:
í. 1

È-.r'ì
l

New Requirements #
. Quicker transmission
. Two-way communication
. Country independent
. Scalable
. Robust

l¡ng

Brainpool M/3 #
. Erlang System/OTP
. Ericsson GM12
. ANSI C
. Windows service

Brainpool M/3 #

0al¡barô ¡yal.ñ
Sarvar F F F

I ng

oo

Erlang Æ

. Rapid development

. Fewer bugs - more stable sYstem

. Some functions missing

. Differs from "normal" development

. lG is powerful

. Mnesia is powerful

Ò

i.: I

Conclusion

. We at Brainpool have found that the
Erlang System IOTP is a reliable and
usable platform.

. We look fonruard to working with Erlang
in the future, as well as increasing our
cooperation with Ericsson.

. We intend to train a larger group of
consultants in Erlang to meet this goal.

brdn¡ool
,/ lc o n r u lt in g

#

More information Æ

. Please contact

- Fredrik Ström

-08 -4466042

- fredrik. strom @ brainpool. se

- www.brainpool.se

brdn¡ool
l,/ lconsulting

br oo

.¡ta

consulting

Företagspresentation

Författare

Fredrik Ström
Vice VD

Brainpool AB

l¡¡g 1 999-09-27
Sida 2

BRAINPOOL AB - Företagspresentat¡on

Affärsidé

Brainpools vision är att hjälpa företag och organisationer utveckla och förbättra sin

verksamhet genom att använda informationsteknologi på rätt sätt. Företaget grundades l99l
och ägs av tre personer, samtliga arbetande konsulter i företagsledande befattning.

Vår affÌirsidé är att i nára samarbete med kunden analysera, utforma och implementera
avancerade informationssystem och kommunikationstillämpningar i syfte att hjälpa kunden att

arbeta och kommunicera effektivare, automatisera arbetsflödes- och beslutsprocesser samt
presentera och distribuera information till interna och externa intressenter. Detta skall ske

genom att utnyttja såväl kundens befintliga tekniska plattform och organisation som att
utvåirdera och rekommendera användning av nya produkter, verktyg och metoder inom IT.

Samtliga Brainpools medarbetare arbetar med såväl analys, design och modellering som
med teknisk rådgivning, programmering, optimering och förvaltning av aff?irskritiska
informations- och kommunikationssystem. Våra konsulter arbetar som utvecklare,
systemarkitekter och projektledare och samtliga har någon av följande akademiska examina
inom datatekniVdatavetenskap: civilingenjör, fil. kand. och fil. mag.

För att bibehålla en teknisk bredd och kontinuerligt tillföra Brainpool kunnande inom nya,
relevanta områden samt att kommunicera ut vår profil mot en större marknad är vi partners

med ledande tillverkare och aktörer på lT-marknaden. Brainpool AB är Oracle Certified
Solution Partner, Microsoft Certified Solution Provider, certifierad JetForm Partner samt Lotus
Business Partner.

Brainpool nyutvecklar, vidareutvecklar och integrerar både traditionella och webbaserade
affiûskritiska informationssystem för företag i olika branscher som till exempel distribution
och handel, offentlig sektor, intresseorganisationer och myndigheter, medicin,
telekommunikation, hotell och restaurang, förlag och media, industri och inte minst bank och
finans. Bland våra kunder och samarbetspartners finns allt från mindre till mycket stora
organisationer. Bland Brainpools kunder inom området för konsulting finns SBAB, SKTF,
Liber, Scandic, Örebro Läns Landsting, ABB, Telia, Handelshögskolan, Bilprovningen, Linné
Group och Ericsson. Bland företag som använder våra kommunikationsprodukter m¿trks

speciellt Market Makers Technology, SEB, Securitas, Telia MegaCom och ABB.

Personella resurser och kompetensområden

Samtliga Brainpools medarbetare arbetar med såväl analys, design och modellering som
teknisk rådgivning, programmering, optimering och förvaltning av affürsk¡itiska informations-
och kommunikationssystem.

Våra konsulter arbetar som utvecklare, systemarkitekter och projektledare och samtliga
har någon av följande akademiska examina inom datateknik/datavetenskap: civilingenjör, fi|.
kand. och fil. mag.

Som en naturlig del i våra konsulters, projektledares och kundansvarigas arbete ingår att
hela tiden följa den tekniska utvecklingen, deltaga i och hålla internutbildningar och seminarier
samt att gå på formella kurser. Vidare sker certifiering av våra medarbeta¡na inom ramen för
olika certifieringsprogram hos de leverantörer vi samarbetar med; Microsoft, Oracle,
IBM/Lotus m fl.

Brainpool AB. Centralvägen 6, S-171 68 Solna-Stockholm, Sweden. Org nr:556¿132-3748
Tel +46-(0)8-446 60 40 o Fax +46-(0)8-514 910 32 . Email info@brainpool.se o lnternet http://www.brainpool.se

con¡ul ng 1 999-09-27
Sida -3

Teknik och partners

IBM

Beträffande verktyg och tekniska plattformar så arbetar vi med ledande produkter inom

datallT och har samarbete inom ramen för olika typer av partnerskap med bland annat följande

aktörer på marknaden.

IBM satsning på lösningar för eBusiness sammanfaller med Brainpools fokus på områdena

för Internet och elektronisk handel och kunnande inom relationsdatabasteknik och

komponentorienterad systemutveckling. Partnerskapet är viktigt för oss eftersom flera av

Brainpools kunder arbetar med blandade miljöer dåir IBM-plattformar utgör basen för olika
typer av produktionssystem (ERP) och dessa behöver integreras effektivt med nya system för
eBusiness. Vi arbetar speciellt med teknologier som DB2 och WebSphere/Java.

JetForm

Brainpool samarbetar med JetForm i Sverige och fungerar som kompetenskonsulter på

områden som systemintegmtion och utveckling av blankettbaserade workflow lösningar och

system för blankettdrivna centraliserade utsk¡ifter i större system,

Lotus

Sedan 1994 arbetar vi med Lotus Notes/Domino, och är numera Lotus Business Partner

med fokus på lösningar som baseras på teknologier som Lotus Notes och Domino.

Detta är ett naturligt steg för oss eftersom många företag och organisationer inom vår

marknad arbetar med såväl relationsdatabasteknik som system för workflow och

dokumenthantering och vi menar att det finns goda skäl att kombinera de olika teknikerna på

ett bra sätt, inte minst i olika workflow-lösningar och i web-tjänster.

Microsoft

Brainpool ár Microsoft Certified Solution Provider (MCSP). Ett flertal av Brainpools
medarbetare ár certifierade på olika tekniker hos Microsoft.

Bland teknologier från Microsoft arbetar vi speciellt med de olika utvecklingsverktygen,
komponentarkitekturen DCOM och BackOffice-plattformen, I ex med SQL Server, MS
Transaction Server och Internet Information Server.

Oracle

Brainpool har av Oracle Svenska AB valts ut som en strategisk partner och är sedan 1998

en Oracle Certified Solution Partner. Vi har jobbat med Oracle teknologi sedan 1994 och varit
Oracle Business Alliance Member och Oracle Value Service Provider sedan 1996.

Vi har i många olika projekt utvecklat affürskitiska informationssystem och webtjänster
baserat på Oracles databaser och Oracle Application Server. Exempel är beslutstöd- och

produktionssystem i Intranätmiljö, shoppingtjänster på Internet, datalager och driftrutiner kring
dessa.

Nya tekniker

Inom ramen för utveckling av vår tekniska strategi arbetar vi också med andra plattformar
som vi bedömer är intressanta; Java på IBM minis/mainframes, DB2, Enterprise Java Beans

och CORBA samt utveckling av distribuerade kommunikationssystem och feltoleranta
applikationer baserade på språket och plattformen Erlang från Ericsson.

Speciellt intressanta är dessa tekniker för segmenten elektronisk handel, distribution,
media, bank/finans och telekommunikation.

Inom området för workflow och blanketthantering arbetar vi också med teknologi från

JetForm, speciellt med koppling till mailsystem, databaser och webben.

Brainpool AB . Centralvägen 6, S-171 68 Solna-Stockholm, Sweden . Org nr: 556432-3748
Tel +46-(0)8-446 60 40 ¡ Fax +46-(0)8-514 910 32 . Email inlo@brainpool.se r lnternet http://www.brainpool.se

¡

I

I

con¡u ting 1999-09-27
Sida 4

Sammanfattning av den kompetens som Brainpool tillhandahåller

Systemutveckling; projektledning, verksamhetsanalys, processmodellering,
datamodellering, logisk systemdesign, prototypning/RAD, implementering,
testmetodik, förvaltning/vidareutveckling, utbildning

Modellering; datamodellering, ERÆRX, UML, flödesmodeller, processmodeller,
tillståndsdiagram, objektorienterad analys och design

Databaser; fysisk databasdesign, övervakning, prestandaanalys, optimering. Speciellt
plattformarna Oracle, Sybase, MS SQL Server, DB2, Lotus Notes; distribuerade
databaser, replikering, gränssnitt mot externa system och integration av heterogena
databaser, datalager, N-skikts client/server

Programmering; Visual Basic, C/C++, Delphi, Object Pascal, Java, DCOM/ActiveX,
CORBA, Oracle PUSQL, SQL, MS Transact-SQL, Sybase Transact-SQl, Centura,
Oracle Developer, MS ASP, MS Office, MS Access, Paradox, Lotus Notes, Erlang

Internet/TVeb; HTML, Javascript, HTTP, Java, MS IIS, Oracle Web Application
Server, IBM rWebSphere., Apache, Microsoft Transaction Server, Lotus
Notes/Domino, system för elektronisk handel, säkerheq certifikat, kyptering

Operativsystem; Windows alla versioner, OS/2, DOS, Netware, UNIX, Linux;
system-API:er, driftrutiner

Kommunikation; Seriell kommunikation, TCP/IP, integration av mailsystem med
databaser, driftrutiner och applikationsprogramvaror, meddelandeprotokoll för mobila
mottagare (SMS, personsöknin g).

Egen produktfamilj Brainpool MMS och Brainpool lW3 för integration av
mobiltelefoner, personsökare och datorsystem som sublicensieras och är i drift hos
företag som t ex Securitas, ABB, Alfaskop, Telia och kunder till dessa.

BrainpoolAB ¡ Centralvägen 6, S-171 68 Solna-Stockholm, Sweden. Org nr:55ilÍ!2-3748
Tel +46-(0)8-446 60 40 ¡ Fax +46-(0)8-514 910 32 . Email info@brainpool.se. lntemet http://www.brainpool.se

a

a

a

a

a

a

a

ñg
1999-09-27

Sida 5

Kvalitetssäkring

O rganisation och policy

Styrelsen har slagit fast att Brainpool i alla avseende kontinuerligt skall förbättra och

effektivisera arbetsmetoder för kvalitetssãkring; från dokumentation och ledning av

administrativt arbete och säljprocesser till projektledning och tekniskt utvecklings- och

förvaltningsarbete.

Vägledande i detta arbete är tankegångarna i CMM - Computer Maturity Model och dess

fokus pã repeterbarhet, mätbarhet, ledning och optimering av processer inom nyckelområden,

ke¡, process areas. Deüa kombineras med ett i grunden iterativt synsätt dár optimering av

arùeismetoder introduceras och utvärderas stegvis i syfte att åstadkomma ett smidigt och icke-

byrokratiskt arbetssätt.

Kvalitetsansvarig är VD, Marcus Claus.

Arbetsþrdelning

Samtliga medarbetare arbetar efter en metodhandbok framtagen inom Brainpool AB. Den

inkluderar rekommendationer av tillvägagångssätt, val av olika hjälpmedel och ger många

praktiska exempel på rutiner för planering, ledning och uppföljning samt för tekniska tester och

kvalitetskontroll.

Inom ramen för våra uppdrag dr det respektive projektansvarigs ansvar att utbilda och

skapa förståelse för kvalitetsorienterat arbete, samt att gentemot företagsledningen ansvara för

att lämpliga metoder och konventioner läggs fast för uppdraget och följs.

Flera stödsystem är egenutvecklade och innehåller bland annat följande: Distribuerade

dokumentdatabaser för lagring, kategorisering och åtkomst av affársdokument, avtal med

mera, avancerad projektdatabas med stödsystem för tidsstyrning och uppföljning, verktyg för
systemdokumentation samt ett distribuerat system för hantering av defekter, önskemåI,

åtgåirder och arbetsund erlag (Configuration Management). Information på filnivå hanteras med

standardverkty g för versionskontroll.

Samtliga medarbetare har tillgång till de interna stödsystemen via säkra kanaler över

Internet.

Kontinue rli g fö rbritt rin g

Varje projekt avslutas med en uppföljning där projektgruppen och någon medlem i

företagets ledning medverkar. Syftet är att säkerställa återkoppling och kommunikation, så att

vunna erfarenheter kommer företagets övriga projektledare och konsulter till godo.

Vid utvärdering ses till sådant som faktiskt tidsåtgång i förhållande till planerad tid,

precision i analys och dokumentations-/specifikationsarbetet, tätheten av defekter såväl på

funktions- som på systemnivå, dokumentationskvalitet samt förvaltnings- och testrutiner.

Utbildning av nya medarbetare och annan personal sker i form av interna seminarier och

föredrag.

Certifiering av medarbetare inom ramen för våra partnerskap med inflytelserika data/IT-

företag, är vidare ett sätt att regelbundet kontrollera och garantera den höga kompetensnivån

hos våra medarbetares inom viktiga tekniska områden.

Dokumentation av rutiner

Metodhandboken, mallar och exempel uppdateras kontinuerligt. All dokumentation och

annan information relaterad till enskilda uppdrag lagras och nås enligt en standardmodell som

alla Brainpools medarbetare har att följa.

Brainpool AB ¡ Centralvågen 6, S-171 68 Solna-Stockholm, Sweden . Org nr: 556432'3748
Tel +46-(0)8-446 60 40 ¡ Fax +46-(0)8-51a 910 32 . Email info@brainpool.se ¡ lnternet http://www.brainpool.se

i:.

l

l¡n9 1 999-09-27
Sida 6

Mirjö

Styrelsen har slagit fast att Brainpool skall vara ett miljömedvetet företag. I detta ligger att
beakta miljötekniska faktorer och alltid sträva efter det ur miljöhänseende bästa valet av
leverantörer av dator- och kontorsutrustning samt förbrukningsmaterial.

Exempel åir valet av modern datorutrustning med energispar-funktioner, hög grad av
återvinnbara material samt undvikande av klorblekta material, t ex papper i kontorsmaterial.

Miljöansvarig är Administrativ Chef, tillika inköpsansvarig, Pontus Marcelius.

2000-Strategi

Styrelsen har kommit till slutsatsen att samtliga Brainpools egna system för
administration, ekonomi, lön, afftirsstöd, telefoni och data samt vår websajt, alla är 2000-säkra.

De system vi som konstruerar för kund är säkra avseende såväl design o konstruktion i alla
avseenden.

I den händelse våra lösningar samverkar med system från tredje part eller bygger på
program- och/eller maskinvara från annan leverantör bistar vi kunden med utredning, tester
och anpassning i de fall dessa delar av systemen visar sig ej klara övergången till år 2000.

Brainpool AB o Centralvägen 6, S-171 68 Solna-Stockholm, Sweden. Org nr: 556432-3748
Tel +46-(0)8-446 60 40 . Fax +a6-(0)8-51a 910 32 . Email info@brainpool.se. lnternet http://www.brainpool.se

Status report on the ETOS
Erlang to Scheme compiler

http: / /www. iro.umontreal . cal-etos
http: / /www. iro.umonÈreal . cal-ga¡nbit

http: / /w¡w. iro.umonEreal . cal-f eeley

Marc Feeley, Patrick Piché, Sylvain Beaulieu,
Martin Larose, Mario Latendresse

Université de Montréal

ETOS goals

a

. Conform to Standard Erlang (final draft 0.6, june 1998)

a Generate fast code

Reuse Gambit-C Scheme compiler technology
Mature compiler
. dynamic module loading
. FFI (Foreign Function lnterface)
. Unicode support

Generates fast portable ANSI-C code (Unix, Windows, Mac)

Specially modified for ETOS

ítt:!:. :t'_l

i r:
i',
i ,'.
l1i

i
I

I

a

o

o

Summary

Performance comparison

Gambit-C optimisations

Pattern matcher

a

a Future work

ETOS 2.3 compared to 1.4 and others
ETOS 2.3 + Gambit-C 3.1f + gcc 2.8.1

JAM/BEAM 47.4.1, Hipe 0.27

Run time relative to ETOS
UltraSparc 143MHz Pentium 400

Hioe BEAi' .lem BEAM
f¡b
hulf
length
smith
tak

.65

.35

.55

.20

.56

3.27
{.19
4.31
3.56
6.29

7 .24
12.¿8
15.66

7 .55
8.9¿

3.27
6.28
3 .51
7.38
7 .89

barnes 16.01 20.62 18.18 19.62
nfev
osort

.89
1.11

1

5

.t7

.21
s.13

11.10
2

7

15
0?

nng
steble

57

91
.76
.61

1. 15
1.15

.70

.5{

ln general, v2.3 faster than v1.4 (better inlining & better intermodule calls by Gambit-C)

Slower in a few cases (support for dynamic module loading causes more intermodute calls)
Processes are now better (still not great due to remaining intermodule calls to kernel)

o

o

o

a

a

Buffers Files Tools Edìt Search Conpìete lly'Out Signals Help

bash$ etos -l¡,1 -DET0S test.erl
"./u/f eeleg
"/u/feeIêg

/etos/etos-2.3/test..er1 "@4 .5-4.10 : l¡Janni : unused variable l¡idth
7-etas1

bash$ estart test
Ihe11o,100i
bash$

u e test
-export([start/O]).
f(X,l¡Jidth,Height) -) XxX.

start() -) io:write([hel].o,f (10,20,30)l) , io:nIo

What is Standard Erlang?

A "CIeaner" Erlang:

Character type and support for Unicode

New constructs: alL-true, some-t,rrre and try

Order of evaluation = left to right

Recognizer BlFs begin with "is-" prefix

Function type

Using the ETOS compiler

26 I7:47 O.O2 (SheIi :run)--L3--Ali------

test . er unS 26 L7 -.47 0.O2 Ïext

Sun: t(t(xshe I I x

xì emacs@ b aikal.l R0 -u M o ntre al.cA IIEEI

Gompilation of an Erlang module (part 1)

Erlang source "m.erl": Scheme code generated by ETOS front-end:

-¡¡odule (¡r) .

-ê:qrorÈ (tf /11) .
f (x) -> other:b(g(lt)) .
g(Y) -> Y+]..

Exported f unction table

Module installation

Module deinstallation

(I.t ((mod¡ul.-l¡fo/1 (I¡¡lrdt¡ (v0) ...))
(nodluh_l.ufo/0 (hnbdâ O ...))
(f/1 (Ir¡lbdta (Y1)

(oÈb.!:b/1
(tf (a¡ö (l*firil¡ú? v1)

(t*!lnu¡¡.< vl (llttnu.+ vl 1)))
(tttlEr¡D.+ vl 1)
(rrl-sanrric-+/2 v1 1))))))

(.r1-LD.Èal1-nodul.
iDi

(Y.cÈor (Y.cÈor rt¡ 1 !/1)
(v.eÈor .rcdluI._fu¡for 0 r!odu¡._l,a!o/0)
(v.ctor rædlu1._l,r¡tor 1 ¡odul¡_l¡fo/l))

(lrr¡bdtÂ ()

(r.Èt nst/1 !/1)
(r.È I E¡aodul¡_l¡fo/o noilul._1,¡!o/0)
(r.È I n!ædulr_i¡fo/1 nodlul._l,Dfo/1)
(tf (#*r¡¡boult? otb¡r:b/1)

(..Èl oÈb.r:b/l
(lr¡ûbila x (.r1-Ed.fl,a.dl-fa-h6il1.! x,oÈb.r,h)))))

(ta¡b¿t¡ ()

...)))

e etL-+ l2 inlined

. s/2 inlined and removed

. This is compiled to C code

(not shown!)

