
September 30,2010
Baltimore, Maryland, USA

.::

4Þ,à.\

'x5þ,].'

æ
,i

iilËæ

$$d
t,''g
,,, 4''

rl$,llr
tllr

æ
l

ðf

i 3fI i1
d

rlrr
''1nf

:. :t

ti'I
?!il5¡. €'

-. :;,

Association for
Computing Machinery

Advancing Computing as a Science & Profession

Erlang'10
Proceedings of the 2010 ACM S|GPLAN

Erlang Workshop

Sponsored by:

ACM SIGPLAN
Co-located with:

lcFP'10

September 30, 2010
Baltimore, Maryland, USA

Association for
Computing Machinery

Advancing Computing os a Science & Profession

.\

Erlang'10
Proceedings of the 20t o ACM S|GPLAN

Erlang Workshop

Sponsored by:

ACM SIGPLAN
Co-locoted with:

ICFP'10

Association for
Computing Machinery

Ãdvancinç {*tztpr;tirtr¡ *s o St;ir:r¡r:e Px Prv{*s:;i**

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, New York 10121-0701

Copyright O 2010 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies ofportions ofthis work for personal or classroom use is granted without fee provided lhat
copies are not made or dishibuted for profit or commercial advantage and that copies bear this notice and
the fuI1 citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on seryers or to
redistribute to lists, requires prior specific permission andlor a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or <permissions@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

Notice to Past Authors of ACM.Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ISBN : 97 8-l-4503-0253-l

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 1 1405
New York, NY 10286-1405

Phone: l-800-342-6626 (USA and Canada)
+l -212-626-0500 (all other countries)

Fax: +l-212-944-1318
E-mail: acmhelp@acm.org

AGM Order Number 553102

11

Printed in the USA

Foreword

It is our great pleasure to welcome you to the gth ACM SIGPLAN Erlang Workshop - Ertang 2010,
the annual forum for the presentation of research, theory, implementation, tools and applications of
the Erlang programming language. This year's workshop continues the tradition of being co-located
with the annual ACM SIGPLAN Intemational Conference on Functional Programming (ICFP).

The call for papers athacted 12 submissions which were reviewed by at least three PC members.
The program committee decided to accept seven of these submissions as full papers and two more
as short talks followed by a demo during a special demo session during the workshop. These papers
cover a variety of topics, including semantics, behavioral and distributed programming in Erlang,
testing tools and test driven development, protocol implementations and language issues.

Putting together Erlang 2010 was a team effort. First of all, we would like to thank the authors of
submitted papers and demos for providing the content of the program. We would like to express our
gratitude to the program committee and the three additional reviewers, who worked very hard under
time pressure in reviewing papers, providing constructive criticism and concrete suggestions for
their improvement. We would also like to thank Derek Dreyer and Christopher Stone, this year's
ICFP Workshop Chairs, for coordinating all workshops and for putting up with some occasional
silences from our part. As usual, special thanks go to members of the workshop's Steering
Committee for their guidance and to Simon Thompson in particular. Finally, we appreciate ACM
SIGPLAN's continued support and we thank all sponsors of ICFP 2010.

We hope that you will find this program interesting and that the workshop will provide you with a
valuable opportunity to share ideas with other researchers, implementors and Erlang practitioners
from academia and industry.

Konstantinos Sagonas
Erlang 2010 Program Chair
Nqt. Tech. Univ. of Athens, Greece

Scott Lystig Fritchie
Erlang 2010 General Chair
Gemini Mobile Technologies Inc., USA

l.

I

Ì

i

111

Table of Contents

Session L: Testing and Programming
Session Chair: Ulf V/iger (Erlang Solutions Ltd.)

. From Test Cases to FSMs: Augmented Test-Driven Development and Property Inference................ I
Thomas Arts (Chalmers/)uvig AB), Simon Thompson (Universi4t of Kent)

. Coordinating and Visualizing Independent Behaviors in Erlang..... 13
Guy Wiener, Gera Weiss @en-Gurion University), Assaf Marron (Ll/eizmann Institute of Science)

Session 2: Theory and Practice
Session Chair: Simon Thompson (University of Kent)

. A Unified Semantics for Future Erlang23
Hans Svensson (Chalmers Univers iþ of Technolo gt),
Lars-Ä,ke Fredlund, Clara Benac Earle (Universidad Politécnica de Madrid)

Chain Replication in Theory and in Practice 53
Scott Lystig Fritchie (Gemini Mobile Technologies, Inc.)

Session 3: Language Issues and Extensions
Session Chair: Erik Stenman (Klarna,48)

. Analysis of Preprocessor Constructs in Erlang.45
Róbert Kitlei István Bozó, Tamás Kozsi(Máté Tejfel, Melinda Tóth (Eôtvös Loránd [Jniversity)

Generic Load Regulation Framework for Erlang
Ulf T. Wiger (Erlang Solutions Ltd)

57

a

a

a

Session 4: Implementations, Tools and Demos
Session Chair: Scott Fritchie (Gemini Mobile Technologies Inc.)

Implementing A Multiagent Negotiation Protocol in Erlang.....
Álvaro FernándezDíaz, Clara Benac Earle, Lars-,4,ke Fredlund (Jniversidad Politëcnica

69
de Madrid)

QuickChecking Refactoring Tools.......75
Dániel Drienyovszþ Dániel Horpácsi (University of Kent & Eötvös Loránd University),
Simon Thompson (Llniversity of Kent)

Using Erlang to Implement an Autonomous Build
and Distribution System for Software Projects.......81
Tino Breddin (Erlang Solutions Ltd)

Author Index 86

Erlang 2010 Workshop Organizttion

General Chair: Scott Lystig Fritchie (Gemini Mobile Technologies, USA)

Program Chair: Konstantinos Sagonas Qr{ational Technical University of Athens, Greece)

Steering Committee: Bjame Däcker (Independent Telecoms Professional, Sweden)

Clara Benac Earle (Universitad Polytéchnica de Madrid, Spain)
Lars-Åke Fredlund (Universitad Polytéchnica de Mødrid, Spain)
Zoltân Horváth (Eötvös Loránt University, Hungary)
Simon Thompson (University of Kent, UK)
Tee Teoh (Canadian Bank Note, Canada)

Program Committee: Danny D,,tbé (Université Laval, Canada)

Scott Lystig Fritchie (Gemini Mobile Technologies, USA)

Garry Hodgson (AT&7, USA)

Zoltân Horváth (Eötvös Loránt University, Hungary)
Mickaël Rèmond (Process One, France)
Konstantinos Sagonas Q{ational Technical University of Athens, Greece)

Erik Stenman (Klarna AB, Sweden)

Hans Svensson (Chalmers University of Technologlt, Sweden)

Simon Thompson ('Universiþ of Kent, UK)
Ulf Wiger (Erlang Solutions Ltd, UK)

Additional reviewers: István Bozó
Máté Tejfel
Melinda Tóth

Sponsor:

Supporters:

,v

cnrorr surssEW

galois
Micrcsoft-

Research

soLUrtoNs

$tand*¡rd
lll-*-*^.^¡U¡ ¡ú{ LE¡ gU

v1

..:

hl
."!EÞ

From Test Cases to FSMs: Augmented
Test-driven Development and Property Inference

Thomas Arts
Chalmers / Quviq AB, Gothenburg, Sweden

thomas.arts@itu n iv.se

Abstract
This paper uses the inference of finite state machines from EUnit
test suites for Erlang programs to make two contributions. First, we
show that the inferred FSMs provide feedback on the adequacy of
the test suite that is developed incrementally during the test-driven
developrnent of a system. This is novel because t-he feedback we
giveis independent of the implementation of the system.