. grcc comp¡les this to the

shared library "n.01"

Compilation of an Erlang module (parl 2')

Gambit-C expands this program to:

(r.t o
(Lnclu<l¡' /u/ f ..1.y/.È o. l.Eo. -2. I I ÊÈ -gübit . ¡6¡)

(I.tr.c ((rcôul¡-l¡fo/1 (hùda (v0) ...))
(rc¿1u1._l,r¡fo/0 (t¡¡¡¡ifr O ...))
(f/1 (I¡¡bdr¡ (v1) (otb.rrb/1 (9/1 v1))))
(g/1 (lr¡bð¡ (v2) (.rl-+/2 v2 1))))

(.11-lnrÈ111-rcdul¡
¡n¡

(v.cÈor ¡tr 1 f/1)
(v.ctor rnodlul¡-1,¡fo¡ 0 r¡odlul._i¡fo/0)
(v.ctor .rcdul._Lr¡for 1 uodlul¡_l,sfo/1))

l¡r¡rlta ()

(..t1 B!f/1 f/1)
(¡.È I n:rcôu1._l,Dfo/0 nodtul¡_j,¡folo)
(r.È I n:Àodul._:Lafo/1 Eodlul._IDfo/1)
(lf (¡rl-fa-u¡boEdl? 'otb.rr rb¡ 1)

(r.Èl oÈb.r:h/l (¡¡l-udoflD.il-fa .oÈh.r"h'))))
luùd¡ ()

(r.tl Dsf/1 (.rl-uãð.f:lD.d-f¡ rui ¡lr))
(t.È I Btrcilul¡-l,afo/0 (¡rl-udl¡f i¡¡ð-tr¡ ¡6' rúoôu1._l,Df o¡))
(!.Èl D¡Eodu1.-iafo/1 (.r1-uil.fl,D.d-f¡ .n' .nodulr_tafo¡))))))

Simplified example
oÈx
oP
bg
5e
O-C(ú .9o)õcc

J
_=Fgc-:
c
Oútoo
OE
=o LC)o

o=c
IL

=(to.9tuÈ
E .à'= E
EEEFo Fþ á
.E ñE g
=gOutË. &: I
F õ E 6
È *c 9õo ãã 5uroLO9-Eo
Cñ.=-E
fcõaUO OE ä
-!- _c. t- U,

=()f=Ê,iõ;
(E

ctr I

Ïtoo
ocL
a¡E
:Fl o
Ëc)(go

o.n
U'O
fEá
8Ë.clts
EËo-c
ã=9bo. .lG ct)

.l! n,

=Ê@.9
=FoP
íõ
.EFoËcLo

Ë.sÊ
GD >õ
F

-
.J.=.cr (Ú

AL*.nõE Ø CL

=oo?CLØ

I
õoI
(ú

oo
(g
CL
Ø

Ê
G
oc
oo
o.!
ctot-
o
Eo
.c
o
Ø
ï,
tr
(E

E)c
G

l¡J
.C
o
dl

o
c

II

a
CL

E
IJrq
or
5I'
o
EL
o
*.
C

I

aa

lr---------
cÈIlrt treti lt
ctljÈ *erla¡g-addi /r
cturÈ rm-f; l'
ctljt *otsher-l¡i l*

runÈi¡¡e 1ibrary ---------*l
returD address */
iaitlalized Èo &ÈbI-erlang[1] r/
i¡iÈiallzed to etbl t¡t0l r/
iniÈlalized Èo &tbl-otsher[1¡ t/

naJ.n () (... díspatcher (n-f)¡ I lt call' m:f/1 t/

void dispatcher (ctl-¡'t *pc) { wbile (1} Dc = pc->}rost (pc} ¡ }

ctsljt tbosÈ m (ctlltÈ *Pc)

{ Jump:
syritch (pc - tbl_n) (

cage 0: ... r€t = &tbl n[1ti Dc = erlang-add; goto jr¡¡P;

caee 1: ... Dc = other-l¡i goÈo junP;

)
return l)ci

)

ft--------- module ¡erlaûgi ---------'l
cÈl-¡rt tbl-erlangrft = { (host-erlang}, (hoet-erla¡g});

cÈIl¡t thost-erlang (ctlltt *Pc)

(junp:
switch (pc - Èbl-erlang) (

casê 0: ...
case 1: ... Pc = rêti goto jump;

)
returt¡ pci

)a

a

Example's details

Remote computed jumps are slow (1 fn return, 1 fn calt, 2
swítch,1 goto)

Local computed jumps are faster (1 swirch, 1 goro)

Local direct jumps are fastest (1 soro)

virtual machine registers are cached in local variables for
fast access (read on entry, write on exit), which makes
remote jumps even slower

Specialized code for scc

a

a

module "m"

cÈIjt tbl_m[] -
{ {hoBt-!r,o}, (hosÈ n,0} }r /* label fl€ld lntt,ializcd laÈar */

ctlJt rhogt ttr (clllrt rDc)

{ aÈaÈ:lc void rlblgn . (&&1abêI0, &e1ab.ll }t
lf (pc r¡ NIILI,) rcturn lbla¡ 7* to i¡LtLalLze labal fj.atdl r/
goÈo *Dc->Iabal;
1abe10: ... r€È e &Èb1_n[1]i Dc . arlaag_add;

Lf (pc->bo3t t. hoaÈ_n) rctur¡ ¡¡ct
groto *Dc->laba1;

labcl1: ...
)

)

. gcc, s "computed goto" can replace the ewitch statements

. Remote computed jump is 2 times faster

. Local computed iump is 3 times faster

' scc's computed goto only works within one function (Mercury beware!)

Pattern matching based on
exhaustive case (ecase)

. A new pattern matching construct

cage E of

P, when G1 -> B1i

P, when G," -) 8,,

end

Case is now exhaustive

fun (Prr,..,F-) when Gt -> Bri

(Púr..rP*) when G, -) B,

end

Exhaustive case allows to
skip aftificial structure tests

Function definition

. Function definition with ecase

ecaae E of
P, when G1 -> B1i

Po when G¡ -> BDi

end

fun(Àr,..r\) >

ecaae tÀr, . .,\) of
{Prrr..rPl!} wben G, -> Bri

{Prr'..rP-} wlren G, -> Bri

{_,..,_} -> exiÈ(lanbda clause)

end

end

lmplementation of receive
a call/cc mechanism allows simple transformation of receive into ecase

rsce:Lwe
P, when Gl -> Bti

Po when Go -) Bo

afÈer T -> B"

end
Captures current continuation

Removes message from queue

Tries next message

Loop

Type test expressions

. Type test tree based on Gamb¡t-C data representation

obj?

f ix? sub? spc?

big? flo? ato? vec? chr? nil?Itl I

ecaae receive_firsÈ(T) of
#timeout# -> B"i
P, when G1 -> receiwe_accepÈO,

P, when Go -) receive_accepÈOrBot
_ -> receiwe_next()

end

...x1 . .101

bcadar I S . . .x10 header
hdl
r,1

S¡10001 S¡11110 S¡01000 S¡00000

f ix= big:= f 1o= ato= c1¡r=

con?

o

Test operators

Operators working on tests

Boolean

. all, and, one, or, not, true, false

Predictive

kr(r) {T known to be true}

rd(r) {T known to be false}

a

a

Test prediction

a

PREDICI(TEST) r¡
if (kt(<one cbtld>)) IRI'E
else

Lf(tkt(<Darc¡t>))

if(kf(<parcnt,>)) FÀLSE e13ê TEST

else
if (kt(<o¡r brothêr>)) FÀLSE

elss
if(kf(<one brolhar>)) TRftE êIsê TEST

chr? predicted to be true
(the child test chr= is known to be true)

Relationships in data type hierachy helps predict tests

Example
€caB. X of

tSal$bl -> 1;
txl-l wuon j.g-char(H) -> 2¡

_->3
cnd

:l

(lf (co¡l -x)
(IcÈ ((h (crl-bd -x))

(lf (cbr. h *\a)
(lf (chr¡ (er1-È1 -x) *\b)

1

2l
(cbr? b) 2 3)))(tf

3

I

Sestoft algorithm

. Perform tests left to right, top down

. Accumulate positive and negative information

. Predict tests using this information

Baud i net-MacQueen algorith m

Heuristic approach to choose test ordera

a Suggests three heuristics:
relevance
. First perform tests that discriminate first clause

branching factor
. First perform tests that discriminate most clauses
. Note: Modified for use with dynamic types

arity factor
. First perform tests that span less new tests

ETOS pattern matcher

. Currently, Sestoft algorithm implemented and tested

lmplementation suited for easy upgrade to MacQueena

a

ecase {À1rÀ2} of
{ [],a] >

{_,b} -> 2¡
(-,-) -> bad

end,.

1¡¡6- \ a)

T v V F

(niJ,? À1) (aÈo' Àz b)

T F T F

bad1 2 bad

Pattern matching example

Work currently in progress:

Development of better heuristics (example follows)

Use of hash tables for selection in vast atomic clauses

Erlang expression Sestoft and Baudinet-MacQueen test tree

T

(nil? Â1)

I
FV

1¡¡e= \ a) (ator \ b)

T F T F

(aÈo: Àz b)

T F

2 bad

2 bad

. Sestott: Left to right, top down

. BM: Unable to choose

li,l.¡¡i
I ,'.nr,
ìtì:l't-

'i l"'

r!-',
t¡.l

I ,- .t:

;

Optimal test tree

. New heuristic: 2nd clause relevance

a

Future: real-time GC

Experimented with various GC algorithms
Stop & Copy
. Gambit-C's standard GC
. 2 semispaces
. "direct" access to objects

Mark & Compact
. using non-movable handles

Mark & Compact Real-Time
. handles allow fast relocation

Brooks' Real-Time
. movable handle
. 2 semispaces

Brooks' Real-Time + Generational
. ln design

Real-time GC overhead (Gamb¡t-C 2.7)
Allôc MB/s lima ¡ec¡ M&C M&C R.T Brooks R-T

boyer
compller
puzzle

browse
conlorm
tt¡ve¡se
peval

ftr
maze
s¡mplex
earley
dderiv
destruc
cpslak
fibfp
derlv
mbrot
divrec
sumh
d¡v¡ter

3.11

?: ??
5.61

¡.89
12.58
16.18
15.34
I .12

22.76
19.35

-.9:-?!
47.05

?7 ..?.
50.20

1.. e2
7L.LZ

123.03

1.6 .lg
{9 .99
21.88
33.3q
2?.??
10 .93
35 ..9

5. 0:
11. 58

10.91
36.13
39.39
15 .29
13 .95
11.80

l2r9e
13 .03
16: i!
85.82

7 .tt

91

1.37

-1:?21.51
1. 65

1. ?0
1.87
2 .04
2. 11

_ ,2,.,-{1.
2.{3
2 .50
2.t7

., -3:-113 .21
6.51

1.19
1.20
1.25
L.29

s7

1:,56
?.lt
2.18

?.22
3 .00
2.67

__1._.!

1.

. 1:
1.
1.
1.

1. {9
3

7
8

6

81

2

I
3

!

.95

:1-1-

:6{
.88I

r¡.28
8.12

. -.1.97
1.{1
1. 25

1-.48

,,,!:7?-
1. 62

-- 1..-69

. ¡..02
2 -71

76
52

83

77

53

:29
.821

.33

.a9
1.38
1. 69

. M&C = 2.14. S&C (on average)

. M&C R-T = 1.24 * M&C (on average)

. Brooks R-T = 1.58 . S&C (on average)

hcaôer flcId1

:-fi* hcadcr f :Lc].d1

I
hcadcr fLc].d1

.M&C R-T on a 133Mhz DEC Alpha 21064lDigital UNIX v4.0 (= 100MHz Pentium)

Avq(ms) Maxlms) oÁ Gc

99rP*!9r- -pul,zle. ,-
conlorm
pelal - -- -
þ:vsl-_*
browæ
traveræ

{mp]9I- ,
desiruc
earf ey -

.

dderlv
rri

*"- -
¿óilv' -
maze
cpslak

3.69
2.L2
2.85
2.67
2.83

11 ¡

2.86
3.57
3.01
z.is
i ';l
3.31
2.85
t.L2

5

t2
e

15

5

10
15
20
27
zi
2l
2t
29
35
t02. !9

dlvrec
¿witer

!'bÞ,, - -
mbrot
sr¡mfp

2.89
2. E9

6

6

6

7

a5
ag

3 .31
3.35
3 .45

52

55

57

oAvg = 2.1 to 3.7 ms / Max = 5 to 15 ms

Real-time GC pauses

Future: native code generation

a

a

a Pro: would allow faster intermodule calls

con: low portability and need to redo C compiler's optimizations

Approach

use intermediate "RTL'code (RISC style register machine)

expand RTL instructions to native code

use a generic instiuction scheduler

Easy to port to a new machine (= 2 weeks) and reasonable
performance

a

Gam b¡t-RTL performance

. Prototype implementation of Gamb¡t-RTL compared to
Gambit-C 3.0 (below 1 is good for Gambit-RTL)

Aloha MIPS PPC USPARC Ptl M68K
tak .56 .59 .91 .70 .33 .26
f¡b .75 .7L .85 .{6 .53 .22
mazefun 1.07 .56 1.53 .36 .37 .35
assq 1.10 .73 .85 .60 .29 .98
nrev .81 .65 3 .18 .81 .35 .41
sort L.57 .80 3.27 .55 .14 .70
takl 1.53 .83 L.22 .92 .48 .49

ELUETRII-

Mail Robustifier
Whitepaper

H. Millroth
hakanm@bIuetai1. com

;f!!:i i

-it 'r!
.

:":r

'l r,.,

c;.i1'Ì

Overuiew

The Bluerail Mail Robustifier improves reliabiliry, scalabiliry and managabiliry of

srandards-based rhird-parry mail servers. That is, it makes your favorite mail server

system more robust and manageable.

The mail robusdfier is a software-only product. It works together with almost all

conceivable mail architecrures: separate machines for the different mail protocols, all

mail prorocols on each machine, ctc.

Here are some examples of what it does:

Makes it easy to add, remove or upgrade machines or individual mail servers

without service outages.

Masks server failures by automadcally rcdirecting mail sessions to other seryers.

Dynamically load balances berween mail servers in a better way than round-robin

DNS.

Smoothly handles overload situations by throttling connection attempts from

new mail clients and by prioritizing clients with existing connections over new

clients.

Makes it eary to implcment differendated service classcs (for example "gold class"

users, who are given special privilcgcs), by determining target server based on

informadon in cxrernal databases.

t
't'; .r

l'l

I

I

a

a

a

a

a

a Supports spam fihcring and admission control based on information in external

databascs.

2 BLUETAIL Mail Robustifier

Architectural overv¡ew

As can be seen from Figure 1, the basic architectural principle is to put a new layer

between rhe mail clicnts and thc mail servers. This layer manages the mail traffic to

and from the servers.

o ooo o o o
o ooOO Mail clients

o

\l
Gatewalts

a a

¡

¡
¡

a

Manaosmsnt
Mail seruerscl ¡ ent

Figure L Typical mail architecture using the Mail Robustifer,

Thc robustifier connects the machines in clusters. If one machine in a cluster fails,

then the other machines in the cluster cooperate to provide the functionaliry of the

machine that has failed. Individual machines in a cluster may be taken out of service

in a conrolled manner without interrupting qFstem operations. Additional machines

can be added ro a cluster without intcrrupting operations.

Some of thc concepts discussed in this overview are described in greater detail in the

Confgaring the Slstem and Operating the S1*em chaptcrs.

Gateways and ma¡l seruers
Incoming mail traffìc is routed through gatewals which perform traffic conrrol and

dispatch rhe traffìc to the appropriate mail servers.

BLUETAIL Mail Robustifier

The system supporrs three rypes of gareways and mail seryers: PoP3, IMAP4, and

SMTP. For each protocol rype we can have one or morc gareways and mail servers in

the sysrem.

DNS is set up to point to the gateways, not the mail servers' If there are several

gareways for a protocol, use DNS round-robin to distribure rcquests.

The mail seryers are nor parr of the Mail Robustifier product' Any mail server that

conforms to rhe protocol srandards works with the product. It is also possible to mix

different seryers for the same Protocol in the system. For example' you can have one

Sendmail machine and one qmail machine and load-balance between them. You can

also migrare from, say, Sendmail rc qmail (or vice versa) without servicc interruption,

one machine at rhe time.

The management client and the management server

The robustifier is managed from a management client that runs on a standard PC or

worksration. There are rwo management clients: one with a graphical user interface

and the other with a command-line interface.

The managemenr clienr communicates with the manøgement seruer that handles

sysrem configuration and operational requests. If the server machine crashes, a new

managemenr server is started on another machine. The old seryer's IP address is

re-mapped to the new machine and the management service is resumed, so this

failover is rransparenr to the management client. That is, the client will have contact

with the system as long as there is at least one machine up and running.

Multiple managemenr clicnts can be connected simultaneously to the system.

Frontend and backend machines

The gateways and rhe management server run onfontenl machines. The mail servers

run on bacþend machines.

Nodes

The mail robusrifier sofrware runs on nodes. A node is a virtual machine that executes

within a single operating system Process. Each node can be configured to perform

single or multiple tasks.

Each fronrend and backend machine has one node (frontend nodes and bacþend nod¿s).

The backend nodes measure the load on the backcnd machines and repon this

3

4 BLUETAIL Mail Robustifier

information to the gateways. Thus there are two kinds of entities running on backend

machincs: backend nodes and mail servers.

All nodes in the rystem are connected and check cach other's status through a low-level

heørt beat mechanism. This means that the system will quickly notice if any node

stops working. In that case the machine is considered dead - see the section Machine

Faitures on page 6 for a description of which actions are taken in the event of failurc.

Figure 2 shows two frontend machines, each running an SMTP and IMAP gateway,

and three backend machines. The SMTP seryers run on all three backend machines,

while there is an IMAP server on only one backend machine. There is also one

load-repordng node on each backend machine.

kaja mds
¡92.1ó8.t28.54r92.t68.128.s3

sktta lom

a nodes

O m¿¡t

mail
end

rcquests
aplíeE

-- - - - atatusandheaft-
beat mes'ages

Figure 2: Confguration with two frontend machines and three bacþend macltincs.

In another scenario, a single node might run all three gatcways as well as the

management server. In a third sccnario, gateways and the management server run on

a backend node - this is useñ¡l mainly for failovcr and testing purposes (it follows

from this that a machine can bc both a fronrend and a backend machine, although

this is not normally the case).

Clusters

A cluster is a collection of nodes and mail servers that work rogether. Afrontend cluster

is a cluster running gate\¡/ays and/or the management scrver. A bacþnd cluster is a

BLUETAIL Mail Robustifier

cluster running mail servers and backend nodes.

The purpose of fronrend clusters is to define failover sets: gateways fail over to other

nodes in their clusrer. Fronrend clusters can be heterogenous: a particular cluster may

run gateways of different rFpes as well as thc management server.

Backend clusrers, in conrrasr, are used for purposes ofload balancing and differentiated

service classes. Backcnd clusrers are homogeneous: a particular cluster can only run a

single rype of mailseryer.

Figure 3 shows a syst€m with one frontend cluster and nvo backend clusters.

aa

Clusaet lot ga¡awaYs and
ñrntgomant torvcf

o

a
o
a a

Clustet lot SMfP Clust.r lor POP

Figure 3: System with one frontend cluster and two bacþend clusters'

Monitors

Each machine running a Bateway or mail scrver also runs e monitor. The monitor

regularly "pings" the gateway or seryer using an appropriate protocol-specific request.

This is used borh ro collect response timcs and to determine gateway/server failure.

Thus, the heart-beat mechanism check the status of nodes and monitors check the

sratus of gateways and mail servers.

Load thresholds
Each node has a default load threshold that indicatcs the load at which the machine

should be considcred overloaded.

An alarm is generated ifthe average load ofthc nodes in a backcnd cluster reaches thcir

5

it

6 BLUETAIL Mail Robustifier

average load threshold. In addition, the overload control algorithm (see the Ouerload

contol section on page 9) is activated.

A single backend machine parriciparing in several clusters has one load rhreshold per

cluster.

For example, consider the two backend machincs in Figure 4 which implement two

clustcrs. Both rhe srandard POP3 clustcr and the gold customer POP3 cluster consist

of nodes A and B. To prioritize gold customers, we set a higher load threshold in the

gold clusrer rhan in rhe standard clustcr. This way gold customer get a larger share of
the machine resources.

BA

f*ì eot¿ cuslomêr POP3 clustsr

(-ì Standard POP3 cluster

Figure 4: Confguration uith two bacþend clusters

Machine failures

The mail robustifier can detcct a machine crash in two ways:

Node failures can be discovered by the heart-beat mechanism.

A gateway or mail server may fail to answer its local monitor.

If a frontend machine is considered dead, the gateways and/or menagement scrver

running on it fail over to other frontend nodes. The IP addresses of the gate-

ways/management server are re-mapped to the new machincs. '\ü7hen thc failed

machine comes back up, the gateways normally migrate back to it. Gateways can be

configured :.obe sticþ, that is they smy on thc failover node when the crashed machine

returns. The managemcnt server, for example, is sticþ.

a

o

BLUETAIL Mail Robustifier

If a backend machine is considered dead, new requests from the gateways are redirecred

to another backend machine, until the first backend machine recovers'

lnterfaces

Each gateway uses a defaulr interface for network communication. If this interface

is broken, or if the gareway fails ovcr to another node, it uses one of the available

interfaces on the node (these interfaces are calledfailoaer interface).

Data tables

Clusrer selection and admission control / spam filtcring can be bascd on information

stored in external databases.

The information is preprocessed and then loaded into the system and stored on the

local disks of every frontend machine. This allows for orders of magnitude faster

searchcs than using an external database server on a seParate machine.

POP3 and IMAP4 gareways each use a single table rype for both admission control

and cluster selection. SMTP gatertyays use four rypes of tables for spam filtcring.

Features

Online system maintenance

Mail servers can be blocþed - meaning that new requests to the scrver are directed

ro another servcr - and larer deblocþed. Using this featurc, maintenance on backcnd

machines can be done without disturbing normal oPerations. The proccdure is:

Block the mail server. Now the seryer no longer eccePts new requests; thesc are

directed to another server insread.

'Wait until most existing mail session on the server terminate (as determined, for

example, by looking at the statistics monitors in the GUI).

Stop the mail scrver. (Clicnt sessions that still use the server will now be

disconnected. If the clients reconnect, they will be connectcd to another server.)

Do whatever maintenance that needs to be donc: install a new mail serycr' upgrade

to a new OS version, replace a broken interface card, replace the machine, ctc'

Start the mail server.

7

a

a

O

o

a

I BLUETAIL Mail Robustifier

a Deblock the mail seryer. The server now accepts requests again.

To avoid the capaciry loss of taking one machine out of service, a temporary backend

machine can be added ro the system before starting this procedure.

Software release handling

The mail robusdfier is upgradable while in operation. To achieve this functionaliry ir
includes a sophisticated sofrware release handling system for its own sofrware.

Once installed, the mail robusdfier takes care of managing different releases of its
software: unpacking and installing new releases as well as rolling back to old releases.

This is done by the system itsel[since all frontend and backend machines must run
the same release of the sofrware to ensure correct behavior.

If a new release is installed while a machine is down, thc rclcase will be automatically

installed when the machine returns. If the insrallation of a ncw release fails, rhc sysrem

automatically rolls back to the earlier rclease on all machines.

New releases of the mail robustifier software can normally bc installed while the sysrem

is running, without disturbing normal operations. (However, major new releases may

require that some or all nodes are stopped before rhe sofrware is insmlled.)

Load balancing
The mail robusdfier suppons load balancing ofbackend machines on a per cluster basis.

That is, the gateways dispatch requests to mail seryers so that all backend machines

within that cluster have the samc load (more prccisely, their load-to-threshold rarios

are the same), so machincs with different capaciry handle different loads.

The load of machines belonging to different clusters is not balanced. (However, if the

clusters overlap thc load will automaticdly be balanced ben¡¡een these clusrers. For

example, the three machines in Figure 3 on page 5 will be load balanccd, since the

clusters have onc machine in common.)

The load of a machine is measured by CPU load as rcponcd by the lJnix uptime

command.

If more than one gateway is used, then cach gateway is given a separere IP address and

DNS round-robin is used to share the load berween rhe gareways. A problcm with
DNS round-robin - salc IP addresses in DNS caches and clienrs - is avoided, sincc

the IP address of a gateway is re-mapped if the gateway fails over to another machine.

BLUETAIL Mail Robustifier I

Mail clients Gðtsways Mâ¡l sèruêrs

o
o

o
o

o
ao

OO

o
o

\
a

a 17

o

Figure 5: Ouerload control.

Overload control

In order to rerain a high service level under heavy load, the robustificr can reject

new clienr requesrs when the load exceeds the given threshold. Initially, only a small

number of requests arc rcjected. If the overload situation continues, the rejection rate

is increased unril the overload situation is resolved. POP3 and IMAP4 cliens that

have been rejected can be queued in the gateway: when they are first in line, they are

admitted even if the overload situation is not yet resolvcd (see Figure 5).

POP3 and IMAP4 clients rhat have been given access to a mail seryer are given a

prioritized time slat during which they are arc assigned a "vinual session" during

which thcir next command is prioritized over commands from new clients in overload

situarions.

prioritized in overload situarions when thcy send new commands to thc server. This is

ro cnsure rhat a mail session made up of a sequence of individual commands is either

accepted in im entirery or rcjected before it even begins.

Rejected POP3 and IMAP4 clients are notified bya "connection rejected" notification,

which is usually reponed to the user in a poPuP dialog. Rejectcd SMTP clients or

mail transfer agenrs get a "remporary error" return code indicating thar thcy should

try again later.

Admission control and spam filtering

New client requesrs c¿n be rcjcctcd based on extcrnal table data. For example, wc can

specify that users matching a table entry should bc blocked from our IMAP service.

:

t.

10 BLUETAIL Mail Robustifier

Client

Admiss¡on ænfol

ehÀrays sometir¡as nev€r

Overþad contol

/\
s€sslcn queusd

Bâckend servers

o

o

Figure 6: Ouerload connol.

Spam filtering by the mail robustifier is done by SMTP admission control following

the recommendations of RFC 2505. Thc mail robusdfier supports the following

table-based filtering methods:

Peer-name blocÞing. The connecting host can be accepted or rejecred based on its

domain name or its IP address.

HELO bloching. Mails from particular senders, as idcntified by thc HELO
command, can be accepted or.rejected.

MAIL FROM blnching. Mails from panicular senders, as identified by the MAIL
FROM command, can be accepted or rejected.

a RCPT blocþing. Mails to particular recipients can be acceptcd or rejected.

The possible outcomes ofoverload control and admission conrrol, and the relationships

berwecn them, arc described in Figurc 6.

Table-based cluster select¡on

POP3 and IMAP4 user requests can be dispatched to diffcrcnt servcrs based on

external table data as shown in Figurc 7.

BLUETAIL Mail Robustifier 11

Ma¡l cl¡ents Gateways Mail seryers

o
o

o
o

a
oo
Oa

o
o

À
o

a

o

Figure 7: Table-based cluster selection'

For example, we c:rn specifr that POP3 users in Table42 should be dispatched to

the POP3 cluster Cluster42. An application of this feature is to dispatch premium

customers to one backcnd cluster and regular customers to enother'

Handling mail server failures

If a mail server crashes, the fronrencl gareway will automatically send new requcsts to

other servers. If and when the seryer recovers, the gateway will automatically send it

new requests.

Ongoing SMTP rransacrions are rransparcntly moved to a new server if the current

server crashes (rhe transaction srate is stored in the gateway). That means that thc

messagc can be acceptcd although the current SMTP server crashes.

Handling gateway crashes

If a gateway crashes, it migrates ro another frontend machine. As part of the migration,

its IP address is re-mapped to the new machine. This means that the IP addresses

handed out by DNS (and possibly cached by mail clients) will still work after a crash.

Existing connections are terminated if a gateway crashes; however, the clients can

immediately reconnect and be served by the migrated gateway.

i,.
lj.

i.
A.

12 BLUETAIL Mail Robustifier

Exam ple Configurations

This chapter describes four examples of mail rystem architectures that use the

BLUETAIL Mail Robustificr.

Configuration files for the examples can be found in the examptes directory of the

program distribution.

A basic redundant system

The first example is a minimal architecture that exploirs most benefits ofthe robustifier'

It consists of one frontcnd machine running a combined POP3/IMAP4/SMTP

gareway, and rwo backend machines running POP3, IMAP4 and SMTP servers (see

Figure 8).

There is one frontend clusrer consisting of all thrcc machines, with the frontend

machine as the primary node for thc gateway. This means that the gateway will run

on the fronrend machine unless that machine is down; in that case the gateway will

failover ro one of thc backend machines. Thus, in case the frontend machine crashes

or is taken out of service, onc of the backend machine will work as host for both the

gateway and its mail servers.

The managemenr seryer normally runs on the frontcnd machinc. It will failovcr to a

backcnd machine if thc frontend is out of service, .iust as rhe gateway does.

Therc arc three backend clusters, each consisting of both backcnd machines' This

means thar rhc two machines share the load for all three rypcs of traffìc (POP3, IMAP4

and SMTP). If one of rhc backend machines is out of service, the other machine

handlcs all traffìc. Possible ovcrload due to reduced server câpacity is handled by thc

overload control mechanism in the gateway.

I

14 BLUETAIL Mail Robustifier

ö
o
o

o

o
o
o

C |MAPbacfendcluster --- Frontendclustêr

f-ì SUfp båclond ctustar f-ì pOp backend clustsr

Figure 8: A basic redundant system (basic.conf).

This basic architecrure can be varied in a number of ways, for example:

More frontend machines can be added to increase gateway capacity.

More backend machines can be added to increase mail servcr capaciry.

If there are several frontend machines, they can all run the same rype of raffic, or

each can be dedicated to one type of raffìc (for example, one POP3 gateway and

one SMTP gateway).

Similarly, thc backend machines can be parritioned in different ways: all machines

c:rn run all protocols or each machine may run only one or rwo of the protocols.

For each rype of traffìc (POP3, for example), thc backend machines can be

panitioned to handle several service classes. For example, "free email" cusromers

can be directed to a specific scrver while business customers can use all available

servers and, in addition, havc prioriry on rhe machine used for "free email." This
can be done without static configuration of client sofrware; all clients use the

same host name.

In the following cxamples we illusrate some of rhcsc options.

a

o

a

a

a

BLUETAIL Mail Robustifier 15

a

a

A large coarse-gra¡ned sYstem

There are rwo basic ways to build a large-scale mail server system:

A coarse-grained architecture with a few big server machines. Each machinc runs

several rypes of traffic.

A fine-grained architecture with many small server machines. The servers are

panitioned so that each machine only runs one rype of traffìc.

o
o
o

o
o
o

o
o
O

Q Sftffn Frontend cluster

f-ì POP Frontend cluster

f-l PoP Backend cluster

@ surP Backend cluster

Figure 9: A coarse-grained qtstem (coarse.conf)

Figure 9 shows a system of the former rypc. This system suPPorts only POP3 and

SMTP. It consists of two frontend machines and three big backend machines.

One frontend machine runs a POP3 gatcway and rhe other runs an SMTP gateway.

There are rwo frontend clusters, one for POP3 and one for SMTP. Each cluster

consists of both machines - the POP3 gateway is also a smndby for the SMTP

gateway and vice versa.

Each of the three backend machines runs both POP3 and SMTP serycrs. The load

thresholds for POP3 and SMTP can be differcntiated, to prioritize one of the protocols

over the other on each machine.
_-

i

16 BLUETAIL Mail Robustifier

A large fine-grained system
Figure l0 shows how a large-scale mail systcm can be realized with a fine-grained

architecture. The frontend cluster is the same as in the previous example.

a a

o

a

o

o

o

a

o

o

o

a

o

o

o

a

Q surn Frontend cluster

f-ì POP Frontend clustar

SMTP Bôckond clusler POP Backend cluster

Figurc l0 Afne-grained system (fine.conf).

The backend tier consists of four dcdicated SMTP machines and three dcdicated

POP3 machines. The SMTP traffic is load-balanced within the SMTP cluster and the

POP3 traffìc within the POP3 cluster.

A fine-grained architecture like this has some advantages: there are small failure zones,

and the system can grow incremenmlly by adding more small machines.

A system w¡th differentiated seruice classes

Thc rystem shown in Figure I I implemcnts three different service classes for IMAP4
access, using three backend machines. Each scrvice class is realizcd as a separare

backend cluster:

o Thc "frce email" cluster consists of one servcr.

o The "normal" clusrer consists of thc "free email" servcr and one additional server.

BLUETAIL Mail Robustifier 17

oo

|MAP lrcntend clustet

o
o
o

o

o

o
o
o

l-ì t¡¡ep Gold ctusrar

O IMAP srandord clurler

flll ¡¡¡¡P lres clusrer

Figurc 1l: A qstem utith diferentiated seraice classa (cos.conf).

a The "business customer" cluster consists of all thrce seryers.

This clusrering scheme ensures rhat higher service classes have higher total capacity,

and more rcliabiliry through redundancy. In addition, higher service classcs can be

funher priorirized by having highcr load thrcsholds than lowcr service classcs on the

shared machines (sec the Oueruiew chapter, page6).

0

:ì,

-¡-;!';¡,i'.t, r-:- :i: More Ericsson Topics

-Site Navigation-

¡ri r* s åååïdp il

Go

Go

New ideas behind technology

Info Center - Publications 'Contact

GOnleql,
Home

News

l Publications

Connexion

þ Contact

Kontakten

Ericsson Review

:ËËmñxË

[Fint published in Contact, 22 Apnl 1999)

The fact that it was possible to develop a new
exchange has had a lot to do with the way the work
was conducted. It has been marked by new ways of
thinking, questioning old routines and requirements,
as well as the reuse of earlier research and
knowledge.

The development of Simax, SwitchBoard and AXEl l0
has consisted of small-scale, entrepreneurial endeavors,

bringing together individuals with various skills. The

local Ericsson workforce has been supplemented with
experts from subsidiaries as well as external resources.

The fact that Per Bergqvist was able to borrow Simon
Cornish from the company in Australia was decisive for
the success of the project. Thanks to his key expertise ,

it was possible to assemble the building blocks for the

AXEI l0 and
show off the first demo in only a few weeks'
"The work we did at Ellemtel at the beginning of the

1990s on the AXE research project was essential to the

compact AXEI l0 exchange," says Staffan Skogby.
Staffan subsequently met Karin Werhagen in 199ó who
became excited about the idea and dared to invest in the

technology. Out of that, the Simax simulation platform
was created. The new method of implementing existing
AXEI0 software using the Simax emulator, makes it
possible to take advantage of the millions of hours that
were invested in the research and development of AXE
over the years.

The process of implementing existing AXEI0 software
using a new processor and new group switch software
has been patented.
SwitchBoard is the other key component in AXEI10.
SwitchBoard makes use of the latest technology in the

way of programmable logic and digital signal
processors, incorporating construction designs from
military applications.
SwitchBoard, which is already used in the mobility
seryer, replaces all essential AXE telephony hardware
in the AXEI10, including group switch, interface,
digital multi-junctor, tone and recorded message

generation/tone detection and so forth.

Read more at: http://mega.al.etx.ericson.se/

Written by Lars Cederquist
lars.cederquist @lme.ericsson.se
22 l¡pril1999

Published 20 September 1999

rne
Select a section:

Products

Organization

Ericsson Worldwide

Business

Environment & Health

Finance

Human Resource Issues

IS/IT

Marketing

Market Place

Production & Supply

Resea¡ch & Development

R*l¡leci lcnírs
+ Increased sales with the new

AXE architecture
. Strong growth in Romania
r Internet soon free for Italians
¡ Olympian investments in

telecom, AXE products
. AXE to be year-2000 compliant
.r Fighting for their plant

Quitk scarch

@

Advanted rearch

Cont¡ct u¡

lnder

Legal Contacts Finder Home Top

More Ericsson Topics

-Site Navigation-

Go

Go Info Center - Publications - Contact

tt! ã-r*." rr t,{ t? L ttì À!Irr I L' "tàätfif 't Smallest AXE in the world conlaçfi
i ne

Home

News

Þ Publica¡ions

Connexion

F Contact

Kontakten

Ericsson Review

;rnm

Quick terrrh

'ìND

Adv¡nted scarch

(o nt¡ct rs

lnder

fFint published in Contact. 22 April 1999]

Working in Stockholm, two small groups of
innovative developers have designed a portable,
miniature version of the AXE10 exchange. This
could be the first step for the millions of people who
lack good telephone networks or who haye never
made a telephone call.

The demand for small, reasonably priced exchanges
is enormous, particularly in Russia and former Eastern
Bloc countries.
It all began just over a year ago, during the autumn of
1997, on two different fronts:
At what was then known as Public Networks, a group
who were working on the Simax simulation platform
thought it was time to turn their attention away from
testing equipment to real exchanges. At the same time,
Per Bergqvist, who had been researching mobile
applications for several years, wanted to try something
new.
"I wanted to do something that would really be valuable
for Ericsson and came up with the idea of building a
small exchange for both fixed and mobile telephony. I
knew that other attempts
had been made before and that it was considered to be
impossible, somewhat akin to the fact that bumblebees
really shouldn't be able to fly."

Very great demand

According to Svante Axling, who has worked on
developing business in Russia, operators there were
practically screaming for a small exchange which could
be put into operation locally at a reasonable cost.
Staffan Skogby, Johan Olsson and others formed an
innovation cell based on a local exchange at Public
Networks, while Per Bergqvist, Christer Palmgren and
Simon Cornish started a "skunk works" focusing on the
NMT exchange. These two groups maintained ongoing,
but informal, cooperation with each other.
After examining Ericsson's technology inventory, the
Simax emulator - at that time a testing tool with very
good performance - was chosen as the main component,
along with SwitchBoard, which had earlier been
successfully used in a mobility
server.
The two systems were housed together, forming what
could be perceived as "real" AXE hardware.
SwitchBoard was also the most cost-effective
alternative according to an external comparison.
"We combined various components into a whole and
improved the real time properties so that we could test
real traffic," says Per. "Things moved quickly. In March
1998, we already had a working prototype for NMT."

Select a section:

Products

Organization

Ericsson Worldwide

Business

Environment & Health

Finance

Human Resource Issues

IS/IT

Marketing

Market Place

Production & Supply

Research & Development

ß-q"t€Jg{JgpL._r

* Increased sales with the new
AXE archilecture

. Strong growth in Romania

. lnternet soon free for ltalians
¡ Olympian investments in

telecom, AXE products
. AXE to be year-2000 compliant
I Fighting for their plant

The present system fits into a small box and is really a

variation of the cabinet used to house the Business

Phone small business exchange. The exchan-ee, which

has the working name AXEI10,
weighs approximately 20 kilos and can easily be carried

onboard airplanes. It really only consists of two
components and is very simple to put into operation'
Although it is a copy of the real AXEI0 exchange, it is
not as robust and fault tolerant with dual processors and

so forth.
"But that is of no significance for the environments it is
designed for," says Holger
Ronquist, Ericsson's market manager for Central and

Eastern Europe. "Within our geographic area there are

approximately 450 million inhabitants and only every

fifth person has a telephone. In addition, about 60

percent ofthe existing lines are old and are in need of
replacing."
In other words, the needs are urgent, particularly for
local exchanges since almost
all traffic consists of local calls. Moreover, half of this
gigantic area is sparsely populated'

Low startup costs

The advantage ofthis compact exchange is that it offers
an operator in, say a village of I 000 inhabitants, the

chance of starting up traffic at a low initial cost.

The alternative - starting up directly with a large

exchange - is, in reality, an impossibility for most
companies. The start-up costs for a country such as

Kazakhstan, with l6 million inhabitants, would amount

to a couple of billion U.S. dollars. The interest alone on

such a loan would amount to almost USD 500 million
per year.
"Since there is so little hardware in our mini-exchange,
we're able to tear down that initial hurdle and rent out

equipment, providing us with ongoing income for the

software," explains Holger Ronquist."In just a few
years, based on a calculated cost of USD l0 per month
per subscriber, we can receive as much money as a

large exchange would cost."
In Holger Ronquist's opinion, Ericsson has always been

good at building up a large customer base, but less

successful at making money from those customers'
"This is the way in which we should charge our
customers in the future."
Svante Axling emphasizes that the new exchange
should be viewed as a start-up package for the market.

Once an operator has generated some revenue and

experienced market growth, they can upgrade their
system to an AXEI0 exchange.
"The fact that our little exchange uses all the same

software and has the same functions as the AXEIO,
means that our old AXE customers will recognize the

system and be able to use the equipment immediately,"
explains Svante.
"That is an advantage over our competitors, who are

also trying to develop compact exchanges, but are six
months or a year behind us. They lack a similar
customer base. And nobody has yet succeeded in
developing a good mini-exchange for both fixed and

¡

t

Legal

mobile telephony."