Secondly, we use FSM inference to develop QuickCheck prop-
erties for testing state-based systerns. This has the effect oftrans-
forming a flxed set of tests into a property which can be tested using
randornly generated data, substantially widening the coverage and
scope ofthe tests.

Cøtegorìes and Subject Descriptors D. Software [D.2 SOFT|
I'IIARE ENGINEERINGI: D.2.5 Testing and Debugging: Testing
tools

GeneralTÞrms Verification

Keywords TDD, test-driven development, Erlang, EUnit, unit
test, QuickCheck, property, inference, finite-state machine

1. Introduction
In this paper we show how finite state machines can be automat-
ically extracted from sets of unit tests * here Eunit [6] tests for
Erlang programs. We use these FSMs in two ways. First, they can
in themselves provide feedback on the adequacy of a set of tests,
independently of any implementation. Secondly, they can be trans-
fonned and used within Quviq QuickCheck [1, 14] to guide the
random generation of test sequences for state-based systems. We
discuss these contributions in tum now.

Test-driven Development

Test-driven development [3, 4] (TDD) advocates that tests should
precede irnplementations. Systems should be developed incrernen-
tally, with each increment delivering enough functionality to pass
another test, as illustrated here.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and tlìat copies bear this notice and the full citation
on the first pâge. To copy otlìeruise, to republislr, to post on servers or to redistribute
to lists, requires prior specific pemission and./or a fee.

Erlang'10, September 30, 2010, Balrimore, Maryland, USA.
Copyright O 2010 ACM 978-l-4503-0253-t/10/09... $10.00

Simon Thompson

University of Kent, Canterbury UK
S.J.Thom pson@kent.ac. u k

Under this approach, how can we validate the system? It will surely
meet the tests, because it has been developed precisely to pass them.
The question becomes one of vølidating the tests themselves. ln
this paper we propose that during TDD of state-based systems we
can validate the tests by extracting the finite state machine (FSM)
implicit in the current test set.

The FSM is extracted by means of gramrnar inference [23] over sets
ofpositive and negative traces. This FSM provides feedback on the
tests independently of any implementation, and thus 'triangulates'
the process.

We would argue that that rnakes the process of test-driven de-
velopment more robust. In particular, it allows us to give an answer
to the question "When have I writfen enough lests?" on the basis
of the tests alone, rather than by examining an irnplementation. We
return to this question in Section 5.

We illustrate our approach to TDD by working through a case
study in Erlang, developing unit tests in EUnit, and using State-
Chum [19] to extract a series of FSMs from the test suite as it
evolves.

Testing state-based systems

This work was developed within the European Frarnework 7
ProTest project [18] to develop property-based testing for Erlang.

lesls 1 -n

system n

tests 1 -n

systêm n

FSM n

In particular we seek to develop QuickCheckl properties from sets
ofunit tests, thus providing a migration path frorn traditional unit
testing to property-based testing. To test state-based systems in
QuickCheck it is usual to develop a state machine rnodel (using
eqc-fsn or eqc-staten) which encapsulates the permissible se-
quences ofAPI calls.

We show how the FSM extracted from a set of unit tests can
be transfonned into a QuickCheck FSM, and thus how a set of
unit tests can be combined into a property. This has the benefit
of allowing the systern to be tested on many rnore inputs, namely
all those permissible in the FSM, and a selection of these can be
generated randomly using QuickCheck generators.

Abstraction

In rnodelling a system using a finite state machine we need to
perform absffaction over the state data. In the case study the data
consist of a ûnite collection ofresources, and this is rnodelled by
sets with srnall cardinalities before we seek to identify a general
case. In the case of test development, this allows us to identif,,
complete sets of tests for 'small' models before moving to the
general case. In QuickCheck this process identifies candidate state
data values.

Roadmap

We begin by discussing the background to this work in Section
2. We first introduce test-driven developrnent, and then discuss
EUnit and QuickCheck for testing Erlang systerns. We also look
at grammar inference as a mechanisrn for inferring finite-state
machines from sets of words in the language and its cornplement.
We use StateChum to do FSM inference in our case study.

Section 3 discusses a systernatic approach to developing and
assessing tests during test-driven development through the case
study of a 'frequency server'. We use Eunit to express the tests and
StateChurn to infer finite state rnachines from test sets in a fu1ly
automated way. While doing this we discuss the question of how
to abstract away from particular aspects of the systern in foming a

model of the systern under test.
Section 4 builds on this by developing a QuickCheck state ma-

chine for the example. This rnachine is based on the FSM inferred
in the previous section, and we discuss the process of building the

QuickCheck rnachine frorn this FSM with a view to automating the
process as much as possible in the future.

Finally we discuss related work in Section 5 and draw sorne
conclusions in Section 6.

2. Background
In this section we give a brief overview of the rnain topics which
fonn the background to the work reported this paper, as well as
providing references where more infonnation can be found.

2.L Test-driven development

A rnanifesto for test-driven developrnent (TDD) is given in Beck's
rnonograph [4]. This gives advice on adopting TDD in practice, as

well as answering frequently-asked questions. The thesis of test-
driven development is that it is the fonnulation of tests which
should be used to drive the developrnent process.

Specifically, the requirements for the system are given by a se-
ries of tests developed incrernentally. At each stage the implemen-
tor will write enough to satisfr the existing tests and (in theory at
least) nothing rnore. Hence the irnportance of the tests in specif ing
the systern, and so the importance of finding mechanisrns by which
the tests can be validated in some independent way. In Section 5 we
cornpare our approach to others in the TDD community.

2.2 EUnit

EUnit [5, 6] provides a framework for defining and executing
unit tests, which test that a particular program unit - in Erlang,
a function or collection of functions - behaves as expected. The
framework gives a representation of tests of a variety of different
kinds, and a set of macros which simplifu the way EUnit tests can
be written.

For a function without side-effects, a test will typically look at
whether the input/output behaviour is as expected, and that excep-
tions are raised (only) when required.

Functions that have side-effects require more complex support.
The infrastructure needed to test these programs (called afxture)
includes a facility to setup a particular program state prior to test,
and then to cleanup after the test has been performed.

Exarnples of EUnit tests are given in the body of the paper, and
are explained as they occur. The text [7] gives an introduction to
EUnit testing; further details can be found in [5, 6] and the online
docurnentation for the systern.

2,3 Grammar and state machine inference

The StateChum tool extracts a ûnite state machine frorn sets of
positive and negative instances [19]. That is, the user provides
sets of words which are in (resp. out) of the language of the state
machine, and grammar inference techniques are used to infer the
rninirnal rnachine confonning to this requirement.

The algorithrn úses a state merging technique: first the (finite)
machine accepting exactly the positive cases is constructed, then
states ûre merged in such a way thot no positive and negative
states are identified. The particular irnplementation assurnes that
the language accepted is prefix-closed, so that in tenns of testing
a single positive case can be seen as representing a number of
positive unit tests. Further details ofthe algorithm areinl23,24l.

FSM and grammar inference is a well-established field: an early
introduction can be found in[22].

2,4 QuickCheck

QuickCheck [1, 14] supports randorn testing of Erlang programs.
Properties ofthe prograrns are stated in a subset offrrst-order logic,
embedded in Erlang syntax. QuickCheck verifies these properties
for collections ofErlang data values generated randornly, with user
guidance in defining the generators where necessary.

When testing state-based systems it rnakes sense to build an
abstract rnodel of the system, and to use this model to drive testing
of the real system. Devising this model is crucial to the effective
testing, and the technique outlined in this paper facilitates model
deflnition from existing test data rather than from an informal
description ofthe system under test.

QuickCheck comes with a library (eqc-f sn) for specifying test
cases as finite state rnachines. For each state in the FSM it is
necessary to describe a number ofthings.

¡ The possible transitions to other states.

. A set ofpreconditions for each transition.

. How to actually perfonn the transition (that is, a function that
perfonns whatever operations are necessary).

¡ Postconditions to make a check after the state transition.

¡ A description of the changes on the state as a result of the
transition.

This information is supplied by defining a set of callback functions;
we will see an example of this in practice in Section 4.I In this article, QuickCheck refers to Quviq QuickCheck version 1.18

2

3. Test-driven development
In this section we introduce a procedure for systematically devel-
oping the unit tests that are used in the test-driven developrnent
process of systerns. This is illustrated through the running example
of a sirnple server.

3.1 Example: a frequency server

As a running example (taken from [7]) we write tests for a simple
server that manages a nurnber ofresources - frequencies for exam-
ple - which can each be allocated and deallocated. The server pro-
cess is registered to simpliÛ, the interface functions, so that it is not
necessary to use the process identifier ofthe server to communicate
with it. The Erlang type specification for the interface functions is
as follows:

-spec start([integerOJ) -> pidO.
-spec stopO -> ok.
-spec allocateO -> {ok,integerO} I

{error, no-frequency}.
-spec deallocate(integerO) -> ok.

The start function takes a list of frequencies as argument and
spawns and registers a new server that manages those frequencies.
The stop function communicates with the server to tenninate it in
a nonnal way.

The allocate function retums a frequency if one is available,
or an error if all frequencies have already been allocated. The
deallocate function takes a previously allocated frequency as
argument and has the server release that frequency.

3.2 Testing start/stop behaviour

As straightforward as this server seems to be, it is still a good idea
to define some tests before we write the code. We use EUnit [6] as a
framework for writing our unit tests, but the principles in this paper
apply however we write unit tests.

We start by deflning tests for starting and stopping the server,
not worrying about allocation and deallocation. Of course we want
a test in which we start and stop the server, but we also want to
test that we can start it again after stopping. Since the second test
subsumes the first, we only deflne the second.

startstop_testO ->
?assertMatch(Pidl when is_pid(Pidl),start([J)),
?assertMatch(ok, stop O),
?assertMatch (Pid2 when is_pid (Píd2) , start ([1])) ,
?assertMatch (ok, stop O) .

'We starl the server twice, each with a different list of resources,
more or less an arbitrary choice. The second call to stop is per-
formed to clean up and retum to the state in which no server is
registered. Note that we match the returned values of the calls, viz.
ok for stop and a pid for start, precisely as required by the speci-
fication.

Note that although we have defined this as a single EUnit test, it
can also be seen as representing four separate tests, one performed
by each ?assertMatch expression. The four tests check that that
the system can be started, that it can be started and then stopped,
and so forth: one test case for each prefix of the sequence of
?assertMatch statements.

Now we would be able to write our first prototype, but it is
obvious that if we write start and stop to just retum the correct
return types, then the test would pass. This indicates that we have
too few tests for a proper test-driven development of a non-trivial
seryer. How do we find out which additional tests to add?

One answer is to appeal to our programrners' infuition, but a
more satisfactory - and principled - approach is to look at the set

stop start
pass j.ve

coDfig debugMode true
+ start stoP start stoP

Figure 1. Starlstop behaviour: first model

of tests and see what state space is implicit in these. More specifi-
call¡ we can extract the minimal finite state rnachine (FSM) from
the traces, and then judge the adequacy of the resulting FSM in
modelling the proposed system, thereby assessing the tests them-
selves.

3.3 Visualizing the state machine

In this section we demonstrate how we can use the StateChum li-
brary [19], to improve our set ofunit tests by generating a Finite
State Machine which represents the rninimal FSM implicit in the
tests. Inspecting that FSM allows us to decide which tests should be
added (or indeed removed) in order to make the state space coffe-
spond to the intended model, and thus to establish the cornpleteness
ofthe test data set.

Translating EUnit tests to sequences

In order to use StateChum on a set ofgiven EUnit tests, we need an
algorithm to translate EUnit tests to sequences that are given as in-
put to StateChum. The translation we start of with is to replace each
?assertMatch(Result, Fun(At, ..., A^)) in a test by the func-
tion name Funto obtain a sequence of function calls. In particular,
the startstop-test O above is translated into the sequence:

+ start stoP start stoP

where the leading '+' indicates that this is a positive trace, that is a
trace that is to be accepted by the inferred FSM.

Note also that the algorithm used by StateChurn assumes that
the positive traces are closed under initial segrnents, so that the
single trace is in fact equivalent to

+ start
+ start stoP
+ start stop start
+ start stop start stop

Finally it should be noted that the hansformation from the EUnit
tests to the StateChum input can be fully automated.

3.4 Using the derived FSM to assess tests

In order to use Statechum on our example, we need to abstract
from the data part in our test case and concentrate on the sequence
of function calls performed. This sequence is input to Statechum
and this input together with the derived FSM is shown in Fig. 1.

This figure indicates that there is a single state in which it is
possible both to start and to stop the server. Starting and stopping
the server don't result in a state change; at least, not on the basis
of this single test case. In particulaq the picture suggests that one
can successfully perform a stop in the initial state, and also start the
system twice.

In order to rnake two distinguishable states we need to supply
StateChum with two negative sequences, which correspond to two
negative test cases, that is, test cases that result in erroneous be-
haviour of some kind. The first test case verifies that one cannot
stop in the initial state. This is added to the input for StateChum
by adjoining the line - stop. After doing so, we observe an FSM
with three states, depicted in Fig. 2.

In the initial state - indicatedby a starred icon - a stop leads
to the enor state and a start leads to a second state. From that

¡l

J

*1.

passive
confíg debugMode true
+ start stoP sta.rt stoP
- stop start

Figure 2. StarVstop behaviour: second model

passive
confj-g debugMode true
+ stast stoP start stoP
- stop
- staÌt start start

Figure 3. StarVstop behaviour: flnal rnodel

second state there is a stop transition back to the initial state, but
no further transitions. The third state is a 'dead state' - denoted
by a square - and this is the result ofa stop lnove from the initial
state. The two traces: one negative and one positive, are insufficient
to predict what happens when a start call is made in the second
state.

So, we need to add another negative test case, stating that start-
ing a systern that is already n¡nning will result in an error. The new
FSM derived is shown in Fig. 3, where we now have an extra transi-
tion to the error state. This picture describes the cornplete behaviour
ofthe start and stop functions and all sequences thereof. There-
fore, we are justified in concluding that the set containing one pos-
itive and the two negative tests is sufficient for testing the start/stop
aspects ofthe system behaviour.

3.5 Writing negative tests in EUnit
When writing negative tests, we can either choose to specify which
exception should occur, or just rnatch on any possible exception.
Many testers like the flrst alternative best, since one also tests
whether the code fails for the right reason. However, in our case
the reason is not specified, and, by adding it to the test we limit the
possibilities in the design.