Written by Lars Cederquist
lars.cederquist@lme.ericsson.se
22 Aprill999

Published 20 September 1999

Contacts Finder Home Top

{
.,1;

'ti./.

TTAP RTTTRT]IGT A]III ûITEWAYSIAGII

1. INTRODUCTION
@ferencestack,whereselectedpartsoftheWAPstandardarecompletely
implemented to conform to WAP l.l. Both client (typically part of a mobile phone) and server

(tyþically part of a WAP gateway) versions of the stack are implemented with the UDP/IP bearer.

The WAP stacks are complemented with a management module that adds additional ability to start

multiple stacks, send message events, logging and check status on ongoing traffic' Additionally each

stack component might be tãsted by separate optional test modules with the possibillity to destroy and

corrupt messages.

An IDL/CORBA interface have been implemented on the server side'

The development environment used is Erlang/OTP.

2. BUILDING A WAP STACK
ft¡g ft"*iUl. architecrure of a WAP stack implies several possible configurations. Thus an

implementation of a WAP reference stack aims for a modular approach and a strategy on which order

the stack should be built and tested. This implementation proposal aim to support such a strategy by

keeping each possible V/AP layer in separate Erlang modules, where each component on a layer might

U" Ëutity exchangeable with another component on the same layer. In addition, test modules needs to be

easily removable. This can be achieved by storing the API to a layer in specific g/ue modules such that

sunounding layers have a coÍtmon interface. The only functionality of such a glue module is to map

requests from one component to another and thus all needed is to replace such a module whenever a

stack component is replaced or a test module added or removed'

Thus we have the system components as in Figure l. Note that we regard the security layer (WTLS) and

the control message protocol (WCMP) are not yet implemented. The management facility is limited to a

number of confi gurable parameters.

WSPtest
WSP

Connection
onented

WSP
Connection

less

Management

WTPtest WTP

I

I
I
I
I
I
I

t

I

I

I

I

I

I

I

t

I
I
I
I

I

I

I

I

I

I

I

I

I

WTLS WCMP

WDPtest V/DP

UDCP

UDP USSD sMs

Figure I Overview of system components.

Each component has a set of configurable parameters and an associated test module with the ability to

corrupt and destroy messages, trigger timers etc

The WAP stack consists of a number of static and dynamic processes. Typically a component consist
of a single static process responsible for management of dynamic processes in the component. The
latter, dynamic, processes are shadowed in the figures below. Concurrent requests, panicularly
important in the V/AP gateway, are handled by creating new processes for each request.

Apart from these processes there is also a need for additional support in case of a system failure. More
precisely; a supervisor process to restart static processes and a safe database that stores vital
information.

3. WIRELESS SESSION PROTOCOL (WSP)

3.1. REFERENCE LAYER
The session layer protocol offers services most suited for browsing applications, similar to HTTP/I.1,
but with additional functionality for long-lived sessions, capability negotiation etc.

Both client and server versions of the \rySP layer are similar in structure and descriptions will therefore
apply to both. The necessary functionality can be structured in blocks, corresponding to processes, as

depicted in Figure 2 and Figure 3. The session layer may have several concurrent sessions each making
several concurrent requests.

3.1.1. WSP Connection-oriented service
The WSP version that requires a connection to be set up before user data is transferred between two
parties and confirms all requests. The facilities included involve the handling of sessions that can be
suspended and resumed.

For each process, except wsp_manager, outlined in Figure 2 there is a corresponding state table defined
in the 'WAP WSP standard. The wsp_manager process only responsibility is to keep track of existing
wsp-session processes or start new ones, if necessary, and fbrward messages. Thus all communication
with surrounding layers will go through wsp_manager. A session might live for a long time, but the
session process might time out much earlier. Thus the wsp_manager might also need to restart a
wsp_session process for an already active session.

Each concunent session has a dedicated wsp-session process that is responsible for setting up, suspend
and resume the session. All session specific data such as negotiated capabilities, session id etc. is stored
in a separate database. Each new method invocation is handled by a separate wsp_method process and
each new push by a separate wsp-¡tush process. The related wsp-session proçess creates both.

WAE

WTP
Figure 2 Erlang processes in the WSP layer with Connection mode.

WSþushWSPmeth

WSPman WSPses

3.1.2. WSP Connection-less service

WAE

WTLSAilTP/TVDP
Figure 3 Erlang processes in the Connection-less ìWSP layer.

In the second version of the V/SP layer all facilities are non-confirmed, thus communication may be

unreliable.

The processes in Figure 2 contains the protocols for handling confirms etc for requests etc. In the

connectionless version these protocols are not needed and therefore all functionality might be

encapsulated in a single wsp-manager process, as illustrated in Figure 3.

The connection-less version operates directly above the WDP transaction layer protocol and thus

utilises a different API to the underlying bearer as compared with the Connection mode version'

4. WIRELESS TRANSACTION PROTOCOL (WTP)

4.1. REFERENCE LAYER
The WTP layer improves reliabitity to a datagram service and efficiency to a connection oriented

service.

There are three classes of WTP transactions, each needed on both client and server side, in a complete

implementation of a V/TP layer.

WSP

WTLS/WDP
Figure 4 Erlang processes in the WTP layer with Class 0-2 transactions.

The initiator and responder state machines defined in the WAP-WTP standard are implemented in the

wtp_init and wtp_resp process respectively. Whenever a class I or 2 transaction is detected such a

process is started and all forthcoming messages associated to the transaction are forwarded from

wtp_manager.The wtp_manager process is then responsible for detecting which transaction class is

used for a message. During a class I or 2 transaction it also needs to decide if the message from the

bearer should be forwarded to the initiator or responder. In the case ofa class 0 transaction the

wtp-manaTer process takes care of all functionality

A summary of the current status for the transaction classes'

. Class 0 transaction - Provides unreliable invoke messages with no result messages. Current status:

Not implemented.

. Class I transaction - Provides reliable invoke messages with no result messages. Current status:

Not implemented.

WSPman

lWTPinit WTPresp

WTPman

l. ::

a Class 2 transaction - Provides reliable invoke messages with result messages. Current status: Some

functionality missing. Mainly timers and multiple PDU:s in a single message.

5. WIRELESS DATAGRAM PROTOCOL (WDP)
As the UDP/IP doesn't require any additional adaptation layer the implementation of UDP/IP in IWDP

is a straightforward issue.

6. GATEWAY/PROXY APPLICATION
The application above the V/AP server stack is the bridge between WSP and HTTP.

In addition the following features are implemented

¡ Encoding of V/ML and WTA content

¡ Character set conversion, including Big5, Shift JIS, KSC5ó01 (Korean) and Unicode

r Push interface (not completely compliant with suggested standard)

7. CONCLUSION AND CHARACTER OF PROPOSED SOLUTION
The following list of issues gives an indication of pros and cons of the solution.

¡ The design is chosen to give a very close relationship between the state tables as defined in the

standard from ÌJ/AP forum and the implementation.

¡ The design takes a lot use of processes as it simplifies the design. Message passing between Erlang
lightweight processes is regarded as very cheap, still message passing might be a bottleneck.

¡ WSP sessions might live for a long time (several weeks), thus to save memory WSPses processes

might timeout, if the session is idle, after a certain much shorter time. Whenever the session is used
again the WSPses process then needs to be restarted and forced into the state it was when it timed
out. This implies that the cu¡rent state as well as other data specific for the session needs to be

stored in a specific database. Unexpected failures (as a system crash) might then also be handled
without the need of a reestablishment of the session, method and push invocations, however, will
be lost.

The WAP Architecture

(\[
HJ

a¡t*-@rtuMtü

WML
wML Ercoder ccl

SriprsWML,
Scripr WMLScripl

Compiler

Pñlc-o¡ Adaprcrs

a

,
t

WAP

Etc.

Cllenl

WAP spec¡f¡es...

I Wireless Application Environment
a WML lrictobtow8ar

a WMLSCT¡pt Slrndltd L¡b¡ory

a Wireloss Tslephony Appl¡clt¡on lnlgl¡æ
. O,WAP Contant TYP.s

I Wireless Protocols
o Wirols!3 So!3ion Ptolocol (wSP)

o wirolðss Trtnrpotl L¡y3t S€cutity (WTLS)

O Wirglsss Trrnrrel¡on Ptotocol (WTP)

O w¡7ole83 ostrgr.m Ptolocol (wDP)

O W¡rslers nctwork intaúca dol¡nil¡onl
!ttk$úb@lú

Why is IITTP/HTML not enough?

B¡g pipe - small pip€ syndrome

lnlemet
ríã+fft

Wireless network

F:-....--. w P

lrrt-F àú'oqrÉ

srs Ê1c..@æ@@@

HIML
JrYâSc?ipt

HTTP

TLS. SSL

TCPNP
UDP/IP

bctw.an lntGrnct and WAP Tochnolog¡cs

W¡ral683 Applicat¡on Protocol

Othor Saryic.! !ndWrdórADplldtlm
Envhonmnt (WAE)

Sa..lü l¡yï (WSP)

lnmcdon LaY.r (wTP)

Sæudtt f¡y.r (fiLS)

lndrott lryrr (WDP)

W}IY WAP ?

I Wireless networks and phones ' :' ' r: 'r:1 i¡'!*"- '

o hlvo lpaclllc naadr and taquirgmcnl!

a nol addra¡3od by 9x¡ttlng lntcmct lachnologias.

I Only be met by participation from entire
industry.

f WAP enables any data transport
o TCP¡P, UOP/IP, GUTS (19'135/6)' SMS' or USSD'

I The WAP architecture

O logsth.t tom a tully comÞl¡rnt lnlåtnôl tntity

o rll WML contônl ¡3 ¡ßtf,t¡tfLlhÆ[g,l¡J toqrcEt3. nrs

WHY WAP ?

¡ WAP util¡zes standard lnternet markup language
technology (XML)

I Optimizing the content and airlink protocols

I The WML Ul components map well onto ex¡st¡ng
mobile phone user interlaces

a lsycrlglng mtrt.l p.notrrl¡on ot mobllt d.Y¡c.r

f WAP utilizes plain Web HTTP 1.1 servers
a lworôging rrirt¡ng d.Yalopmsîl m.lhodolog¡t¡

a CGl, ASP, NSAPI, JAVA, S.nlclt,.tc.
lttEF-æ'qErÉ

WHY WAP ?

I Good relationships with standards
a S€voral L¡ri3ona with EÌSl

o ETSI / WAP compl¡ancs prolllo tor GSM ¡nd UMTS.

O CTIA o'l¡cirl Li¡¡¡on Oflicsr to ths IVAP Forum

a WAP ¡s rct¡valy work¡ng with tho W3C rnd lEfF
a HfUL.faO (XlCL tLl O.mr.lloñ)
a H1lP+lO (XÎÍL tlo¡l O.mðllon)

uffiF

Architecture Group Gurrent Work

I End-to-end security

I Billing

I Asynchronous Applications

I Bearer selection

! Gateway switching

f PUSH Architecture

I Persistence Definition

I Meet¡ng format changes æ@LE tlgÞ

WAP Application Environment

WML and WMLScT¡pt

Wireless Telephony Arch¡tecture

Content Formats

Push

User Agent Profile WäP

WAE Goals

I Network-neutral application environment;

I For narrowband wireless devices;

I With an lnternet/WWW programming model;

I And a high degree of interoperability.

Ì@Þ

WAE Requirements

I Leverage WSP and WTP

I Leverage lnternet standard technology

I Device lndependent

I Network lndependent

I lnternational Support

WP

Requirements (cont.)

I Vendor-controlled MMI

I lnitial focus on phones

o Slow baaf.r3

a Smlll münory

a L¡mltcd CPU

a Srn¡ll3clun
O L¡mlt d lnpul mod.l

a¡tbþæ'6Lr r@

WAE First Generation

I Architecture
a ApÞlicrt¡on no.lel
O Browsor, Gslcway, Contont Soruoi

I WML
a D¡3plry llnguego

! WMLScript
a Scrlpting lrngu.gc

I WTA
a Tal€phony rcryiæ3 API rnd rrch¡|3êturo

¡ Content Formats
a Drlâ axchlnoo

- lrthE-æ@rE r@

WML Second Generation

I Extensions and enhancements
O Cutranüy undor dsvaloPtnsnt

I User Agent Proliling

a Conlcnl customiztd tor dcv¡co

I Push Model
O t{olworklnit¡llod contcnt dclivrry

I PerformanceEnhancemenls
a Crching, clc.

WAE Abstract Networ*
Architecture

WSP/ÞITTP Request { UFI}

Clienl Gateway
Networt

Apdlc¡l¡on

-E
WSP/HTTP Reply lCo nte nt

!rtüFúæ'qqrú

WML
wML Eif,{ìder cct

SdpttWML.
Scripl WMLScripl

PhlßolAd¡pters

n

J

,
a

Erc.

lrycb Scrvcr

I

CIeril

Ell
ryq

trrggEÈqru.

WAP Gateway
Examp

!,...'i) '_

:

):

Networt Example #2:
WAP Application Server

({1)

0
(.h

e
Etc.

€licnt

WML Emút
wMLScnil l¡gic

WAPAppliction Scrvcr

I Protq'ol Ad¡fxers

I
J

7
¡

WML

I Tag-based browsing language:

a Scrcan m¡nrgam.nl (ùa& imrg6)

a D.tr lnpul (t.rl, ¡rLclion lbt¡, ctc.)

o Hypcrllnkr & nlYigllion 3uppotl

I W3C XML-based language

I lnherits technology from HDML and HTML

WML (cont.)

I Card metaphor
a Uasr ¡ntoråctions rra aplll into cårds

a Nåvlgal¡on occurc bðlwn cards

I Explicit inter-card navigation model
a llyp€rlinks

O Ul Evsnt hândl¡ng

a H¡rlory

I State management and variables
a Reduca nstwork tratlic

a Fæults ¡n bôtlor c.ching
!rtffiFob'q6t6 WdP

All decks must conta¡n...

I Document prologue

O XML & documônt typ€ d6cl¡ration

I <WMb element
o Murt contrin ono or morg c¡rdt

<?þ1 wer8ion:'1.0'?>
<!MryPE ffiI PUBLIC '-I/WÀPFORW//DTD W 1.o//EN'

'http: / /ffi. såpf oro. oEgl4D/ml . nl'>

<m>

A Deck of Gards

Àcn. ¡ô..<F/>Dirætory

lñlß
Offi.t

<æ fPE.'ÀCClñ'>
<@ W-'?..nd.StÞ.'/>

<s&Ed td.'tÞ.',
<O4lON VM¿-'ù'>h.ll</OFION>
<oF¡oN v&U!.'ph' >Pholx/oFIoÞ
<oFloN v&uE.. f a.>td</oã¡d>

</tLm>

aqrloa
tråttdl
I ttþD

lrt*-F'¡@@b l€P

<æ uer/.ub¡r¡r{i¡if ¡.a t¡
<lû>
È1.! !¡-r <¡ffi m..¡,7t

<AttÇl l¡t..3.t
<OE¡o¡ Vll'l¡
<oEtû vß&

<æ mk¡tcctF,>

</cM>

WML Example

lnput
Elemènts

Example: lnput Activity

Ot¡rry
Dæk

Brck

AccrPl g
Prav <-

Fhilrll.:

.ln._

lLÍ

l5l¡{¡Ël

Ooa-

õñ;-

lrñÈdÛÞ@rü @

<cÀRD>

<D m&.lætE¡ l&.t&.>

<Cm I¡E..oaû1.>
<E ml-.KtF. M.Do..>

rca'il¡þ. I l,!rl¡¡lÐ¡F, ¡¡¡t.,tr. />
< rm>
Lasl nee:
<INPUT reY='lnme'/>

</cÀnD>

< lû>
First nee:
<INzu? KEY='fnúe'/>

</cND>

trtfræ¡Ë,aEr!

Defining the
Navigation Path

<æ mt.'KH' NÞ'Idt'>
<@ U&.bÈGDr //ñ.ry.lr..c¡lryÐ.-l' /)

<læ>

Binds a task to a user action
aAcliontYB: ACCEP7'OPDONS'HELP.-

PEEV,DELEÍE,RESEr

a Lrb.l: Íaxl tñng ot lmgc (oPion,')

a I!¡k: GO
PREV, FEFNESH, NOOP

o Dlttlnrtlon: UnL

a Port d!tr: ll IIETHOD*OSÍ

The DO Element Anchored Links

¡ Bind a task to the ACCEPT action,
when cursor Points to a link

o TfTLET æt¡ lho bbll ttring (d!l.ull ' "Llnk")

o Unkt !F ñot dlowd ¡n $læl lirl oplionr

Plsrldt
)uì¡I!
lle¡ tol

tr.tr -

<cN>
Pleåse visiÈ our

<^ tt&l..vt.lt'>
<æ tt¡!.'ba.ûl' />home Page</Þ

fô¡ decails.
< /cND>

Task Binding Rules

I User actions are scoped al three levels
. Dsck

. Cård
. Anchor€d links & sslsct list opt¡ons (ACCEPT)

a Wh.n l¡.k¡ .n bound to .ñ rdion .l dlf.Dñl Lwl.,
tha adioñ lllh namút ¡copa lalaa Pncdanca

I Delault task bindings
User Aclion
ACCEPT, PREV

Olheß

Task
PBEV
NOOP

(rt*Údgæ|tq!d

The TEMPT-ATE Element

I Osf¡n€s acl¡ons & evants for âll cards in a d€ck

tlt*-eæffi1ú

fh dlrt

,Id I¡ùi

tF.d.lcrf

Idn

<w>
<mE>

<æ m¡.oE¡ca. uE..bla.t
<æ W.tl¡--s'd'/>

./æut>
<cÀRD Nre:'ru91'>

<æ ry9E=-ÀccEPT' hBÚ='N.xt'>
<@ U&:'11392'/>

</Ñ>
fittt.lory

</cÀro>
<cÀRD NÆ:'892'>

s.cond story
< /cÀRD>

,.,Ì'-r
f .:,: :r'

Handling User lnPut

I Select lists
O Choosc lrom ¡ ll3t ol oÞliont

I lnput fields
a EntGr ! rtring ot laxl ol numbcla

I KEY variables
a Sôl by SELECÎ.nd INPUÍ cllm.nlt
O How urar ¡nput ¡r prtlld to oth€t crrdr and lh. rPplicat¡on

smt

.tr*-F âÈ'ñw

<CMD>
<æ dPE:'ÀccEm' NEL:'vi.e'>

<GO mk'gâtcily.cgi?loc.rion'Scitv' />

<lnE g..c¡rr.>
.oE¡q Yg..b¡.rl.rll¡</OE¡qt
<oF¡q 98.'a-r>r-./oFlct

Foatd
t ¡..{n
? hom
IrLr Clt

¡trd

<oE¡q 1¡il..tlÉ' ß¡6.'fid.€l"h c¡tF/oE¡ilt
</læt

</cÀþ>

The SELEGT Element

I Display a list of options
a Eæh oPÚoñ ily sl lho KEY YÙllblc

¡ñd/or blnd ¡ i.tt lo lhc ACCEPI ¡.Y

O TITLÉ. dmmiolly lú¡ lh. lrbd ¡blng

trtfrFaõ,6!ú

Other SELECT Attributes

I MULTIPLE="TRUE"

a UP,Browsar ra3eruls sotl koy lor ¡t!frp¡ck6¡

a Koy vrlu3 is â sðm¡colon-roper.tad l¡gt

I DEFAUIf=key_value
a Oolrull KEY vrlus, ¡t ons a! not chorsn

a S€tr cursor lo lhð rlolaull choics rntry,
ll . cor.sponding OmON / VALUE ôrislg

.rtfrFob@rÉ WEIP

<cMo>
<DO TYPE='ÀCCEPT'>

<ø URL:'set âddr. cqi?1d:Stècid' />

Ëe t1..9,
<SELECT reY:'r.cid' mlIPE¡'nE' Ðltli'¡¡!r5"