For example, if we were to decide that an initial stop raises an
exception with reason not-running and were then to decide to im-
plement the server using the standard OTP behaviour gen-server,
then the error generated by the irnplernentation would be a noproc
exception rather than not-runn ing, and so the negative test would
fail. We could change the exception sought, but rather than over-
speciff the error exception, we choose the second alternative above
and match on any possible exception.

stop-without-start-test O ->
?assertException(-, -, stopO) .

start-twice_test_O ->
{setup,

tunO -> start([]) end,
fun(-) -> stopO end,
funO -> ?assertException(-,-,staxt(ll)) end)

Ifwe stop a non running server, an exception is raised and starting
an already running server sirnilarly raises an exception. The reason
for writing the last test case as a test generatoÉ with set-up code,
clean-up code and actual test code is that EUnit raises an exception
as soon as the ?assertException would fail, e.g., when the
second start succeeds. In such cases one still wants to clean up and
stop the already running server.

Translating EUnit tests to sequences

Although we used Statechum to derive a full set of tests by
first supplying the negative sequences and then writing the addi-
tional test cases, we still strive after a translation from EUnit tests
to these sequences. We extend therefore our translation in such
a way that any comrnand sequence in EUnit that ends with an
?assertException is a negative tests and the translation ofthese
assertions is given by:

[?assertException(-Ð1, E2,Fun(A1,..., An))l - Fun
[{setup,

funO -> In'itSeq errd,
funO -> StopSeq end,
funO -> Seq end]l + llnitSeq Seql

Thus ignoring the cleanup code and assuming at most the last as-
sertion is an exception assertion, which detennines the test to be a
negative sequence.

Taking the examples given at the start of this subsection we
generate the sequences:

- stop
- start start
as shown in Figure 3.

3.6 Initialimplementation: start/stop behaviour

We can now run the tests and all three fail with notifications point-
ing to the fact that start and stop are as yet undefined! We now
write the code for starting and stopping the seruer.3 thus:

start(Freqs) ->
{ok,P:"a} =

gen-server : start ({1ocal, ?SERVER},
?MODULE, Freqs , []) ,

Pid.

stopO ->
gen-server: call (?SERVER, stop)

7.7" caltbacks
init(Freqs) ->

{ok, Freqs}

handle-caIl(stop,-Fron, State) ->
{stop, nornal, ok, State

handle-caI1 (-Msg,
-From, State

{repIy, error, State} .

All tests pass and by having seen the correspondence between the
test cases and the FSM in Fig. 3, we have strong confidence that
adding more tests is superfluous and that we can proceed with

2Note the subtle addition of '-' after the function name, which transforms
a direct test into a test generator. See [6] for details.
3 An altemative implcmentation of the system is provided in Ch. 5 of [7].

stop

úr.

%,g+

stop

Ì
)

4

pass]-ve
coDfig debugMode true
+ sta-rt stop statt stoP
- stoP
- star.t start
+ start allocate deallocate allocate stop
- sta¡t allocate all-ocate

Figure 4. Single frequency: second rnodel

specifying the tests for the additional functionality ofallocating and
deallocating frequencies.

3,7 Defining tests for a data-dependent state space

After having deûned test cases for starting and stopping the server,
we would now like to allocate and deallocate frequencies. Whether
or not allocation succeeds depends on the number of frequencies
that are available. In other words, depending on how many frequen-
cies we starl with and how many allocations we perfonn, we get
different successful and failing test cases.

Starting by deûning a set of test cases for four frequencies
would irnmediately result in a large number of possible allocation
and deallocation scenarios, let alone taking a realistic example of
several hundreds of resources. We therefore start by deflning the
tests for systems with one and two frequencies available and make
sure that we get a complete set of tests for each of these, trusting
that we can generalise from these to the general case.

3.8 A single frequency

A typical test case would be to allocate a frequency and then
deallocate it. Another typical test case would be to allocate it once
more after deallocation. Since the first test case is subsumed in the
second one, we only write the second.

alloc_dealloc_a11oc_test_O ->
{setup,

funO -> start(l1l) end,
fun(-) -> stopO end,
fun O ->

?assertMatch({ok, 1}, allocateO),
?assertMatch (ok, deallocate (1)),
?assertMatch({ok, 1}, allocateO)

end

Ì.
Note that the frequency value 1 used here is arbitrary. (We assume
it to be more likely to flnd an eror in the implementation by adding
more different scenarios than by trying more different values for the
speciûc frequencies.) This test rnust allocate the same value twice
since there is only one value to be allocated.

We use Statechum again to visualize the FSM, which is equiva-
lent to Fig. 3 with the addition of an arbitrary allocations and deal-
locations after starting the seryer. So, we do not capture the fact that
it is possible to allocate all available frequencies and that an eûor
is returned in that case. In order to add a general test case for the
exhaustion of frequencies, we need to know how rnany frequencies
there are. We propose to get the tests right for one frequency first,
then take the two frequency case and see ifwe can generalise from
there.

stop

s\aô

stop
a/,/ocate,

dea//oca¿e

start

passive
config debugMode true
+ start stop start stop
- stop
- start start
+ start allocate deallocate allocate stop
- staxt allocate allocate
- deallocate
- allocate

Figure 5. Single frequency: third rnodel

Using StateChum we can quickly observe what happens if we
add a negative test for allocating two frequencies in case we only
have one. The result is shown in Fig. 4 and it is imrnediately clear
that we have to add a few more test cases to make a sensible picfure
out of this FSM.

According to Fig. 4, from the initial state we can perform a
deallocate and then an allocate. We need to exclude that
possibility by stating that deallocation (and indeed also allocation)
can only be done after a start; this results in Fig. 5.

In the FSM of Fig. 5 a start can only be followed by an
allocate, which after deallocation allows a new allocation. The
only strange part is that one can stop indeflnitely often after al-
location; one would like instead to have a stop transition back to
the initial state. In fact, it is good to observe this in a visualisation
of a state space, since it is dornain-dependent whether or not one
would allow a server that allocates frequencies to just stop or that
one would need to deallocate the frequencies first. In Erlang it is
most natural to perform the deallocation as side-effect of stopping.
We add a test to ensure that we can start again after stopping with
one allocated resource.

The testsa added for the server with one frequency are:

allocate-r.¡ithout_start_test () ->
?assertException(-, -, allocate O) .

deallocate-without_start_testO ->
?assertException (_, _, deallocate (1))

running-server_test_O ->
{foreach,
funO -> start([1]) end,
fun(-) -> stopO end,
[funO ->

?assertMatch({ok, 1},allocateO),
?assertMatch(ok, deallocate (1)),

a Eunit allows to combìne a few of these tests with the f oreach primitivc
instead of setup

slarl

L

i,.,.l. r,:

l.

i.

?ì:

i

5

atbca¡e,

6\an'
deâ//ocale

stop

r
i
--'_- i

--, .!..

o
!v
o
(g

!¡õ
q

sfop

òea\\ooa\ø

start

+ start stop start stop
- stop
- start start
+ start aLlocate deallocate allocate stop
- start allocate allocate
- allocate
- deallocate
+ start allocate stop start
- start deallocate
- stax-t allocate star-t

Figure 6. One frequency: final rnodel and Statechum test set

?assertMatch ({ok , 1} , allocate ())
end,

funO ->
?assertMatch (
?assertMatch (

end,
funO ->

?assertMatch({ok, 1},allocateO),
?assertMatch(ok, stop ()),
?assertMatch(Pid when is_pid(Pid) ,start([1]))

endJ).
Note that in the above test cases we use dornain knowledge to inter-
pret the enor value returned frorn allocation as a negative test case,
expressing the condition that starting the server and performing two
allocations is irnpossible. Were we to be given an API for our fre-
quency server that raised an exception for a failing allocation, then
the test case would be identifled as a negative test case much more
easily.

At this point we could conclude, if we were confident that all
the transitions shown are as expected. However, the Statechum tool
diagnostics for this input are:

#Prescribed:5
#Proscribed:5
#Unknown: 2

This output states that, of the twelve possible transitions in the rna-
chine, five make a transition to an accepting state and another flve
to the dead state: two transitions are as yet undetennined. The two
transitions in question are: whether it is possible to deallocate be-

{ok,1} ,allocateO),
{error , no-frequency} , allocate O)

allocate

start

+ $l¿).r'l st$p sl¿ì..rt. riLap
- stcp
- +t*!.ts Õ+r?Ì

+ start allocate allocate deallocate allocate
deallocate deallocate stop

- start allocate allocate allocate
- e.i-lc¡caXe
- d*¿:1..1.¿rr,a.lc
+ :itiÌïL a1l+c¡li* lìt;(iTr $iiìrlil
+ start allocate allocate stop statt
- start allocate deallocate deallocate
- r:;tiì."": 1". ?ì1.1.(--{ëì.i.r sTrrïï
- start allocate allocate start

Figure 7. Two frequencies: final model and Statechum test set

fore any allocation, and, whether it is possible to start the machine
again after the one frequency is allocated.

We can rule these out with two negative test sequences that
corne at the end of the complete set of cases listed in Fig. 6 and
these generate the machine in that figure. The data might appear
to be skewed in favour of the negative tests: there are 7 negative
and 3 positive tests. However, noting the prefix-closure property
ofthe positive tests, we can see these three tests as ernbodying 10
distinct positive test cases, and under this interpretation we have of
the same order ofpositive and negative tests.

Translating EUnit tests to sequences

We need to extend the translation of EUnit tests to the f oreach
construct, which is equivalent to the translation of several setup
cornrnands. In addition we have to add that an assertion that
matches an etror produces a negative sequence. As explained, this
is sornewhat controversial and probably one would like to enforce
the design to raise an exception instead.

3.9 Two frequencies

Now we look at the case where there are two frequencies to be
allocated, and develop a set of tests along the lines of the one
frequency machine in Section 3.8. The set oftests - described in
StateChurn input fonnat - are shown in Fig. 7.

The greyed-out tests are identical to the previous case, while
the other tests are developed by a sirnilar process to that in Section
3.8. Counting distinct prefixes as separate tests, we have 15 positive
tests and 8 negative ones. A number ofthe later tests are included to
avoid loops, such as looping on stop behaviour rather than retuming

IoÉ

o
ooo

õ

6

deal

the systern to the start state when it is stopped; others are to prevent
starling a system that is already running, whatever state it is in.

Note that in the EUnit tests the specific frequency that we
allocate and deallocate was not significant when there was just one
frequency available. However, now that we have two frequencies
to choose from, a choice has to be made about which frequency
is to be allocated. Now we have either to specifu in our test case
how the algorithrn irnplements the choice, or to abstract away from
the allocation algorithrn. In EUnit tests this difference manifests
itself as the difference between the following two test cases. In the
first case, the test requires an implementation that takes frequencies
frorn the head ofthe list:

twofreq-server-test-O ->
{setup,
funO -> start([1,2]) end,
fun(-) -> stopO end,
funO ->

?assertMatch (

?assertMatch (

that there are n frequencies available, this would give rise to
some 2' states, each one representing a different subset ofthe
r¿ states having been allocated.

So, we can safely abstract in our EUnit tests from the specific
frequency that is retumed by allocate, i.e. we do not need to
know the exact allocation algorithrn. But, we cannot easily abstract
frorn the speciflc frequency that is passed to deallocate; that
frequency has to be remembered in our test case. Therefore, the
abstraction

- start allocate deallocate deallocate
is only a valid abstraction if both deallocations refer to the same
frequency. This rneans that the translation frorn EUnit test cases to
sequences that we have developed fails in soule cases, such as this:

twofreq-server_test_O ->
{setup,
funO -> start([1,2]) end,
fun(-) -> stopO end,
funO ->

?assertMatch ({ok , Fl} , altocate O) ,
?assertException (_, _, deallocate (3-F1))

end).

One solution would be the 'hard-wiring' of the frequencies dis-
cussed earlier, which would involve two allocation operations,
a1locatel and allocate2 and two deallocation operations,
deallocatel and deallocate2. However the state machine re-
sulting from that approach suffers from an exponential state explo-
sion (as described earlier).

Instead we use another abstraction. We can 'loosen' our model,
so that deallocate(N) can be applied whether or not N has been
allocated or not. A problern with this is that this rnakes the FSM
non-detenninistic, since in the case that N is not already allocated
the result of the transition will be that the set of available states is
unchanged.

We can then interpret an exception for a deallocation as a poss!
bility in a positive sequence, which is similar to changing the ApI
for the deallocate function so that

-spec deallocate(integerO) -> ok I error.
with the error result indicating that no actual reallocation has
taken place, because the argument frequency was not allocated. We
can then distinguish the nonnal termination and error termination
by translating the EUnit

?assertMatch (error , deallocate (. . .))

into a failDA operation. This would restore detenninism in the
rnodel. Taking this approach, we add the faitDA transition and the
following test cases to those in Fig. 7

+ start failDA stop
+ start failDA faiIDA stop
- staxt allocate failDA allocate allocate
- start allocate allocate failDA
- failDA
and obtain the state machine of Fig. 8. However, the translation of
EUnit tests to sequences needs to be adapted to treat certain error
cases as part of a positive sequence and others as making the test
case negative. This requires the user to specifu the differences and
therefore this rnethod is not entirely satisfactory if fuIl autornation
is the goal.

As shown in Fig. 8, this resolves al1 the failDA operations,
which are only permissible when zero or one frequencies have been
allocated. The labels on the transitions to the 'dead' state have been
elided for readability in the figure.

{ok,1} ,allocateO),
{ok,2},allocateO),

?assertMatch (ok, deallocate (2)) ,
?assertMatch ({ok, 2} , allocate ()) ,
?assertMatch (ok , deallocate (1)) ,
?assertMatch (ok , deallocate (2))

end).

The alternative is a test that does not enforce any order on the
allocation of frequencies:

tlrofreq_server_test_O -)
{setup,
funO -> start([1,2]) end,
fun(-) -> stopO end,
funO ->

?aÉsertMatch(
?assertMatch (

{ok,Fl} ,allocateO),
{ok,F2},allocateO),

?assertMatch (ok, deallocate (F2)) ,
?assertMatch ({ok , F3} , allocate O) ,
?assertMatch (ok, deallocate (F1)) ,
?assertMatch (ok, deallocate (FB))

end).

The latter test seems preferable in a test-driven development pro-
cess, since it does not over-speciff implementation details. More-
over, ifthe set offrequencies is extended to contain more than two
frequencies, the test makes still sense without having to re-evaluate
how the choice offrequencies is actually implemented. In this case,
it is likely that re-use offrequencies is preferred to assigning as-yet-
unused frequencies.

3.10 Data abstraction

With the translation of EUnit tests to sequences for StateChum we
abstract from the data in the Eunit test cases. According to the API
of the frequency seruer, the start and deallocate operations
are parameterised by a list of frequencies and the frequency to be
deallocated, respectively. These pararneters play different roles.