<ortoN V&Ug=' 1' >Nei 1</oPTIoN>
<omIoX V[UE='2' >Xurt</OPUON>
<om¡oN V&uE='3'>Jih< /OmIoN>
<OEIoN VÀLUE='4' >Nát¡3hâ< /OEIoN>
<omloN VÀLUE:'5'>Li2< /oPTIoN>
<OrIoN VÀLUA:' 6' >b.ê€h< /OPTION>
<orION VÀLUE:' ? - >Jênnif cr</oPTION>
<onIo[VÀLUB:'8' >J.3¡ê< /omIoN>
<O{ION V[UE:'t' >Dàmêl]< /OPTION>
<oF¡q d&tfi.'fcüürtþt.... </Ê¡q>

</sE!ECT>
</cMD>

A Long Select List

3G ¡G¡lS

n*-
[I<GO URL='?9.t:Fraon'

reßoD:' rcÍ' rcSTDÀTÀ='u6€rid:S¡rn' />

soc sêcur!ty:
<¡ln 8...r!. ÞUt.¡m\-t\-¡E./>

hst:
tt tr ta¿t

q--

The INPUT Element

I Prompts user to enler a string of text
a Use FORMAT- to con3lråin ¡npul

I UP.Browser reserves soft key for
text entry mode, if necessary

Other INPUT Attributes

OEFAULT=key_vdlue

a Dchult KEV nri.bl! (dl¡pllyld lo uær)

F OAM Af =lom al-spe c¡ lie t
o ll omltlrd, IrGlom artry l! rllomd

EMPTYOK=TBUE'

o Brom.r ulll ¡cæpt null input, lycn rlth lormt

TYPE=''PASSWOFD'

a Spæbl cnùy md. hmdLd by thc browr
MAXLENGTH=nuøöer

UGÞ

FORMAT Gontrol Gharactens
. -:

a t{ l{umrlc chancþl
a A, ¡ Alphtboüc clf,nctat
a X, ¡ Numdc or rlphrhallc chrEclar
a ll, m Añy chrncLt

L€ading backslash specifies forcsd characlers
a ffiffi¡rd¡d.dhXEVúbtu

Leading ' specilies 0 or mo¡e charac{ers
atu.dr ffiUl."ffih'

Leading number specilies 0..N charact€rs
O ¿Fû: ffiI^f."lffiaua-

IttËÞæ@LE r@

Displaying lmages
',: - -¡ lnssrl app images or local ¡cong wilhin display tsxt

a tôtt BtP lotut
¡ lmages are ¡gnored by non-t¡tmapped d8vicss

a Ch.ch HIIP_ACCEPT lcr "lñ.!./bñÞ"

<Go @-'tc2'l>

coõÈiDu. <E tæ..r!-a.
&.!o¡s.¡../t

.D c.¡../b¡../h,-.

ffi
w

r6F

Special WML Gharactens

¡ Use character enlities in display text
"
&:
'
<
&gr;
tnbsp;
­

&

Blânk spæe
Sofi hyphen (d¡*rslionary lin€ brsâk)

I Replace the "&' characler in URL strings
U&'s.ry. cgt?!lr.È-t!Ð¡8, ¡..l.llú'

t Use "$$" to display a single "$'character

.rt*-doAørd4r! tt@

Doing more with WML

I Setting card styles to create forms

I Using variables to cache user data

I Using card intrinsic events to trigger

transparent tasks

I Using limers

I Securing WML decks

I Bookmarking decks

¿l

WMLScript

¡ Scripting language:
a Procsdu?tl log¡c, loops, cond¡tionrlS, ôtc.

a Oplim¡æd to? smrllf,.mo7y, amtll'cPu dov¡car

I Derived from JavaScriptrM

I lntegrated with WML
a Powsrlul slonr¡on mschrnitm

a Rgducar owt¡ll nslwork trtll¡c

¡rrhEotu'ÛEE

IYMLScript (cont.)
. 'rr. sia .

I Bytecode-based virtual machine

O SLck o?icntðd d.sign

a Rot|{bls
a Dcrignod lor .impl., low-lmÞrcl imPlcmrntrtion

I Compiler in network

a Bcttat urc d t m¡ntl mmory/cÞu.

arthÞÀÚ'qlÉ ì,@ t

WMLScript Standard Libraries

I Lang - VM constants, general-purpose math
functionality, etc.

I String - string processing functions

¡ URL - URL processing

I Browser - WML browser inlerface

I Dialog - simple user interface

I Float - floating point functions

¡rrffieúE@!ú

WMLScript Example Uses
. ..-:;;1_,., b :_.

I Reduce network round-trips and enhance
functionality.

I Field validation
O Chack toÍ tormrtüng, input r.ngæ, alc.

I Device extensions
a Accæt dav¡ct ot yandot-tpacmc API

I Conditional logic

a DoHrlo.d lntrll¡g.no. lnlo th. .þvica l@

WMLScript Example

WMLScrip, is ven similar ro JavascriptrM

It

'
.1¡. I

IIDA¡. r3! e
It
stlF

){

¿ttbEúMffi.!ú.

WTA

I Tools for building telephony applications

I Designed primarily for:
o Notwork Opsastors / Csrr¡ors

I Network security and reliability a major
consideration

W.C]P

WTA (cont.)

¡ WTA Browser
a Erlgnsiong rddðd lo standrrd lryilu'lvMLscr¡pl browler

O Êxpotca.dd¡lionll API (WfAl)

¡ WTAI includes:
a C¡ll conlrol

a Nstwork torf msssrg¡ng

O Phonô book inlerlsæ

O lnd¡ælor conlrol

O Evant procôs3ing

UGþ

WTA (cont.)

I Network model for clienUserver interaction
O Evonl rign.ling
a Cllaîl ?oquots lo so:vor

I Security model: segregation
a S€plrrla lWA brow¡at

O Sop.r.lo WTA port

¡ WTAI available in WML & WMLScript

rrñffieffi'@rd

WTA Example

Placing an outKting cull ||,iîh WTAI:

WTAI Câll

lnput

<mll¡>
<clRD>

<DO ?rPl..ÀCClP1.>
.oo uer,@lr,

< llß¿>

wclp

WTA Example

Placing an outgoing call with WTAI:

wTAl call {
lsolloÂ cb.élüd.r(f) {

l: lle- l¡tÀÈ (ll l
lnE{¡rc.¡r('ri I.11-
Þl.loft..l.È (r¡ó ¡¡ba. Eúr'r t

)

!rthFæ'úu @

Gontent Formats

Common interchange f ormats

Promoting interoPerability

Formats:

a Bus¡ness crtds: IMC vC¡rd stândrrd

a Câlandar: IMC YC!lsnd¡r ¡trndåtd

a lmâgas: WBMP (W¡7c1o33 BitMrP)

o Comp¡led WML, WMLScriPl

irth@dMrd

New WAP Gontent Formats

I Newly defined formats:

O WML lcxt and tokon¡æd lomrl
a WMLScT¡pt lerl rnd bytocodo lomst

a WBMP im¡g€ lom.t

! Binary format for size reduction

a Bylæodo!^okana lo7 common Ytluæ and oP€ttlors

a Comprorscd hotdcrs

o Data comprgssion (ð.9. imag€8)

I General-purpose transport compression can still

be applied
{rñÈdrtu't6rE

Gontent Format ExamPle

Example (.Jse of an Image:

lmage Elemênt

$@.e

<ma>
<clRD>

< /clnD>
< /fFJ>

Push

I Network-push ol content

O Precâch¡ng ot drtr

I Goals:
O Extcn!iblllty rnd simPl¡c¡ty

a Enúlænd aolul¡on

a S.curlty

a Uror tt¡rndly

rrth$àd'oqró. t€P

User Agent Profiles (UAProf)

I UAProf is under development

I Goal: content personalization, based upon:

a Dgyico chlrrct risl¡ca, utû Prolcranccr

a Other prot¡ls intoTmrlion

I Working with W3C on CC/PP
a RDF-b¡ied ænt.nl lormrl

a Dc¡crib.s "c!p¡b¡lity.nd Prolllè" lnto

I Efficient transport over wireless links, caching, ^"etc. ,,,*-€ûE@" U(eF

WAE Technical Gollaborat¡on

r w3c
O Wh¡te p.por publirhcd

a Tcchnicrl collrboratlon
. CC'PP

a HIÍL+{C
. HÎÎP.flG

a Etc.

r ETSI/MExE

I Others coming soon

Summary: WAE Status

I First generation released
a lmplemgntal¡onr arð in prog?o3s

a Sp€clt¡cåt¡on3 lnclu.lo:

a WErP, WTÀ wl^¡,.tc,

I Second generation in development
a Focusing on;

a P[h, l¡l.rop...bllily, UAProl

a l.Lphoñy, lîl.mtioñrllallon,.tc,

irt*ÈE6bhtE r@

^

Barnt
Sawl-

c

¡aana
SadiÉ

o

Phyrlc¡l L¡t.r A¡r llnl
Î¡èhnolofl

WAP Protocol Layers

Ì€F

WSP Overview
. : : a.-' -,. 1 -7:: --..

I Provides shared state between clienl and server
used to optimize content transfer

I Provides semantics and mechanisms based on
HTTP 1.1

I Enhancements for WAE, wireless networks and
'low-end" devices
O Comp¡cl.ncod¡ng

O Puah

a E'l¡cþnl n got¡.|¡on
!rhÈæb|rELú. @

Wireless Transport Protocols

Wireless Sesslon Protocol

Wireless Transact¡on Protocol

Wireless Datagram Protocol

WgJP

WAP Transport Sewices

! WSP is the Session Layer Protocol

I WTP is the Transaction-Oriented protocol

f WDP is the Datagram protocol

HTTP l.l Basis

I Extensible requesVreply methods

I Extensible requesVreply headers

I Content typing

I Composite objects

I Asynchronous requests

altÈþõ@tü @

Enhancements BeYond HTTP

I Binary header encoding

I Session headers

I Confirmed and non'confirmed data push

¡ Capability negotiation

I Suspend and resume

I Fully asynchronous requests

I Connectionless service .ëa"
wf¿p\nL

Why Not HTTP?

I Encoding not compact enough

I No push facility

I lnetficient capability negotiation

!rrtr@6id'@ü

Header Encoding

I Defined compact binary encoding of headers,
content type identifiers and other welþknown
textual or struclured values

a Rsduæ3 lhs d¡t¡ actually tanl oYaT lho natwotk

!¡tH-æúõ@(É

Gapabilities

I Capabilities are defined for:

a Prolocol OÞl¡on!: Conlimcd Puth Flcllity, Push F.ciltry,
S€sr¡on Su!pand Fac¡llty, Acknowl.dgcmgnt hord€ß

a M.ximum Oulst¡nd¡ng n.q$tts
a Exl.ndld Mrlhod¡

O ||.!.tr Cod,r Plgct

i
i

I

i
i

Suspend/Resume and Push

I Ssrver kñows wh€n cli€nt can accêpt a push

¡ Dynam¡c address¡ng

¡ Allows ths rolsasê of undoñying bsarer resourcss

I Push can lako advantags ot ssss¡on hoadgrs

I Soruer knows wtrsn cl¡snt can accspt a push

rjtffiFÚõhrÉ

less
Modes

. . 1*-.-- .--. . j--!'L-s.

¡ Connection-mode
a LongFl¡vad communlc¡tlon

a Rrl¡!billty

I Connectionless
a Strt€L$.ppl¡c!üon3
a No 3aation cralt¡on ovtrlr.|d

O No rulbblllty ovath..d

Wireless Transaction Protocol

I Purpose:
a Proyide ofllcionl rôqwrUroply br3sd tren3port mschrn¡sm

su¡tâblo lot d6vicôs wlth l¡miled rosources ovor nêtworkg

I Advantages:
a Oporator PaBp€cl¡vô - Lold morc subscribors on thc aano

a lnal¡v¡durl Ursr - Psrtormrnco is ¡mpioy€d and cosl ¡s
roducsd,

WTP Services and Protocols
¡ WTP firansacl¡on)

a pÍovides rol¡ablo data tnnstor blrad on roquosUreply
pårad¡gm

a ño.¡plic¡t coñmcllon þtup or la¡r dôrn
a ar.t¡ ori.d in lint paclal ot p.otocol.rchrhg.

a aÉlr lo Fdùo }my hañdlhrl. on ln¡li¡l nqÐrt
a ¡upPoñ¡

. retsansmiss¡m of lost pad(ets

. select¡ve-r€transmiss¡on

. segmentation / re-ass€mbly

. port number address¡ng (UDP ports numbers)

. iow cont¡ol
a m.¡¡ga od.¡lad (¡ol dDaD)
a ¡uppolr an Aborl tuñdloñ lor oulalüal¡ñt rqø.t¡
a .upÞoñ. coul.ñd¡..¡låDl,l* æ '@ ro

Client

WTP Services and Protocols
¡ WTP continued

O u3ss lhe 3cruico p?¡mll¡ws
a T.lRlnvolo.Èq,cnl,,lnd.rr
a T.ÌHR..ull,ñq.cnt.lnd.ñ.
a l.Abon.Dq .ind

a!n ot r WTP prolocol

(P01,.)

UYDP Sewices and Protocols

r WDP (Datagram)

a proúdGs â conncclion-lat8, unrolllblc drLgnm rcrvica

a IUDP i8 ?spl!c!d by UDP whan ulad ovsr rn lP nôlwork
llyar.

a t lrhllD¡i.,Dq.lñd

lrthFaæ'i4!d r@

Bearers
: ,.

I Bearers currently supported by WAP
. GSM SMS, USSD, C.S Darå, GPRS
.lS-'136 R-Data, G.S Data, Pâck.t
. CDMA SMS, C.S Data
. PDC C-S Data, Packêt
. PHS C-S Dala
. CDPD
.IDEN SMS, C.S Data, Packet
. FLEX and ReFLEX
. DataTAC
.TEIRA

we¿P

Service, Protocol, and Bearer
Example

WAP Ov.r GSM C¡rcuh-Swilch€d

t¡oblL

\|ryr#ú

m
UD u09

CSÞRF GD

twF ICm^sl

rc.hbh
tr.ffirñ

!ItHeìË¡'nrt ì,{äP

Service, Protoco l, and Bearer
Example

wAP Ovêr GSM Short Message

sHsc

wc/P

WAP
Proxy/Saryer

wTd

WSG Work Area

I Provide mechanisms for secure transfer of
content, to allow tor applications needing
privacy, identification, verified message integrity
and non-repudiation

I Transport level security is WTLS, based on SSL
and TLS from the lnternet community

I Working on various mechanisms for improved
end-to-end security and application-level
security

<rñ*t@ù.ùMrE

WAP Security

WTLS $ervices & Gharacteristics

Gharacteristics

I Specifies a framework for secure connections,
using protocol elements from common lnternet
security protocols like SSL and TLS.

I Provides security facilities for encryplion, strong
authenticat¡on, integr¡ty, and key management

I Compliance with regulations on the use of
cryptographic algorithms and key lengths in

different countries

I Provides end-lo-end security between protocol

end points

I
ì.

ü: ,r1 '--

a;,;i;
! \,,

lr'

t r:-

WTLS Services and
Gharacteristics

a Providra connccl¡on ¡.cut¡ly lor two commun¡æling
!ppl¡Él¡ong

a pdhry (6ctypllo¡)

a.dh.ñllc¡l¡oñ (publl..t.y.nd ¡tñtuttic,

a Lighlmighl .nrt ctlic¡ml protocol wilh trtPoct to
brndwidth, mamory and ptoærllng powrt

o Employs rpaciål ldlpLd mechan¡sms lor wiroloss usrgo

a Lont l¡hd -c!ð -úlonr
a Optlñl-d hañdrh.¡. Ptæadvn.
a hovl¡raa rlñpL d.t. ñlLbllhy loroÞar.l¡cñ oFr drta¡nm brÐn

t@

Goals and Requirements for WTLS

I lnteroperable protocols

I Scalability to allow large scale application
deployment

I First class security level

I Support for public-key certificates

I Support for WAP transport protocols

lrtEþ¡ú@!! Ìr@

WTLS lnternal Architecture

fnnÈdioñ Pretocol (WlP)

wfLs

l¡t.9ññ Protæol (WOPruDP)

ga¡ðr mborl!

rtt*ÈFoæ.q4!6 u@

H.nd.h.l.
Protocol

ahñ
Prctocol

Appll{llon Chlhg. Clph.r
Sp.c Prolocol

n.cord pElocol

Services and Protocols

I Provide reliable data transler based on requesyreply -
paradigm

¡ No €xplicit connection setup or lear down

¡ Data carried ¡n f¡rst packet of protocol exchange

I S€eks lo reduce 3-way handshake on inilial request

I Supporls port numb€r addressing
I Message oriented (not stream)
¡ Supports an Abort lunction for outstanding requesls

I Supports concal€nation ol PDUS

I User acknowledgement or Stack acknowledgement
optron
a rckr m.y b. lorc.d irom the IVTP usrr (upp.r låycr)
O detlull ¡t ¡l|ck rcK,¡*æ*æ., WCIP

Glasses of Operation

f WTP Classes of Service ' :):'-

I Class 0 Unconfirmed lnvoke message with no
Result message
a a datlgram lhrl c¡n bo scnt wlthin lhs conton ot ¡n

cri¡l¡ng WSP (S.rsion) connsclion

I Class 1 Confirmed lnvoke message with no
Result message
O u3.d tor dåtr purh, whorc no ralpon¡e trom lhr dordnrlion

lB crp€clôd

I Class 2 Confirmed lnvoke message w¡th one
confirmed Result message
O ! ainole fromSl D¡oducrs ! 3inole roDlv. ¡¡r*Ë¡&ddd{drd

Wireless Datagram Protocol

I Purpose:

O Provld6 con¡¡ttlnt ¡nLftaca to ! lundrmontrl lransport

O Proy¡dæ t connac'tionlc¡s, unElirbl€ d.tlgrrm lôruiêa,

O WDP ¡3 rd¡ptcd lo orch prrliculrr wh.lcar n twork to
proyldô lhr gmaric dÍagiam |rrnrport.

a lho brrlc drLgram ao?vica ir tundamont¡l lo all w¡rcbrr
nalrolkt lnd m¡ka¡ il po¡3lbL lo ulil¡æ WAP cvrryrhsru.

@P

WDP Gontinued
. ; : -''a-:'-:-.:t..*....--

a Supports port nunbor ¡ddrolring
a UrDP w.8 inlti.lly ¡prcit¡rd tor lh.lollowing ndworkr

a 19l¡8 (cUlS, ß.¡¡t., CSD, F.cl.t l¡.t.l
. osu (3I9, ussD, oPns, csD)

. CDPD

a to€t¡

a Fh¡ rnd F.FLCX

a WPG hls s¡ncc promoLd rpacs lor tha lollorlng not*ûdr¡
. PHS

a Poc

O CDXA

O Erlmplo: WDP ¡s UDP rrhcn urcd oy€r an lP natwo;k l.ycr. ,R
WalF

A SIP-ISDN Gateway

Hans Nilsson
GSLab
Ericsson Utvecklings AB

hans@eri x. eri csson. se

I 999-09-30 EUC'99 1

what ¡" H3t?-z

I Session Initiation Protocol, RFC 2345

I Initiating, Changing and Terminating
Multimedia conferences (P Telephony)

I Lightweight

I Textbased "Looks like HTTP'

r UDP (rcP)

21999-09-30 EUC'99

Future of SIP?

t Easy to implement =) ÍìEu"ìy small companies

f Mail servers, HTTP Seruers, SIP seruers
I hans@csl ab. eri csson. se
I sì p: hans@cslab. ericsson. se

I Web integration; Seruices on web pages

I Click-to-dial

1 999-09-30 EUC'99 3

SlP, Simple Example*: _ _ ;:::

INVTTE \

f 999-09-30 EUC'99 4

Audio, video, ...

SIP Redirect Server ExamPle
INVITE

200 OK
o
a
a

REGIS
INVITE

302 Redirect
200 0K

1 999-09-30 EUC'99

.

i
l

I

f¡

SlP, Other Example
ISTER

.>)

R.ùREGISTER rlt.#

rffi ffiffiJ*g
EUC'99 61 999-09-30

What is a Gateway?

lì

1 999-09-30 EUC'99

SIP/ISDN Gatewa

Æ
ISDN

1999-09.30 EUC'99 I

4q
Signalling
Gateway

Media
Gateway
Controller

Gateway

slP - lsDN
HTTP

1 999-09-30 I

SNMP

Resending Message

Encode
Decode TCP

UDP

¡Ò

Erlang code sizes
in number of source lines

Encode/decode

SIP stack

1511

2476

State Machine
SIP <.> ISDN

2285

ISDN stack 6862

1999-09-30 EUC'99 10

SIP/ISDN Gateway -
realisation

RTP ISDN DS

SwiæhBoard

I
\

SIP

1 999-09-30 EUC'99

Distributed Erlang

Network

Why Erlang/OTP?