¡ The list parameter is the start value for the parlicular run of
the server, and it can be any legitimate integer list; of course
its size will constrain the behaviour of the system, but the call
to start is bound to succeed if and only if the systern is not
akeady running. This (pre-)condition is encapsulated in the
structure of the FSMs seen in Figs. 6 and 7 .

¡ On the other hand, the parameter to deallocate is assumed
to be a frequency that is already allocated. This condition is
not something that can be modelled in the FSM without 'hard
wiring' the set of frequencies into the FSM itself. Supposing

7

deallocate

stop

failDA
allocate

start
failDA

Figure 8. Two frequencies with failed deallocation, f ailDA

3.11 One, two, many ...
A pattem is ernerging in Figs. 6 and7 an FSM to rnodel the server
with n frequencies will have rz*3 states: an initial state, a dead state
and n * 1 states representing the different numbers of frequencies
that have been allocated.

We contend that the case of allocation fi'uur a scl uf twu frcquel-
cies should be sufficient to test the general case, since it allows us
to examine the case of allocation and deallocation when some fre-
quencies have been allocated and some not.

Of course, it is possible for an implementation to have special
case 'Easter egg'5 behaviour for particular collections of frequen-
cies, but any finite set of tests will be vulnerable to this. So, making
the assumption that our implernentation is generic in the frequency
set we repeat our contention. Probably a careful tester would ex-
tend the model to contain three resources in order to be able to test
re-use of a frequency in the middle, but it seems a large investrnent
to go any further than that. We have already to deflne 17 EUnit tests
to capture the behaviour oftwo frequencies and 20 to capture the
behaviour ofthree frequencies. This corresponds to about 100 lines
of Erlang test code for an irnplementation that is itself smaller than
that.

Ifone is interested in testing even more possible cornbinations
ofallocating and deallocating resources, one would rather generate
a large number of randorn cornbinations for a random collection
of frequencies. We can do precisely this by using the QuickCheck
finite state machine library to generate the test cases.

4. QuickCheck finite state machine

QuickCheck cornes with a library (eqc-f sn) for specifliing test
cases as flnite state rnachines. Given a few callback functions fo¡
this state machine, the QuickCheck rnachinery is able to generate
and run test cases that are sequences generated from these callback
functions.

Here we present an approach to generate QuickCheck state
rnachine specifications frorn EUnit tests in contrast to the more
colrurlon manual generation from infonnal speciflcations of the
software under test. The advantage of using QuickCheck, as we
will see in this section, is that with little extra effoft, we get many

5 Some hiddcn message or feature, coded as a surprise in software and other

new tests cases that acfually test meaningful sequences, not covered
by the EUnit tests.

As demonstrated in the previous section, we use StateChum to
generate a state machine frorn the EUnit tests in order to obtain
states names and their transitions. We may potentially improve the
state r¡achine by adding tests cases, but, as explained before, the
data part restricts us to test cases with only little data involved.
Now we translate the obtained state machine in a QuickCheck
specification.

4.1 Sequence of calls

Each state obtained by StateChum is translated into a unary Erlang
callback function6 that retums a list with possible next states anà
the transitions thereto. For example, the state machine described
in Fig. 3 has 3 states; state names are randomly chosen by the tool,
but rnanually translated into something meaningful, say init, started
anó error. From init there are two possible transitions and in the

QuickCheck library eqc-fsn, this is speciûed thus:

init(_) ->
[{started, {ca1l,?MODULE,start, tnatOJ }},

{error, {cal1, ?M0DULE, stop, tl }}l .

started(-) ->
[{error, {ca1l,?MODULE,start, [natOl]],

{init, {caII, ?MoDUf,f , stop, tJ }}J .

error(-) -)
ü.

Note that Fig. 3 has no arguments for the functions; this infonnation
is present in the EUnit tests, but not in the abstracted state machine.
Therefore, we have to retrieve it from the EUnit tests. At this
rnofiìent we lnay realize that starting the server with an ernpty list
and a list with only one element has been a cornpletely arbitrary
choice in our EUnit tests. In fact, we would like to stafi the server
with an arbitrary, positive number of frequencies nat O.

Each transition is encoded as a tuple with first argument the
name of the next state and as second argument a symbolic call to
an Erlang function, in this case the start and stop functions in
the rnodule (?M0DULE) we define our specification in, which dif-
fers from the implernentation module f requency.erl. The rea-
son for a local version of the start and stop function is that we
expect these to potentially raise an exception and similar to the
assertException in EUnit we have to notiflz QuickCheck that
exceptions may be valid. Moreover, we use a rnaximum number of
frequencies to compute the list with consecutive sequences in the
start function.

start(Freqs) ->
catch frequency: start(lists : seq(1,Freqs)) .

stopO ->
catch frequency: stopO .

In the EUnit tests, the return values ofthe calls to start and stop are
checked in the assertions. These assertions translate into postcondi-
tions in the QuickCheck speciûcation. Postconditions are callbacks
with five arguments: a Fron state, a To state, the data in Fron state,
the syrnbolic call and the result of that call. Thus, we check that
indeed the positive calls return the right value and that whenever
we enter the error state, it was because of a call that raised an ex-
ception.

postcondition(init,started,-,{ca1l,-,start,-},R) ->
is_pid(R) ;

ô
o

o
ooo

(u

artcfacts

8

6 The argument of thc statc is the stâte datå.

postcondition (started, init , - , {call , - , stop, -} , R) ->
R == ok;

postcondition(-From,error,-, {cal1,_,_,_},R) ->
case R of

{,Exrr,,_} -> ttne;
_ -) false

end.

Finally, we need to write a QuickCheck property to run the test
cases. First an arbitrary sequence of start and stop commands is
created using the state machine description and then that sequence
is evaluated. In order to make sure that we start in a known state
(even if a previous test has failed), we both stop the frequency
server at the beginning and end of each test, relying on the catch
when the seryer is not running.

prop_frequencyO ->
?FoRALL (Cnds, comnands (?MoDULE) ,

begin
stopO,
{H,S,Res} = run-cor¡nands (?MODULE,Cnds),
stop ()
Res == ok

end).

4.2 Adding state data

The advantage of running many different sequences of starting and
stopping the server may not be so obvious for this exarnple. The real
benefit of using a QuickCheck state machine speciflcation shows
when the state data is used to represent the allocated frequencies.

We choose to use the state machine from Fig. 7 as our starting
point. In the state started we should add a transition to a state in
which one frequency is allocated. From that new state, we create a
transition to yet another one where two frequencies are allocated,
etc. Of course, the state names have to be generalised and we use

QuickCheck's support for parametrized states, i.e. each state is
represented by a tuple of which the first argument is the state name
and the second argument is a parameter, the number of allocated
frequencies in our case.

Note that the state machine in Fig. 7 was obtained from tests
with two frequencies and is in fact an abstraction of tests with
two allocations. We would like to generalise this to an arbitrary
number of frequencies, but start with setting a maximum of 2 for
the moment.

-define(MAX,2).

We introduce a record to represent an abst¡action ofthe state ofthe
frequency sewer: the free frequencies and the used frequencies.

-record(fre9,{used=[1, tree=[]]).
We rename the state started into allocated and add appropriate
transitions. We fix the maximum number of allocations to 2 and
deallocation offrequencies that have not been allocated is smoothly
added as a transition.

init (-) ->
[{{atlocated,O}, {catl,?MODULE,start, [?MAX]]],

{error , {ca1I , ?M0DULE, stop , tl }}
l.

allocated(N,S) ->
[{error,{ca1l,?MODULE,start, [natO]]] I **
[{{a1located,N+1}, {ca1l,?MoDULE,allocate, [J]]

I I t'l < ?MAxl ++
r {error, {cart, r*olTtfi,

:t=täîl;, :ltt
[{{a1located,N-1}, {calt, ?MODLILE,deallocate,

[elements (S#freq. used) J]]
ll N > ol ++

[{init, {cal1, ?MODIILE,stop, tJ }}J .

error(_) ->
il.

The list comprehensions are used to lazily cornpute the state param-
eter and only include the altematives that are valid for that particu-
lar state. Starting an already started server rnay take any argument,
hence no ?MAX there but an arbitrarty positive nurnber.

The deallocation functions depends on the state data. As an
argument to deallocate we supply an arbitrary element of the
list S#freq. used.

In order to successfully test these cases, QuickCheck need to
know more about the state data. This is achieved by defining call-
back functions that operate on the data.

The state data gets rnodified by the next-state-data callback
function, which takes five arguments. The first argument is the state
from which the transition originates and the second argument the
state that the transition leads to. The third argument is the state data,
i.e., the record that we defined above. The fourth argurnent is the
(symbolic) result of the evaluation of the syrnbolic call in the last
argument.

next-state-data(-,-,S,V,{ca1l,_,start, [Maxl]) ->
S#freq{used=[], free=lists:seq(1,Max)];

next-state-data(-,-,S,V, {cal1,_,allocate, t] }) ->
case S#freq.free == [] of

true -) S;
false ->

S#freq{used=S#freq. used++ [V] ,
free=S#freq. free-- [Vl]

end;
next-state-data(-, -, S, V,

{call-,-,dea1locate, lFreql]) ->
S#f req{used=S#f req. used-- [Freq],

free=S#freq. free++ [F¡sq1].
Dext-state-data(-,-,S,V, {calI,_,stop, tl }) ->

S#freq{used= [] , free= []].
In this way, we know which frequencies are allocated and which
are free. Note that ifall frequencies are allocated, then an allocation
will result in an enor and the state stays unchanged.

Similar to the start and stop comrnand before, we add local
comrnands for allocation and deallocation. This tirne we use the
local function to modifu the retum value, since our model is cleaner
when we get a frequency refurned from allocate:

allocateO ->
case frequency:allocateO of

{ok,Freq} -> Freq;
Error -) Error

end.

deallocate(Freq) ->
frequency : deallocate (Freq) .

Finally, we add postconditions for allocation and deallocation to
complete our QuickCheck specifi cation.

postcondition(-,-,S,{caI1,_,allocate, []],R) ->
case R of

{error,no-frequency} ->
S#freq.free == tl;

F r¡hen is_integer(F) ->
lists : nenber (F , S#freq. free)

end;

9

Figure 9. Visualization of QuickCheck specification

postcondition(-,-,S,{call,-,deallocate, lFreq]],R) ->
R == ok;

This specification can be used to generate rnany different sequences
ofcalls to start, allocate, deallocate and stop. QuickCheck can com-
pute a fair distribution for the occurrences ofthe cormnands, such
that we increase the likelihood to obtain sequences that indeed allo-
cate all available resources instead ofjust starting and stopping the
server all the tirne. In a visualization of the QuickCheck state ma-
chine the weights for each transition are provided as a percentage
(see Fig. 9).

A typical example generated with this state machine could be a
test case like:

set, var, call, frequency-eqc, start, [2]]],
set, var, call,frequency-eqc, stop, t] ÌÌ,

ca1l,f requency-eqc, start, [2]]],
set, var, call , frequency-eqc , stop, t] ÌÌ ,
set, var, cal1, f requency_eqc, statt, [2]

Note that we must pick a frequency frorn the free frequencies,
since none is in use yet. Altematively, we could take any arbitrary
frequency using nat () .

The next-state-data function can stay as is since wejump to
the error state and no more transitions are allowed frorn there, hence
the speciûc state ofthe server is not irnportant. The postcondition
has, of course, to be adapted, since a transition to the error state
should be caused by an exception:

postcondít ion (-, To, S, {ca1l, -, deallocate, [FreqJ], R)
when To =/= error ->

R == ok;

Tests generated from this specification expect an exception raised
when we deallocate after starting the server. We need to add a catch
in the local function of deallocate as well. However, when we
run the tests against our liequency implernentation, we obtain im-
rnediate feedback frorn QuickCheck that the postconditions of this
deallocation is falsified. In other words, our irnplementation fol-
lows the specification and indeed always had deallocate return
ok.

Inspecting the EUnit test cases shows that indeed we never test
starting the server and then deallocating. The transition in Fig. 7
was added because of insufficient information. In fact, one can
argue that the transition should not be there at a1l, but that incorrect
deallocations are either not allowed, which should be guaranteed by
the clients of the server, or that the speciflcation of the API should
be enriched with a possible error result for deallocate.

Rather would we now add a transition that deallocation of free
resources should have no effect. This can be done by adding another
transition to the state machine:

[{{allocated, N} , {calt , ?M0DULE , faitDA ,

[elenents(S#freq.free)J]]l **
We use f ailDA instead of deallocate to avoid getting ambiguous
transitions in the state machine. QuickCheck cannot compute good
test case distribution when the model is arnbiguous.

The f ailDA function is simply calling the deallocation in the
implementation rnodule. The next state function for f ailDA leaves
the state untouched and the postcondition checks that an ok is re-
tumed. When running QuickCheck with this property we found an
error in our irnplementation, since we expected the clients to obey
the rule that they would not release the same frequency twice and
always added a released frequency to the list ofavailable frequen-
cies. This gave a list with duplicates in the newly constructed test
cases and the postcondition for allocate found the mismatch by
checking that the given frequency is indeed free.

4.4 Increasingnumberoffrequencies

With the definition of the macro MAX we can now easily create a
state machine that tests sequences that have 4 frequencies and all
possible combinations of allocations and deallocations. The only
thing to do is to recornpile the code with a larger constant. But,
testing with a smail nurnber of frequencies thoroughly rnay reveal
more faults than when testing a larger nurnber of frequencies in a
less exhaustive Íranner.

The QuickCheck specification is about 100 lines ofcode, which
is similar to an exhaustive EUnit test suite, but it covers a wider
range of tests. For larger, more realistic example, the size of the

QuickCheck specification tends to grow less fast than an EUnit test
suite does.

5. Related work
In this section we examine related work in test-driven development,
gralnmar inference and testing methodologies

ìit$p{ I
-r -4

"'(

.{tdrt{ -)
i.4tn

set, var,

1Ì
ôìzJ
3Ì
4)
sÌ
6)
7\
8)

set, var, call , frequency-eqc , allocate ,
set, var, cal1, frequency-eqc, allocate, []
set, var, cal1, f requency_eqc, deallocate,

There is still a subtle difference between the QuickCheck state
machine in Fig. 9 and the state machine obtained from EUnit tests
in Fig. 7, viz. a number of transitions to the error state are rnissing.