1 999-09-30 EUC'g9 12

f¡¡l

tuJSome ERTANG characteristics
fhttp : / /vrv¡w. er'lang .org/white-paper. htm'ìl

I Concurrency
I lightweight processes

I Distribution
I transparent message

passing

I Robustness
I node fail-over
I process monitoring

I Soft real-time

I Hot code upgrade

I External intedaces

t Components/Libraries:
Mnesia
SASL

SNMP

Inets
GS

I 999-O9-30 EUC'99 13

¡:

¡t¡

¡..

ì r, i

Users

1 999-09-30 EUC'99 14

Mobility Server VoIP Prototype Configuration

l¡ DECT

*lt'

H323

¡'Wireless
IP

LAN

I 999-09-30 EUC'99 15

NT Server: Mobility Server

ISDN SIP H.323

Feature

Mobility Server VoIP Prototype Objectives

. Show Inter-operability between IP Terminals
and DECT Terminals or PSTN

. Identify effects from implementing
existing Mobility Server services over VoIP

. Create qualified arguments on SIP versus H.323
for the Mobility Server product

1999-09-30 EUC'99 't6

The Future

1999-09-30 EUC'99 17

Future:
Work, work, wofk'..

I Standard MG protocol (MGCP,...)

t Less prototypish :-)

I Administration:
I SNMP

I HTTP/CGI

I Connect to Ericsson Phone Network

1999-09-30 EUC'99 t8

Redundanrcy and Gapacity

I
Sw-irchBoard

I
\

\
I

SIP

I 999-09-30 19

f-l

LUJ
E RLANG

Next Erlangl0TP Release - Highlights

CosTransaction

Secure IIOP over SSL

Release handling improvements.

Disklog improvements.

ASN.1 extended standard support.

Extended support for dynamic reconfiguration
and code update in Mnesia.

Performance improvements .

Stacktrace and other trace improvments

New compiler

NO JAM

Release date October 27, 1999

Open source available ---

f.

.r

Towards an Event Modeling Language

Maurice Castro
maurice@serc.rmit.edu.au

Michael Dwyer
dwyer@serc.rmit.edu. au

Geoff Wong
geoff@serc.rmit.edu. au

Software Engineering Research Centre
Level 3, 110 Victoria St

Carlton, VIC, 3053, Australia

Abstract

Object-oriented programming owes part of its popula^rity to Booch's

notation [2], Rumbaugh's OMT [7], and UML [8]. These notations allow

object oriented designs to be expressed graphically and furthermore have

enabled the development of ca.se tools for object orieuted languages.

The lack of a suitable high level graphical notation has been identified
as one of the factors discouraging the uptake of fuuctional programming
and in particular the language Erlang [1].

This paper represents a fust step in designing a graphical modeling
language for functional programming that encourages sound programming
practices. The initial target language is Erlang but it is hoped that the
notation can be extended to other functional languages.

1 Introduction
Graphical notations such as Booch's notation [2], Rumbaugh's Object Model-
ing Technique (OMT) [7], and the Unified Modeling Language (UML) [8] have
provided a strong irnpetus to the Object-oriented (OO) programming paradigm.

The absence of a high level graphical representation for functional program-

ming has been identified as one of the factors inhibiting the uptake of the Erlang

[1] programming language.
Graphical design notations allow designers to specify programs at a high

level in a manner more closely related to the programming paradigm rather
than the target language of the project. The notation should aid communi-
cations throughout the product life'cycle, but in particular they should aid
communications between designers and implementors by highlighting design is-

sues and leaving programmers free to handle the detail of the implementation.
Finally these notations are instrumental in the construction of case tools by pro
viding a high level notation which can be translated into programming language

constructs.
This paper describes the first steps towards a graphical notation for the

Erlang programming language.
In the following sections the Erlang programming language is summarised

and its significant features identified, existing techniques are discussed, the ob-

I

jectives of the notation are discussed. the notation is introduced, and several

examples of the notation are given.

2 Erlang
The Erlang language [1] is a syntactically impoverished functional language

employing pattern matching for rule selection. The language has support for
concurrent programming and is suitable for soft real time applications.

2.L Functions & Modules

Erlang functions return a single result which may be assigned to a variable

or used as an argument to another function call. Functions are constructed

from clauses which are constructed from function calls and the operators of
the language. Functions are arranged into modules which are the unit of code

loading. Modules are also the unit of code distribution in a distributed system.

It should be noted that no storage is associated with a module and that modules
are only collections of functions.

2.2 Types

The language is dynamically typed. Variables are untyped hence any data
element may be bound to any variable.

The language supports 7 simple data types: integers, floats, atoms, Process

IDs (PID), references, binaries and ports. Atoms are a constant name with a
value equal to their own name. PIDs uniquely identify a process. References

are values which are guaranteed to be unique. Binary data objects are used

to encapsulate sequences of bytes. Ports are used to communicate with the
external environment.

The compound data types of the language - tuples and lists - use position
within the structure to identify fields rdther than names. The arity or number
of elements in a tuple is fixed at compile time. The number of entries in a list is

determined at runtime and operators are provided which allow elements to be

added to or removed from a list.
Type errors result when either bindings are attempted between incompatible

structures or a built-in functionl or operator is applied to an inappropriate type.

2.3 Process Model
Processes are the unit of execution. A process consists of a stack, an associative
store known as a process dictionary, a message queue, and a thread ofexecution
through a piece of code.

2.4 Messages

A message may contain any data item and is addressed to exactly one process by
naming either a PID or a symbol which translates to a PID (registered name).
The following properties of a message are guaranteed:

lBuilt-in F\¡nctions (BIF) are defined as the set of functions provided by the interpretor in
an interpreted Erlang system

. to be sent immediately

o to be received without errors if received at all

However, messages are not guaranteed to be deiivered'

Erlang also ãefrnes the concept of a node. Processes within the same node

see the sarne set of transiations between registered names and PIDs. In practice

a node is an instantiation of the Erlang interpreter. Processes may be started

on a local node or a remote node.

2.5 Dominant Language Features

For the purposes of design, processes and messages are the dominant features

of the Erlang programming language. Erlang programs can be modeled as a

collection of communicating finite state automata'
Processes may be represented as a finite state automata which jump from

internal state to internal state depending on a set of rules encoded as functions'

Messages represent the set of events which allow processes to change from state

to state.

2.6 Dominant Design Features

Processes are relatively inexpensive and easy to use in Erlang, differentiating

Erlang from many other languages and forcing processes to be considered as a

major design element.
Generic servers are relatively simple to write and their functionality is dis-

tinguished by passing in the module and function name of each function to be

called when the server receives a particular event.

I

3 Existing Notations
Isaksson and Sturesson [6] identify a number of existing design notations em-

ployed by Erlang progralnmers. The notations included State Transition Dia-

gr*nr (STDs) and Data Flow Diagrams (DFDs). This section briefly discusses

Ihese techniques and identifies the need for another notation to describe the

design of an Erlang Program'

S.L State Tlansition Diagrams

The State Transition Diagram and its related tabular form represent a process

or system as a collection of states connected by a set of transitions' Associated

with each transition is a pre-condition and an action - the action may be null.

In the diagrammatic form states are usually represented by circles, transitions

"r"
r"pr".ãrrted by arcs and the arcs are annotated with the pre-condition and

the action.
When pre-conditions correspond to the presence of a message, STDs a,re

well suited to representing the action of a single process and a¡e typically easily

translated into Erlang code. It should be noted that STDs do not provide a one'

to-one correspondence with Erlang as Erlang's receive function employs pattern

matching and hence may place an ordering on the received messages. STDs
have no mechanism to represent this ordering.

STDs do not offer any assistance in defining the interactions between pro-
CESSES.

3.2 Data Flow Diagrams
Data Flow Diagrams represent the flow of data through a system and the trans-
formations applied to the data at each stage. External entities are represented
by boxes, transformations are represented by circles, data items are indicated
by arrows, and data stores are represented by a pair of parallel lines.

The mapping between DFDs and Erlang is ambiguous. Specifically, the
transformations in a DFD can be modeled as either Erlang processes or function
calls within a process, and data flows can be either modeled as the arguments
of a function call or a message passed between Erlang processes.

3.3 Deficiencies

Neither STDs nor DFDs allow processes to be shown explicitly with their inter-
faces. This deficiency prevents easy interfacing to an existing process structure.

The notation proposed in this paper allows processes and their public inter-
faces to be described. The proposed notation is not intended to replace either
of the existing notations completely instead it provides a way of explicitly de-
scribing the relationships between processes. STDs may be used in conjunction
with the proposed notation to describe the procedural aspects of the operation
of a process. DFDs may remain a useful first step in specifying the system.
However, it is envisaged that DFDs will have reduced usefulness as the design
progresses and the proposed notation is employed.

4 Graphical Design Language Features
This section identifies forces which have influenced the notation presented.

The language was required to be:

o Draw-able by hand without the need for special templates.

As a considerable amount of design work involves a grcup of people around
a white board and one on one communication between a designer and an
implementer may need to be carried out at varied locations where only a
pencil and paper is available, it was considered essential that the language
be usable without special apparatus.

o Machine translatable into skeleton files which can be used by programmers
as a starting point for writing programs implementing the design.

This criteria allows CASE tools to be constructed.

o Useful for both forward and reverse engineering a design.

Although the language was introduced to aid in the design stages of a
project, it was considered desirable that the language should be usable
to draw a representation of an implemented system. This extends the

usefulness of the ianguage into the maintenance phases of projects and

into iterative development environments. By making the language useful

in the maintenance phase the chance of retaining a correct and useful

design is increased, this design can be used as a starting point in later

design cycies.

The ability to perform both forward and reverse engineering allows the

CASE tool to 'drive' the development process by allowing the tool to be

used at each stage of the life cycle.

o Recursive in nature.

It is rare that a complete design for a complex system can be written down

immediately and completely. The language was required to allow stepwise

refinement of the design. By making language elements recursive a design

can be drawn and then refined by redrawing an element at a higher level

of detail. This property can be used in two ways: The top level diagram

can be re-drafted to contain the refined element, or sub-diagrams can be

constructed providing greater detail than the top level diagram.

Graphical languages need to balance the amount of information displayed in
written form against overcrowding the diagram. Furthermore, the number and

types of elements must be restricted to make the diagrams sufficiently simple to
take in at a glance.

'Where possible familiar notations from other languages should be used. Con-

versely, notations which resemble those used in other languages must have an

equivalent meaning in the new notation to prevent confusion.
The evolution of OMT [7] and Grady Booch's method [2] into UML [8]

suggested that rectangular boxes with square corners were the only acceptable

geometric form for a widely used graphical notation.
The ease of writing generic server processes which are distinguished only by

the set of functions that they call in reaction to a stimulus makes it essential

that the notation support a way of representing a process started with specified

values for formal parameters. Of particular interest are module and function
narnes used at the instantiation of the server.

5 Notation
The event model is abstracted into instantiation, processes and interactions.

Instantiation is the act of bringing a process into existence. Processes are en-

tities which are in a state and may change state as a result of an interaction.
Interactions are events. Typically an interaction is a message or messages sent

between processes.

The notation supports recursion. Processes may specify either processes in
an implementation, a collection of processes in an implementation, or a collec-

tion of processes defined in another event model diagram.
Sources of events outside the model may be implemented as dummy pro'

cesses.

5.1 Processes

A process (see figure l) is represented by a box with the following compartments

. Name compartment: the left side of this compartment contains either the

name of the process or an 'X' to indicate that the process is known oniy bv

its system allocated PID. The right side may contain an optional (though

recommended) unique name which is used to refer to the process within
the diagram.

o Startup compartment: This compartment is divided into 2 sections with
the second section optional. A single line is used to separate the two
sections if the second section is present. The first section is called the
parameter section and it contains: the module name, function name and
arguments used to start the process. The second section is called the
instantiation section and it contains a list of relations. Each relation con-

sists of a formal parameter named in the parameter section, an equals
sign, and the value assigned to the parameter when the process is started.
Formal parameters maybe unmentioned in which case the designer is not
specifying the initial value at this time.

o Process life compartment: A set of symbols indicating the lifetime of a
process. An infinity symbol ('oo', the symbol 'inf' may be used where a

symbol font is not available) indicates that the process is intended to live
indefinitely. If the process is intended to live for a fixed period of time
a tau ('r', the symbol 't' may be used if a symbol font is not available)
symbol is used. If an estimate of the time or an upper bound on the time is
known then an equation using tau may be used. If the process is intended
to live to perform a number of jobs and then cease, the letter 'r¿' is used

to denote the number of major tasks the process is to perform.

o Interface compartment: A set of interface boxes, 1 for each public interface
provided.

Name

Startup

Proc Life

IF1

IF2

IFn

Figure 1: A process

Erlang supports both a direct message based interface and a message based

interface that has been encapsulated in functions. An interface box consists of
a unique name for the interface typically signifying a purpose for the interface,

and either a description of a set of message structures or a set of module names

and function names of the interface functions.
An interface consists of a set of message types or functions that logically

belong together to achieve some common task.
A dummy process has no interface compartments and the startup and in-

terface compartments are empty. This type of process represents a source of

events from originating from outside the model'

5.2 Instantiation
A line with a double arrowhead (see figure 2) is used to indicate the creation of

a process. The parent ofthe process appears at the blunt end ofthe arrow' The

sharp end of the arrow points towards the child. If the arrow points to a solid

dot then multiple processes may be created. A number near the dot indicates

the number of processes created. Associated with each line is a piece of text
which describes the reason for creating the process.

Parent Child

Reason

Reason

---+>o

Figure 2: Instantiation

5.3 Interactions
Interactions (see figure 3) are represented as lines with single arrowheads. Inter-

action lines run from process boxes to interface boxes. It is illegal for a line to

connect two interface boxes. If an encapsulated interface is used and a function

returns a result caused by receiving a message then a double barb should be

used. The double barb indicates the flow of information in two directions.

Associated with each interaction line is a reason for the interaction.

6 Design Technique

The first step in designing an Erlang program is to determine the major con-

current activities of the system. Each of these activities is then defined as a

process on the diagram. After the processes are drawn' interactions between

the processes are indicated with lines interconnecting processes. Interface boxes

are added to the design to provide the detail of the interactions interface. This

top level diagram may be stepwise refined by defining processes which compose

the processes provided by the top level diagram.
A number of useful 'patterns' are available to the designer:

Sender Receiver

Reason
Interface

Reason

Function Interface

Figure 3: Interactions

¡ Worker processes - As processes are cheap in Erlang designers may wish
to start a worker process to complete some task

o Immortal servers - Most systems will have some co-ordinating process,
typically this process will be immortal as this simplifies the problem of
contacting the controlling process

A number of decisions are deferred to the implementation:

o The size and borders of the process name space

o The placement of processes on nodes

Description of the program logic can be provided by associating a finite state
automata, a message sequence chart, or a textual description with each process.

Although the notation supports both encapsulated and non-encapsulated
interfaces. Designers are encouraged to use encapsulated interfaces in nearly
all cases. Non-encapsulated interfaces will probably only be used for exposed
system interfaces such as gs [4] or Internet [5] libraries.

Designers are encouraged to abstract common process patterns into generic
servers which call functions by name in response to a stimulus. This approach
minimises maintenance problems by abstracting common code.

7 Examples

This section develops a simple example and a more complex example of the
application of the notation. The section closes by commenting on the design
process in relation to protocol stacks.

7.1 Simple Example
WWW servers are easily constructed in Erlang. The notation is used to describe
a minimalist WWW server [3]. The server consists of a process that listens for
incoming connections and then spawns a new process to handle the request
contained in the connection. Figure 4 illustrates the approach.

In addition to the graphical representation of the process a short description
of the logic of the senter and reqhd processes is required. The erús process

staft server

handle request

n

Figure 4: A simple WWW server

xx

:start(Port)

x erts X server

httpd:server(Port)

t= inft= inf

gen_tcp:listen

x reqhd

gen_tcp:close

gen_tcp:recv

gen_tcp:send

n=1

1I ,

È"::. .,i

I i --j
1, .::l
r.i:

represents facilities provided by the Eriang runtime system that are used b1'

the WWW server. The lprocess is used to represent any process that calls the
httpd:start function and hence starts the server.

7.2 More Complex Example

The second example is an abridged representation of an authenticating WWW
proxy server. Many IP networks employ a firewall to control what data flows

into and out of their network. A firewall is a computer with at least 2 network
interfaces. It prevents traffic from passing from one interface to another until a
condition allowing the transfer has been met. One example of such a rule would
be that traffic would be prevented from flowing until after the user has success-

fully identified themselves. One method for implementing an authentication for
WU/\M page access on a firewall is to create a proxy server on a random port
on the firewall after the user has successfully authenticated themselves.

This example illustrates the use of a generic server as the basic WWW
server is abstracted and reused. Figure 5 shows the major processes of the
system. The server code is reused in both the auth and øuthprr,y processes. The
two processes differ only that they are instantiated with the na¡nes of different
functions associated with the action of getting a nerl¡ page.

7.3 Protocol Stacks

Protocol stacks are typically a special design case in that they can be imple-
mented either in a single process or in several processes. The design approach
presented here is relevant to protocol stacks. As these diagrams do not seek

to show the procedural aspects of program flow, a protocol stack implemented
in process may not even appear on these diagrams. The authors do not view
this as a problem as they consider that the procedural aspects of design are well
covered using either a narrative description or STDs, however, current notations
neglect processes and their dynamic nature.

8 lterative Application
The proposed method is recursive and can be applied iteratively. This sec-

tion will show how the recursion property can be exploited to perform stepwise
refinement on a design.

The more complex example (see section 7.2) provided a starting point for an
implementation. Further study of the problem indicated that it was simpler and
more desirable to separate the roles of authentication and proxying. F\¡rther-
more, it was found that it was necessary for the child process which handles an
individual connection to be able to shut down the pa.rent \ryWW server process.

This facility would be used if a user failed to authenticate themselves correctly.
Figure 6 shows the separation of the authentication and proxy roles. Note

that this could also have been represented in a subdiagram providing greater
detail to the combined, outhprry process (see figure 7). The subdiagram shown
includes the interaction with erús although this is optional.

start auth server

n

New Connection

Auth then proxy

New Connection

n

IX

X authhttpd:start(Proxy)

httpd:server(Port
Fn, Args)

Fn = {auth, auth}

t= inf

X erts
Ix

auth:pgl(Sock)
t= inf

n=1
gen_tcp:listen
gen_tcp:accept
gen_tcp:close
gen_tcp:recv
gen-tcp:send

X

httpd:server(Port
Fn, Args)

f¡ = {prox}, auth}

t>= l0 min

x proxy

n=1

[:

1l

I
I

Figure 5: An authenticating WWW proxy server

IX

x auth

httpd:server(Pon
Fn, Args)

Fn = { auth, auth }

t= inf

X erts
X pcl

auth:pgl(Sock)
t= inf

n=1
X auth2

httpd:server(Port
Fn, Args)

Fn = { auth, auth3 }

n=l

gen-tcp:listen
gen_tcp:accept
gen-tcp:close
gen_tcp:recv
gen-tcp:send

{term}

X auth3

New Connection

auth:auth3(Sock)

n=lx prxysrv

httpd:server(Pon
Fn,

- {proxy, proxy}

c>= l0 min

X proxy

n=l

start auth server

New Connection

Handle Authentication

Auth successful
Proxy on new pon
Handle proxy requests

Terminate
Server
Auth / Fail

New Connection

Figure 6: Modified authenticating WWW proxy server

f
authprxy

Terminate
Server
Auth / Fail

Auth successful

Proxy on new port
Handle proxy requests

New Connection

X auth2

httpd:server(Port
Fn,

f¡ = {auth, auth3}

n=1
X erts

{term}

t= inf

aurh3x

New Connection

auth:auth3(Sock)

n=1

gen_tcp:listen
gen_tcp:accept
gen-tcp;close
gen_tcp:recv
gen_tcp:send

X prxysrv

Fn,)

httpd:server(Port

= {proxy, proxy

t>= l0 min

x

:proxy(Sock)

n=1

Figure 7: Detail of. authprcy

I Conclusion

The beginnings of a notation and a design technique for Erlang applications
have been introduced. The notation is intended to assist both in the design and
maintenance phases of project development. At this stage the notation has been

used on only a few examples which have been strongly connected with WWW
applications, however, the authors have found it helpful in both formulating
and communicating their ideas. The notation has been shown to be suitable for
reverse engineering existing code, and has been shown to be readily modifiable
as design ideas change.

References

[1] Joe Armstrong, Robert Virding, and Mike Williams. Concun'ent Program-
rning in Erlang. Prentice-Hall, 1993.

[2] Grady Booch. Object-Oriented Anolysis and Design with Applicat'ions. The
Benjamin/Cummings Publishing Company, second edition, 1994.

[3] Maurice Castro. Erlang in Real T'ime. Department of Com-
puter Science, RMIT, 1998. ISBN 0864447434. Also available from
http: / /www.serc.rmit.edu.au/-maurice/erlbk/.

[a] Klas Eriksson. Graphics System Application (GS) aersion 1.3. Ericsson
Telecom AB, 5 1997.

[5] Magnus Fröberg. Kem,el Applicøtion (Kernel) uersion 2.-/. Ericsson Telecom
AB, 11 1997.

[6] Johanna Isaksson and Elinor Sturesson. Design guidelines for erlang. Tech-
nical Report SERC-0083, Software Engineering Research Centre, I 1999.

[7] James Rumbaugh, Michael Blaha, William Premerlani, Flederick Eddy, and
William Lorensen. Object-Oriented, Mod,eling ond Design. Prentice-Hall,
1991.

[8] Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software,
MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, ilogix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies,
and Softeam. UML Semantics aersion 1.1. Rational Software, 9 1997.
http : / /www.rational.com I uml I (acl/97-08-04).

,¡

!
,t .t;

Protocol programming in Erlang using binaries

Claes Wikström Tony Rogvall*
Computer Science Laboratory

Ericsson Telecom AB

29 Sep 1998

l- Introduction
This text is an introduction to the binary data object found in an experimental

version of ERllNC. It is also a general purpose tutorial on protocol program-

ming in ERlenc in general.
Binaries are basically a sequence of octets. The operations we can perform

on binary objects as well as the internal representation of binaries are primarily
intended to be used as a means for efficient as well as beautiful protocol im-

plementations. However a wide variety of applications can take advantage of
binaries. In particular all applications that perform extensive IO, such as disk

IO, GUI systems, or networking TCP/P IO.

2 Background
Implementing protocols correctly is hard. Implementing thern efficiently is even

harder. In particular if the protocol implementation is supposed to be a part of
a greater whole, i.e. a very large system application, it is hard. The protocol

must be implemented in a flexible manner which fits into the general model of
IO of the larger application. If the protocol implementation is completely stand

alone from the application which uses the protocol, buffer management suffers

since then typically buffers must be copied from the protocol implementation

to the application utilizing the protocol and vice versa. In the extreme, buffers

are copied between protocol layers, which hurts execution speed bad.

We believe that the binary data object implementation we propose in this
document is well suited for protocol implementations. In particular in combi-

nation with the other facilities previously found in the En¡,¡,NC programming

* email: {klacke,tony}@erix.ericsson.se

I

1

language we have a set of tools which makes it remarkably eas¡' to implement
protocols.

The different protocol implementations found in this document have been
chosen for their reputation, not because any of them is considered to be partic-
ularly hard to implement. The advantage of this is that all readers are familiar
with the protocols at hand.

2.1 History
The binary data object saw the light of day in the Erlang 3.3 release approxi-
mately 1992. The first application for binaries was to provide an efficient con-
tainer for object code. Object code was read from a file and loaded directly into
the system. This work was done in the code loading BIFs themselves and this
was deemed inappropriate for a variety of reasons, mainly portability and flex-
ibility. Thus the binary data object was introduced and the code loading BIFs
were changed to take a binary object as input parameter instead of a filename.

Later on, the binary object was used to carry messages in distributed Erlang.
Once the binaries were introduces into the system EnL¡Nc users started to use
binaries for all kinds of different purposes. In particular they have been used
as IO buffers in various protocol implementations. The original binary object
was fairly suitable for this but not perfect. We have now tried to remedy this
situation by both providing a new internal implementation of binaries as well
as providing means at the language level to efficiently build and match binaries.

3 Introduction
Binaries can be constructed and pulled a part by means of matching in a way
similar to regular ERlnNc lists. New binary objects are created as:

< Partl:Sizel,/Modifierl, Part2:Size2/..l{odí1.íer2.)

The Part is an erlang value we want to use for the construction of the binary,
the Size part is the number of bits (or sometimes bytes) we v¡ant to use from
the Part value and finally the Modi.fier is a dash separated sequence of type
modifiers.

This is possibly best illustrated with a simple example. For example the
expression

<777 :t6/ínteger>.

creates a 16 bit (two bytes) binary object consisting of the two least significant
bytes from the integer 777 . A wide variety of types, and modifiers are available.

Say we have some bit pattern bound to an integer value as:

X = 16*abcd,

2

Now we want to construct a four byte binary which has the equivalent con-

tents as the list:

int32-to-1ist(X) ->
[(X bsr 24) band 255, (X bsr 16) band 255,
(X bsr 8) band 255, X ba¡d 2551.

Why would we want to do such an operation in the first place ? Say we want

to write an ERleruC term, represented as a binary object in the external term

format to a file. Furthermore we want to prepend the size of the term in the

file as in:

B = term_to_binary(SoneTerm),
write (FileDesc, [1nt32-to-list (sj'ze (B)) ' B]) '

I.e, we want to serialize an integer in order to use it in an output operation.

This operation is directly supported in the language through the binary con-

structor syntax. The function iut32-to-list/1 returned a list, it is better to

directly return a binary.

int32-to-bin(X) -> <X:32lunsigned-integer>.

Thus the previous sequence where we write a term to a file would become.

B = tern-to-binary(SomeTerm),
write(FileDesc, ((size(B)) :32lunsigned I B>).

Integers come in different varieties. Size, sign and endianism I ntay vary.

The size field in a binary expression indicates how many bits of the value we

want to use. For example: <255:4/ínteger, 255:4,/integer> evaluates to a
one byte binary object holding the value 255. we can try this out at the shell

prompt:

1> <255 :4/ ínteger, 255;4/ ínteger>.
<255>

In a manner similar to how we build binaries we can match a binary object

when we need to pull a binary apart. IVe use a syntax which is equivalent to

the construction syntax when we match binaries. So for example to pull apart

some of the objects we constructed in the previous section we can write:

lThe term ,,endian" can be traced to Jonathan Swift's novel "Gulliver's Tbavels". In one

of Gulliver's adventures, he encounters an island whose inhabitants bitterly argue over the

correct way to open soft-boiled eggs - the little end or the big end. Little endians and big

endians are each convinced that their method is the only correct method for opening an egg'

3

il

t. '"' 'l
t"
l. i:

"

X = <255 ;4/ i-nteger, 255 : 4/ ínteger>,
<Hi:4/lnteger, Lo:4/integer) = X,

{Hi, Lo} .

The above code first constructs an 8-bit binary and then pulls it apart.
It is aiso possible to rnix the match on different types. We wrote a term to

a file by means of the cail

¡¡rite(FileDesc, ((size(B)) :32lunsigned I B>)

Similarly we can pull the same binary apart as

case Binary of
<X:32lunsigned-integerlBtail> n¡hen size(Btail) == [-)

The above construction is particularly common where we have a size field
which determines the size of a some later fields. When we match such values it
is very convenient to be able to use a variable introduced in the actual match
patter as a size indicator for objects in the same pattern. This is indeed possible
and the above code could be written in a better way as:

case Binary of
<X:32lunsigned-integer, BValue:X/binary I Tai]>

Note how the X variable is introduced first in the pattern and then later on
used in the same pattern.

4 Types, Compiler directives and default values

Many different erlang types can be used to match and construct binaries. In
this section we list all erlang types that are supported for binary construction
and matching as well how the different modifiers and size specifications apply
to the different types.

4.L Integers
4.1.1 Constructing

The size of a constructed integer is not constrained by anything but the size of
the largest integer that is possible to represent.

The following list of type modifiers are applicable to integers.

o integer Indicates that we want to pack an integer.

4

r littLe The integer is packed in little endian byte order.

Example: <4042:16/uasigned-integer-big> produces a 2 byte binarl'
containing the integer 4042 represented in big endian byte order'

o big The inreger is packed in big endian byte order. The little and big
type modifiers are only applicable when the size indicator is a multiple of

eight.

o signed., unsigned These type modifiers are allowed but don't mean any-

thing when constructing a binarY.

4.1.2 Matching

When we match integers from a binary we have the following valid type modi-

fiers.

o integer Indicates that we want to match an integer.

o little The integer in the binary buffer is considered to be packed in little
endian format.

o big The integer in the binary buffer is considered to be packed in big

endian format.

o signed The integer in the binary buffer is considered to be represented

with a 2-complement sign extension.

Example:

B = list_to_binary ([255 ,255]) ,
<X : l6/sigaed-integert = B,

will bind the variable X to -1.

o uasigned, The integer in the binary buffer is considered to an unsigned

integer. Considering the same example as above with:

B = List_to_binary([255,255]) ,

<X: 16/unsigned-integs¡) = B,

will bind X to the value 65535

4.2 Characters
The same modifiers that apply to integers apply to characters as well except

that the modifier integer must be replaced with the modifier char.

5

¿

4.3 Floating point numbers

Construction and matching of floating point numbers is supported. Floating
point numbers are constructed and matched according to the IEEE 754 floating
point standard. A float is considered to be packed in either 32 or 64 bits. The
following type modifrers are applicable to floats.

¡ float The type is float.

o big The float is packed in big endian order.

o smalL The float is packed in small endian order.

For example the following code produces a 8-byte binary

F = 3.14,
Bin = <F:64lfloat-little>,

and if we want to match such a binary we can extract the packed float as in:

<F2; 64/tloat-1itt1e> = Bin.

Note that the two floats F1 and F2 are not necessarily equal since the conversion
process may change the floating point value with a small fractionz.

4.4 Tuples

If a sequence of equally sized and typed values need to be processed we can
either pack the values from or to a tuple.

For example if we have an 8-byte binary B1n and we want to pull the binary
apart in four parts each part consisting of 2 bytes, where each sequence of two
bytes is considered to be a 16 bit integer we can unpack Bin as:

<Tup:4/tuple-integer: 16) = Bin,

Where Tup will be bound to an arity four tuple.
The size indicator 4 indicates how large we want the tuple to be. The

new type modifier integer: 16 indicates how many bits shall be used for each

element in the newly constructed tuple.
This syntax provides an efficient way of processing several values in one

sweep. Whenever the tuple type modifier is present in the type modifier list,
the remaining type modifiers apply to each individual element that is processed

and packed in the tuple.
Similarly if we have a tuple of equally typed values and want to pack the

sequence of elements in a binary we can to that with the tuple type modifier.
Example:

2It is generally considered to be poor programming practice to compare floating point
numbers for exact equality

6

Tup = {L.23, 5.66, 9.00, 6.87654},
<Tup : 4/tup1e-f loat : 64-1ittIe>

will take the values in the tuple Tup from left to right and pack them in a
binary object.

4.5 Binaries
It is possible to extract sub binaries from an input binary by explicitly providing
a type modifier binary The size field in this case applies to number of bytes

instead of bits as is the case with i.e integers. Example:

<-:lO/binary, X:10/binary l-> = BiD,

will strip off the first 10 bytes from the binary Biu and bind the variable X to
the next 10 bytes in the Bin buffer.

It is also possible to concatenate binaries with the same syntax. For example

if we have a binary object B and want to build a new binary object 82 with the
size of B prepended v/e can evaluate:

Size = size(B),
<Size : 32lunsigned-integer, B : Size,/binary> .

or usirrg a tail expresriiuu as tlescribed iu the section about the binary tail:

Size = size(B),
<Size:32,/uasigned-integer I B>

A function that concatenates a list of binaries can be written as:

lists:foldt(fun(B, Ack) ->
<B/binary I Ack>

end, (), List0fBinaries)

If the size field is ommited in an expression with the binary type modi-
fier, the default value is the the size of the entire binary. Thus the expression
<B/bj.nary? is eqivalent with the more awkward <B: (size(B))/binary>'

4.6 Lists
Exactly the same technique and syntax we used in the previous section with
tuples can be used with lists. For example to take the first 100 characters of a
binary we can call:

<Str: 1OO/list-char:8) = Bin,

The resulting variable Str will be bound to a list of 100 characters.
The ability to combine binaries and char-list is often useful.

7

t:

i.:

i
i

i 1,r

ì. -,r!

4.7 The Tail
Whenever a tail is provided in a binary pattern, either in a matching left hand
expression or in a right hand construction expression, the tail value is considered
to be a binary object. For example in the match expression:

<X:8/char, Z:32/írteger I Tail> = Bin,

The Tai] value will be the remainder of the input binary Bin when first 5 bytes
have been consumed by the X and Z variables. Thus the above expression is
equivalent to

Sz = si.ze(Bin),
<X:8/char, Z:32/ínteger, B2:Szlbiuary> = Bir,

The same principle applies when we construct binaries, if a tail is given in a
righthandside construct expression, it is considered to be a binary tail.

<X:8/char, Y:8/char I Tail>

Will prepend the two characters X and Y on the head of Tail.

4.8 System endianism

Sometimes it can be convenient to be able to produce an an array of integers
formated in the endianism of the underlying machine. We have the following
bit types predefined:

o sys-int The endianism and size of a system int
o sys_short

o sys-long

r sys_char

o sys_float

o sys_souble

If we use these types to produce abinary object as in:

B = <77/sys-int, 88/sys-int>,

and then send the resulting binary to an Erlang port as in:

Port ! {selfO, {co¡omand, B}},

The c program at the other end of the port can read the data as:

8

¡-nt a [2] ;

read(fd, a, sizeof (a)) ;

The above code work on both little endian and big endian machines. Of

cource the c program can also use this feature to directly read binary data into

a structure, thus :

B = ("abcd", X/sys-int, F/sys-float),
Port !{selfO, {coromand, B}},

can be read from the Port Program as:

struct foo {
char c [4] ;

int x;
float f;

);

struct foo f;
read(fd, &f, sízeof.(struct foo));

4.9 Bit defaults

Two different compiler directives are applicable when we write code that manage

binaries.
The compiler directive

-bitdef ault (integer, unsigned-little)

will add the three modifiers unsi.gned, iuteger and littte to each list of
type modifiers in the remainder of the source code file where adding these type

modifiers is applicable.
This can be useful in a number of different settings. Say that we are writing

a module that only deals with unsigned 32 bit integers, in that case it can be

awkward to specify the full modifier list throughout the entire file. Thus, the

lazy programmer can save keystrokes by specifying

-bitdefautt (integer, size : 32-unsigned-1itt1e)

Here we added a size modifier saying that the default integer uses 32 bits.

Similarly we can indicate the default type modifrers for floats as in:

-bitdefault (float , size : 32-blg) .

where we say that the default floating point value is a 32 bit float in big

endian byte order.
Another situation is when we want to write code that is independent on

endianism of the integers. In that case we can have a single line at the top of
the file that specifies endianism.

I

-bitdefault (1itt1e) .

If no bit default is given as a compiler directive and no type modifier is
specified in the code, a bit pattern still has a meaning since almost ever¡'thing
has a defauìt value. The same rules apply regardless of whether the pattern
appear in a match or as a constructor. We have the following default values:

o <V> is equivalent with <V:8/char>

o <V/integer) is equivalent with \verb¡V:32/integer-signed-big¿+

r <V/float> is equivalent with \verb¡V:32/float-big¿+

o <V/bina¡y> is equlvalent with \verbSz = size(V), ¡V:Sz/binary¿+

o (V:Size> is equivalent with <V:Sizelsigned-integer-big>

4.10 Bit typedefs

W'e can specify a name for a particular sequence of type modifiers as in:

-bittype (uint , integer-unsigned) .

This allows us to use the name uint as type modifier as in

<X:32luint>.

or if we want to indicate the size we defrne:

-bittype (uint , integer : 32-uns ig:red) .

4.LL Alignment
A sequence of match or construct values must always add up to a multiple of
8. The alignment requirements for binaries are very low and basically the only
requirement is that the resulting binary in a build expression is byte aligned.

It is for example possible to produce a binary with a floating point inserted
at non byte aligned positions in the output binary as in:

<X: 1/uint , Pi :32lfloat, Y:7/uint> .

However

<X:9/uint>.

Will produce a runtime error

10

4.L2 The empty binary
The empty binary which has size 0 is specified as <>

4.L3 Bit Groups

4.L4 Variable field size

A very common situation in many protocols is to let the Protocol Data Unit
(PDU) contain a size specifier which is indicating the size of some later field

in the PDU. As a very simple example the Erlang Port mechanism typically
prepend a two byte length indicator on each message it sends to an external
process that is connected to the port. When we receive such a message we can

both have the cake and eat it since we are able to first bind the initial two bytes

to an integer and then use that integer in the same match expression. So to
receive such a message we would write code such as:

rece]'ve
{data, <Size: 16,/uint, Data:Szlbinary>} ->

ha¡dle-data(Data),

For a more complex but truly useful example, assume that we have a port
and receive data from the port where each packet from the port is prepended

with a two byte header indicating the size of the entire packet, then the following
code receives messages from the Port and sends complete packets to the user of
the port.

-bitdef ault (uns i.gned- integer) .

port-loop(Port, User, Ack) ->
case Ack of

<H: 16/unsigned, Pdu:H/binary I Tail>
User ! {pdu, Pdu},
port-loop(Port, User, Tail) ;

0ther ->
receive

{Port, {data, Data}} ->
port-loop(Port, User, <Ack/binary

end
end.

Data>)

i

i

11

This code solves a fairly' complicated probiem. Assume we have a linked in
driver which reads data from some input channel, in a I-INIX environment, this
would typicalil' be a file descriptor. If the above code sits at the Erlang end of
the port, the driver can freely read as much as it can from the file descriptor
and whatever the driver reads, it simpl¡' passes on to the port. The alternative
to this is to either let the driver perform two read operations, one where the
first two bytes, being the length indicator are read, and then yet another read

operation where the actual contents are read, or alternatively, the driver can

blindly try to read as much data as it can. In this case, the driver must be
prepared for all possible outcomes of the read operation. It can receive a half
header, a header and a half message, a header a message and yet another half
header and so on. If the PDU structure is more complicated than the one above,
the c-code to perform all these operation correctly can be fairly complicated.

5 Are they strings ?

Yes, binaries can be used as builtin character strings
Syntactic sugaring makes the expression:

<"f unkytt>

equivalent to the more awkward expression:

< " funky" : 5/list-char: 8>

When we use binaries for strings it is very convenient to be able to search a
binary for a specific substring and split it into two different parts with the first
part being the part upto the search string and the remainder the rest.

A binary match pattern may contain unbound variables with the size fieìd
being unbound too. This feature can be used to search a binary for a specific
string. For example the match pattern

<X:Sz/binary, "cat" I Tail> = Bin,

Will search the binary Bin for the first occurence of the string "cat" and
divide Bin in two parts, the part leading upto the string "cat", and the part
following "cat". If no "cat" is found in Bin, the pattern does not match.

This feature in combination with the rest of the binary system can be used
to implement efficent string manipulation functions.

Many of the string manipulation functions that have complexity O(n) when
strings are implemented as lists of cons cells have complexity O(1) when strings
are implemented as binary objects in Erlang. For example the length of a string:

len(S) -> size(S).

As well as concatenation:

12

concat(s1, s2) ->
<S1lbinary I 52>.

have complexity O(1), whereas the chr/2 function that returns the position

of the first occurence of a char in a string:

chr(S, C) ->
case S of

<-:SizelbinarY, C:8/char l-> ->
Size + 1;

0

end.

of cource have complexity O(1).
The module bstring implements a number of string utility functions that

work on binary strings. The module has exactly the same interface functions as

the original string module which operates on lists of integers/characters.

Since binary strings have completely different internal representation than

list based strings, they behave differently concerning memory consumption and

speed. Many programs do behave much better with binary strings than list

based strings. In particular programs that manipulate large amounts of data.

For example a function that opens a file, partition the file into lines and returns

a list of {LineNunber, Line} tuPles:

file-lines(File) ->
case file:open(File, [read,raw,bi.naryJ) of

{ok, Fd} ->
Res = f ile-1ines(Fd, <>, 1, U),
f ile : close (Fd) ,

Res;
Err -)

Err
end.

file-lines(Fd, 01d, Lno, Ack) ->
case file:read(Fd, 2000) of

{ok, B} ->
{A2, T2, L2} = split-chunk(<0ld/binary
f ile-lj.nes(Fd, T2 , L2, Ã2) i

eof -)
Ack;

Err ->
Err

end.

B>, Ack, Lno),

13

split-chunk (<Line/binary, $\n/char
split-chunk(Tai1, [{Lno, Line}

split-chunk(Other, Ack, Lno) ->
{Ack, Other, Lno}.

I Tail>, Ack, Lno) ->
I Ackl , Lno+1) ;

This code is very efficient and works well even on very large input sets,

unfortunately there are a number of different operation commonly performed
on strings that are considerably less efficient. For example reversing a binary
string.

breverse(S) ->
breverse(S, <>).

breverse(<H/charlTail>, Ack) ->
breverse (Tail, <H,/Char lAck>) ;

breverse(<>, Ack) ->
Ack.

The cons cell is a superior data structure in this case.

6 Classical internet style text based protocols

Many typical internet protocols are text and newline based. That means that
the participating computers send readable newline terminated text strings to
each other. Examples of such protocols are SMTP for electronic mail, NNTP
for news postings and HTTP for the world wide web.

The binary strings of ERLeNc are well suited for the implementation of such
protocols. In particular the ability to search for substrings using the construct
with a variable length binary followed by a bound expression, for example:

<B:Szlbinary, $:/char l-> = InputString

extracts the intial chars of the InputString upto and excluding the first occur-
renceofa: character.

For example a typical http request to a http server looks like

GET /index.htnl HTTP/1.0
User-Agent llozl]-].a/4.04 [en] (X11; I; SunOS 5.5.1 su¡4u)
Pragna: no-cache
Host : gi.n. du. etx. ericsson. se : 5999
Accept: inage/gif, inage/x-xbitnap, inage/jpeg, irnage/pjpeg, inage/png, */*
Accept-Language: en
Accept-Charset : iso-8859-1,*,utf -8
Via: 1.0 proxy.du.etx.ericsson.se:82 (Squid/1. 1.20)

t4

X-Forwarded-For : unknot¡n
Cache-control : Max-age=2592000

Each line is terminated with a pair of carriage return / newline except the

last line which has two such pairs. An efficent parser to unpack such MIN'ÍE like

headers may look like;

parse(<"GET ", Llhat/binary, "\r\n" I Tail>) ->
{Fietds, Contents} = Parse-tail(Tai1, enpty, [J)
{lJhat, Fields, contents}.

parse-taj.I(<B/binary, "\r\n\r\n" I Cont>, A) ->
{Cont, Ack};

parse-tail(<B/binary, "\r\n" I Tail>, A) ->
parse-tail (Tait, tB I Al) .

This code uses substrings extensively. Http is more complicated than this
with POST requests etc, but the above code can be augmented in a straightfor-
ward way to handle the entire http protocol.

The above code can form the heart of a microscopic http server.

As another example we could have the code to extract the "From:" field

from SMTP emails. This could be done as:

fron-beader(<-/binarlf, "\nFrom:", Sender:Sz/binary, "\r\n" l->) ->
Sender.

6.1 Case insensitivity
Many of the text based internet protocols âre case insensitive. To examplify'

the SIvITP mail protocol always start a session with a line of text:

HELO <donain> CRNL

where the client tells the SMTP server which his fully qualified host name

is. The initial "HELO" string is case insensitive, so not only the string "HELO"
is accepted, but also the string "HeLo". This can be addressed with the binary
type modifier icase. So to match the HELO mesage in an SMTP server we

would write:

case Message of
<'tHEl0"/-icase, Domain,/binary, "\r\n" I

handle-do¡oain (Donain) ;

t

15

6.2 An SMTP client
In this section we shall present a small SMTP client that constructs an email.
talks the SNtvIP protocol with an SMTP server and sends awav the email. This is
not a complete implementation of SMTP, albeit a fully working implementation:
We start off with some definitions and support functions:

-define(READY, "220") .

-deJine(CL0SE, "22!").
-define(0K4Y, "250").
-define(START, "354").
-def ine(N0AVAIL, "550") .

-define(CRNL, "\r\n")

-record(rec, {fron,
hname,
srntp))

'/,'/, t¡e from address, who am i
L'/, our hostnarne
7.% name of tbe sntp server

And a function to initialize the record:

getrecO ->
#rec{from = rr<rr ++ userO ++ rr@[++ hna¡oeO l* tt)tt,

h¡ame = hnameO,
sntP = sntPO)'

usero ->
case os:getenv("USER") of

false -> "luzertt;
User -) User

end.

hnaneO ->
case inet:gethostuaneO of

{ok, H} ->
case inet:gethostbyna¡ne(H) ofy

{ok, HE} ->
HE#hostent . h-nane;

{error, -} ->
ttl-ocalhostIt

end;
{error, _} ->

ttlocalhosttt

16

end

snrPo ->
case os :getenv("SMTP") of

f alse -) ttlocaLhosttt;

H->H
end.

Then we have the two top level functions that are the API:

send(M, To) ->
send(M, To, "No subject'r).

send(M, To, Subject) when binary(M), list(To), List(Subject) ->
R = getrec0,
To2 = nap(fun(t$<lTl) -> [$<lT];

(X) -> tr<rr ++ X ++ tt>tt

end, To),
M2 = fix-ness(M, To2, R, Subject),
case gen-tcprconnect(R#rec.sntp, 25, [binary, {packet, 0}]) of

{ok, S} ->
init(S, M2, To2, R);

Other ->
0ther

end;
send(-,-,-) -)

{error, "Bad input type(s)"}.

The message is a binary object and it is massaged by the f ix-ness/4 func-

tion:

'/,'/, Ue need to add the headers to the nessage body

fix-ness(M, To, R, Subj) ->
S = <"Subject: rr, Subj/char-list, ?CRNL>'

F = ("Fron: ", (R*rec.fron)/cbar-list, ?CRNL>,

To2 = to(To, ()),
T = (rfTo: ", To2/bLnary, ?CRNL>,

<F/binary, T/binary, S/binary, ?CRNL, M/binary, ?CRNL' ".", ?CRNL>

to([Last], Ack) ->

77

<Ack/binary, Last/char-list>;
to([TlMore], Ack) ->

to(More, <T/char-Iist , "," I Ack>).

If the message is correctly massaged (according to the rules in SìVÍTP, we

try to connect to the SI\,ÍTP server and enter the init state.

init(S, M, To, R) ->
receive

{tcp, S, <?READY I ->} ->
ready(S, M, To, R)

after 5000 ->
{error, ti¡neout}

end.

If we get a READY message from the SMTP server we enter the ready state
and wait for an 0KAY.

ready(S, M, To, R) ->
gen-tcp:send(S, <"H8L0 ", (R#rec.hna¡ne)/char-list, " \r\n")),
wait-okay(S, M, To, R).

waj.t-okay(S, M, To, R) ->
receive

{tcp, S, <?OKAY l->} ->
gen-tcp:send(S, <"MAIL FROM: ", (R#rec.fron)/char-1ist, ?CRNL>),
rêcelve

{tcp, S, <?0KAY l->} ->
send-messages(S, M, To, R, [], i]);

{tcp, S, (Err:3/char-list l->} ->
err(S, Err)

after 5000 ->
err (S, tiroeout)

end;
{tcp, S, 0ther} ->

<Err:3/char-list I -) = Other¡
err(S, Err)

after 5000 ->
{error, tineout}

end.

If all is well so far, we start to transmit message to the list of recepients

18

send-nessages(S, M, [], R, 0k, Nok) ->
gen-tcp: send(S, <"QUIT \r\n">),
receive

{tcp, S, <?CLOSE l->} ->
gen-tcp: close (S) ,
{ok,0k, Nok};

{tcp, S, (Err:3/char-tist l->} ->
err(S, Err)

after 5000 ->
err(S, tirneout)

end;

send-nessages(S, M, [TolMore], R, 0k, Nok) ->
gen-tcp: send (S , ("RCPT T0 : " , Tolchar-lÍst , ?CRNL>) ,
receive

{tcp, S, <?NOAVAIL l->} ->
send-nessages(S, M, More, R, 0k, [To I Nok]);

{tcp, S, <?0KAYl->} ->
gen-tcp:send(S, <"DATA ", ?CRNL>),
receive

{tcp, S, <?START I ->} ->
gen-tcp:send(S, M),
receive

{tcp, S, <?OKAYl->} ->
send-nessages(S, M, More, R, [Tol0k], Nok);

{tcp, S, <Err:3/char-listl->} ->
send-nessages(S, M, More, R, 0k, [TolNok])

after 10000 ->
err(S, timeout)

end;
{tcp, S, <Err:3/char-listl->} ->

send-messages(S, M, More, R, [Tol0k], Nok)

after 10000 ->
err(S, tineout)

end;
{tcp, S, <Err:3/cbar-listl->} ->

send-¡nessages(S, M, Hore, R, 0k, [To I Nok])
after 10000 ->

err(S, tineout)
end.

err(S, Reason) -)
geD-tcp: close(S) ,

19

{error, Reason}

And that is all there is. In order to mail a mail, we merely call

snail : send(Mess, ["kIacke@erix.ericsson. se",
"tony@erix , ericsson, se"] ,

"Is this cool or what "),

7 UDP/rP
In this section we provide a microscopic implementation of the protocol suite
UDP/IP. This is used to exemplify a number of useful techiques. The reader
who is not familiar with the internals of the IP protocol suite is well advised to
read an introductury text on the topic.

The only magic we assume here is the ability receive ethernet frames into the
ERL¡Nc application. This can be achieved in a number of ways, however they
differ wildly on different operating systems. No name resolution is performed
at all, all addresses are supposeed to be proper IP addresses. This is of cource
a ridiculous application since there already exists a large number of highly opti-
mized implementations of the TCP/IP protocols. It is however interesting from
a educational point of view since it shows how easily protocols can be developed
in Enl¿Nc.

We have a receive loop at the bottom most layer that receives Ethernet
frames, decodes them and dispatches them to either of the ARP [?] or IP [?]
layers. This receive loop is aware of the local ethernet address by means of the
previously mentioned magic.

8 IDLs
Many telecommunications protocols make use of ASN.1[?] to define the datatypes
that are used in a protocol. Different encodings duch as BER[?] and PER[?]
are typically used. In this section we show how what code an ASN.I to En-
LANccompiler should generate utilizing the bit syntax. In particular we show
how a binary string produced by the application, inserted into an ASN.1 data
structure can find its way all the way down to the IO system without ever being
copied.

Lets assume we have an ASN.I datatype Struct:

Struct ::= SEQUENCE {
b BooLEAN,
s OCTET STRING)

The equivalent ERleNcrecord would of cource be

20

-record('struct', {b, s}) .

In this example we shall assume that the Basic Encoding Rules, BER is

used. For a breief introduction to ASN.I and BER [?] can be consulted.

BER is an encoding scheme which uses a Tag/Length/Value encoding. This
means that every value is encoded as three parts. The tag, identifies which type
is encoded, the length is the length of the encoded value, and the value is of
cource the coded value itself. This is often refered to TLV encodings.

In this case we have three ASN.I components to encode, a SEQUENCE' a

BOOLEAN and an OCTET STRING.
First we need a function to encode a boolean:

ebooL(true) ->
<?B0oL/8, 1:8, 1:8);

ebool(false) ->
<?BOOL/8, 1:8, 0:8>.

Here we made use a constant B00L which is the tag that defines a boolean

in BER code:

-define(800L, 2).
-define(OSTRING, 16).
-def ine(SEQI]ENCE, 48) .

Furthermore we need to have a library function to encode octet strings. We

have:

eostring(Bstr) ->
Sz = size(Bstr),
Bits = lensize(Sz))
<?OSTRING : 8/integer, Sz : (Bits*8) /integer-little, Bstr/binary> .

W'e need a library function Lensíze/! to calculate the number of bytes

necessary to hold the BER length value. We have:

Iensize(S) ->
lensize(S bsr 7, 1).

lensize(0, I) -> I;
]ensize(X, I) ->

lensize(X bsr 8, I+1).

The function lensize/1 is defined according to the rules for BER length
encodings.

Now that we have the primitive library functions that we need we can look
at the code that is generated by a proper ASN.I to Erlang compiler to encode

our Struct structure:

2l

enc-Struct(S) ->
81 = ebool(S#'struct' .b) ,

82 = eostring(S#'struct' .s),
Sz = size(B1) + size(B2),
Bits=lensize(Sz)*8,
<?SEQUENCE : 8,/integer, Sz : Bits,/integer,
B1lbinary, B2lbinary>.

This code is particular interesting since it shows how a string produced at
the application layer, can find its way through a BER encoder without ever

being copied. The result of the enc-Struct/t operation may in its turn be

manipulated by lower layers in the protocol stack, still without ever copying
the initial string provided by the user. This can be achieved since the memory
management system for the user is the same as the memory management system

for the protocol layers. So here we see how the binary object implementation
acts as a general purpose buffer manger for protocol implementations.

This section made a point using ASN.i as IDL, however exactly the same

reasoning applies to other IDLs, such as Corba and XDR, albeit in the case of
Corba, more complicated.

I Internals
In this chapter we describe how binaries are represented internally in the runtime
system. We believe that this information is important since one of the main
objectives with this experimental syntax is to achieve ERI¡lvc programs that
are not only more beautiful but also faster and less memory consuming. Thus
it is important for protocol implementors to be at least vaguely familiar with
the internals of binaries, and thus with the characteristics of binaries.

A binary object can be represented in four different ways inside the runtime
system depending on how it was created. All binaries consist ofa tagged pointer
to a structure on the ERLeNc process heap. These structure, called thing
structures come in four different varieties. The user of binaries, i.e. the Enl¡,l.lc
programmer doesn't see anything about what sort of binary a specific object is
represente as internally.

At the language level all binaries are seen as consecutive series of octets.

9.L Heap binaries
First we have the simplest variant which can be described by the c-code struct:

typedef struct heap-binary {
uint32 thing-wordi /* tagged thing, with subtag and tari */
int size i / * number of bytes */
uint32 datall] i /* The data */

22

] HeapBin;

where the uinr32 type is an unsigned 32 bit value. The thing-word field

is used to identify the type of the structure, the size field is the number of

bytes that this binary contains, and finally the data field is used to locate the

beginning of the actual data.
This type of binary object is used for small binaries, for example the result

of <x: 16>. wili be a tagged binary pointer pointing to a HeapBín structure on

the regular process heap. These type of objects are garbage collected similar to

tuples and all other regular ER¡.e¡.¡c objects. Furthermore they are copied in

message passing as well as when they are inserted into ets-tables'

9.2 Reference counted binaries

Secondly we represent large binary objects as a pointer to a structure:

typedef struct refc-bin {
uint32 thing-word;
int size;
Ref cBin ,l.next;
BinarY r'.r¡¿1 ;

byte *bytes;
) RefcBin;

/* tagged thing, witb subtag a¡d tarí */
/* nuber of bytes in binarY */
/* heap pointer to next RefcBin */
/r, Pointer to refc'ed object *,/
/* actual byte* pointer */

The principal goal of this data structure is to be able to send large binaries

to other Enl¡Nc processes without copying the actual data. Thus the Binary*
field points to a structure:

typedef struct binarY {
int ori.g-size;
int refc;
char orig-bytes [1J ;

) Binary;

The Binary structure contains the actual data and it is allocated off heap,

typically by means of ¡na1]oc () . It contains a reference counter, so whenever a

Ref cBinary object is sent in a message to another process the following things

occur. First the reference counter is incremented, then a RefcBin structure is

created on the receiving process heap. This structure is linked into a list chained

list of Ref cBin objects on that heap. This last step is important. All Ref cBins

created on a process heap are chained in a list visible to the process. When

the process heap is garbage collected, the chain is traversed and any object in

the chain which has not been moved by the garbage collector is first unlinked

/* total length of binary *,/

/* nu¡nber of references to this binary l'/
/* tt¡e data (char instead of byte!) */

23

from the chain, and then followed in order to decrement the reference counter.
When the reference counter is zero, the entire Bi.nary structure can be released.

typically by means of a call to f ree O.
The ability to send large binary objects without copying them is especialll'

important in implementations of protocols that carry data as opposed to pure

signalling protocols.

9.3 Segmented binaries

When constructing binaries by adding components as head or a trailer onto a
PDU it important to be able to do that in constant time. For example:

X = (tt stuff tt),

Y = ("funky ", X/biuary, tt rules").

Therefore a binary object can consist of an array of other binary objects, we

call this a segmented binary. A segmented binary is represented on the ERL¡Nc
heap as as structure:

typedef struct segn-binary {
uint32 thing-word; /* tagged thing, with subtag and t'arí */
int size; /r, number of bytes in the total binary */
uint32 data[1];

) SegnBin;

Both the HeapBin strucure and the SegmBin structure are variable sized.
The number of words that any of these structures consist of can be calculated
by extracting the 16 least significant bits of the thing-word. In the case above
we would have the following pointers and data structures:

24

Y

..}
,*

thine (a¡i = 4)

size = 15

binary
binary (= {)
binary

thins (a.ri = 3)

size = 5

stuf
f - - -

thing (axi = 3)

size : 5thing (ari = d funksize = 5
v---rule

s---

'a,

25

In the case with the "funky stuffrules" string, all data is stored on the regular

ERleNc heap and thus subject to the standard cop-ving garbage collection.

When a structure like this is copied, the structure is compactified and the result
will be that the varibale Y from above is bound to a single HeapBinary instead

of a segmented binary.

9.4 Sub Binaries

Code that strips off a head from a binary and performs a calculatation on the
head, and then basen on the outcome of that calcuìatation continues to process

the Sub is typical for man applications. The f lle-lines /L from a previous

section is an example of this. Therefore the runtime system represents such a
binary in an optimized way. If we have:

<X:16 I Tail>=Bin.
the tail will be represented as a pointer to a TailBi.n structure on the heap:

typedef struct Sub-binary {
uint32 thing-word;
int size;
int offs;
uint32 orig; /*original binary object to use for offset */

) SubBin;

This means that the tail is only represented as an offset into the original ob-
ject. This is used for another interesting optimization in the execution machin-
ery. When a match operation is initiated on a binary object, a match-buf f er
is initialized in the runtime system. If the match succeeds, a word in the match
buffer is set to the value of the initial input to the match machinery. On the next
call to the match machinery, this word is checked to see if it is the same word
we set the last time we performed a match, ii this is the case no initialization
of the match buffer is neccessary at all. For example:

funkyO ->
X = (rrabcd"),
count-16(X).

count-16(<X: 16 lTail>) ->
1 + cou¡t_16(Tail);

count-16(<>) ->
0.

In the above code, the match buffer will only be initialized once. This is on the
first call to count-16/1. On the second call to count-16/1 the match buffer
will be both initialized as well as initialized to the correct value with regards to
bit offset into the original binary object X.

26

The same data structure can also be used when a substring is extracted from

an initial binary. For example:

sub(Str, From, To) ->
Sz=To-Froro,
case Str of

<-:Froro/binary, Resutt :Szlbinary I ->
ResuLt

end.

The result value Result will be prepresented as a SubBinary to the original
input binary Str.

9.5 Binaries and IO
Most modern IO devices today support a mode of IO called gather/scatter IO.
The UNIX system call writevO takes an output buffer which consists of an

array of iovec structures. An iovec structure contains the following members:

caddr-t iov-base;
int iov-}en;

This maps pefectly with a segmented binary. The net result of this is that
the ERLANC programmer can construct an output buffer as a number of small

operations each operation either adds some data to the head or the tail of the

buffer. Once the buffer is ready for output, the runtime system constructs an

array of iovec structures by setting pointers, i.e. without copying any data.

This array is then passed directly to the ¡¡ritevO routine.
AII IO in ER¡,nNc is performed through a driver. In order for the ¡¡ritevo

scenario to take place, the driver must export a writevO routine. How this is
done is described in an appendix to this document.

Appendix

Scatter IO in a linked in driver
The scatter IO interface in linked drivers in the ERL¡I'¡C system ought to be

described in some proper OTP documentation. Since it is not and the scatter

IO mechanism is of paramount importance for the implementation of efficent
protocol drivers in ERleNc the mechanism is described here. .'....

27