For example, the deallocation in the state with zero allocated
frequencies leads to the error state in Fig. 7. We have neglected this
case in our specification, but we can add it by adding one more
transition to the state defining callback function allocated:

[{error , {call , ?M0DULE, deallocate ,
[elenents(S#f req.f ree)l]] I I trl == 0l ++

iÌ
tl tt

)) t\\JJ'

t{var, 6}J }} ,

{set , {var , 9} , {ca1l , frequency-eqc , allocate , [1]]
4.3,A.dditional error transitions

:8.:t¡

{øÌknatcel f ¡ ,r

22.t-ù{/"t

d*al locate{_ }

1..tr4i
stñlr4 ¡

-1 "-l ¡¿

{i¡ll*¡,'ilt*d.l}

ull¡¡r:ate¡Ì
l4_5..{,

d¿allcx¿tc(-J

srop{)
3..11ic

-l-+ n

{*ll<rcatedå}

â{ärr{. I

3"4':i;

starll * i
J.4t¡i;

rt(¡p{ }

3.4tä,

¡lkrürit*{i
1-4.?

c|f{rf

10

Test-driven development

As we mentioned in Section 2, Beck's [4] answers a number of
frequently-asked questions. In replying to "How many tests should
you wriÍe? " he provides a simple example of a function to classiflz
triangles: this elicits an ansvr'er inspired by equivalence partition-
ing. No state-based systems are discussed. The question "How do
you know ifyou have good lests? " relates to the quality of individ-
ual tests, rather than the effect ofthe collection as a whole.

Fowler advocates mutation testing as a rnechanism for assessing
the adequacy ofa set oftests [21]. Astels [3] in discussing TDD for
Java also advocates mutation testing with Jester [13], as well as
code coverage analysis with Clover [9] and NoUnit [16].

Of course, these rnethods can only be used when there is an
irnplementation to hand. In the context of TDD there is a circularity
to this, since the implementation has been developed specifically to
meet the set of tests. By contrast, our method gives feedback on the
test set independently of any implernentation.

Random testing

Randorn testing for functional programs was first introduced by
QuickCheck for Haskell [8] and more recently developed for Er-
lang [1]. It has also inspired related systems for Scheme, Standard
ML, Perl, Python, Ruby, Java, Scala, F# and JavaScript.

QuickCheck testing is based on the statement oflogical prop-
erties which are then tested for randorn inputs generated in a type-
based manner. Sirrple logical statements of properties suffice for
functional behaviour; state based systems are tested by driving
thern from an FSM which gives an abstract model of the system.

Fuzz testing or fuzzing [20] is a related technique used partic-
u1arly with protocol testing, an area where QuickCheck FSMs can
also be used. Fuzzing is a "brute force" approach, typically gen-
erating inputs at random, rather than having their generation being
guided by a model such as an FSM. Fuzzing is perceived, howeve¡
as a mechanism providing a high benefit:cost ratio.

A comprehensive overview ofother approaches to random test-
ing is given in Pacheto's thesis [17]. Pacheto's thesis also exarnines
ways that random testing can be 'directed' with extra tests being
generated as a consequence of examining the results of already ex-
ecuted test cases.

Inference and testing

There is a substantial literature on inferring higher-level structures
from trace or event-based data. Arnong the earliest is Cook and
Wolf's [10] which infers an FSM from event-based trace data.
More recent work by Artzi et. al. [2] uses those techniques to
general legal test inputs - that is legal sequences of calls to APIs
- to OO progralns, again based on execution traces; this paper also
provides a useful overview of other work in this area. Walkinshaw
and others [24] use the Daikon tool [12] as part ofan interactive
process of model elicitation.

Daikon implernents invariant inference, and has been extended
to the DySy tool [1 1] which augrnents the Daikon approach based
on test set execution with dynarnic syrnbolic execution. Xie and
Notkin [26] infer specifications frorn test case executions, and
based on this develop further test cases.

Our approach differs from these in being based on the test cases
themselves rather than on their execution: it can therefore be used
independently of any irnplernentation.

The Wrangler refactoring tool for Erlang [25] provides clone
detection and elirnination facilities [15], and in the latest release
(0.8.8) implements the facility to transfonn a cloned test into a

QuickCheck property, thus generalising the range of possible tests
of the systern.

6. Conclusions and Future Work
We have shown the value of extracting the finite state machine
irrplicit in a set of EUnit tests not only for understanding the
adequacy of the tests developed as a part of the process of test-
driven development but also in defining a QuickCheck FSM which
can be used for property-based testing of the system under test. In
doing this we noted a nurnber of points.

¡ The negative tests - that is those that lead to an error value
ofsome sort, raise an exception o¡ cause another form oferror
- are as irnportant as the positive tests in delirniting the correct
behaviour of the systern implicit in the tests. This is due in part
to the nature of the extraction algorithm [23] but is also due
to the fact that without these tests there would be no explicit
bounds on the permissible behaviour.

. We assume that we can extract the call sequences within tests
by static exarnination ofthe test code. This is not unreasonable
since many test cases consist ofstraight line code, particularly
for the state-based systerns that we examine here.

. Some aspects of the process can be automated with ease, in-
cluding the extraction of the function call sequences and the
naive conversion ofan FSM into QuickCheck notation. Others
require rnanual intervention, including the choice of data val-
ues for the 'srnall' states and the choice of state data for the
QuickCheck FSM.

¡ Given that the model we develop is an abstraction of the ac-
tual systern, it is natural for non-determinism to creep into the
model. This can be resolved by renaming some of the transi-
tions to avoid non-determinism. The old and new transitions can
then be seen as having pre-conditions which will be explicit in
the QuickCheck rnodel.

The next step for us to take is to refine the process described
here into a procedure which autornates as much as possible of
the FSM developrnent. This will allow QuickCheck properties for
state-based systems to be extracted from tests in a semi-automated
but user-guided way.

We would like to acknowledge the support of the European
Cornmission for this through the FP7 Collaborative project ProTest
[18], grant number 215868.

References

[] T. Arts et. al. Testing Telecoms Software with Quviq QuickCheck In
Proceedings of the Fifth ACM SIGPLAN Erlang Workshop, ACM
Press, 2006.

[2] S. Artzi et. al. Finding the Needles in the Haystack: Generating
Legal Test Inputs for Object-Oriented Programs. In M-TOOS 2006:
lst Worlæhop on Model-Based Testing and Object-Oriented Systems,
2006.

[3] D. Astels. Tesî-driven Development: A Practical Guide, Prentice
Ha1l,2003.

[4] K. Beck. Test-driven Development: B), Example. Addison-Wesley,
2002.

[5] R. Carlsson Eunit - a Lightweight Unit Testing Framework for
Erlang. In Proceedings of the fifth ACM SIGPLAN Erlang Workshop,
ACM Press,2006.

[6] R. Carlsson and M. Rémond. EUnit - a Lightweight Unit Testing
Frameworkfor Erlang.bttpt / / svr. process-one. net/contribs
/trunk/eunit/doc,/overview-sumnary, htmI, last accessed 07-
06-20 I 0.

[7] F. Cesarini and S. Thompson. Erlang Programming. O'Pieilly Inc.,
2009.

l1

[8] K. Claessen and J. Hughes. QuickCheck: a lightrveight tool for
randorn testing ofHaskell programs. In Proceedings oftheffth ACM
SIGPLAN International Conference on Functional Programming,
ACM Press,2000,

[9] Clover. Clover: Java code coverage & test optimization.
http : //r^¡r,¡¡¡ . atlassian, com/soft¡¡are/clover/, last accessed
07-06-20 I 0.

[0] J. E. Cook and A. L. Wolf. Discovering Models of Software
Processes from Event-Based Data. In ACM Transdctions on Sofnvare
Engineering and Methodologt, 7, 1998.

[1] C. Csallner et. al. DySy: Dynamic Symbolic Execution for Invariant
Inference. I¡ ICSE09, ACM Press, 2008.

U2] M. D. Emst et al. The Daikon systcm for dynamic detcction of
likely invariants. In ACM Transactions on Soîfivare Engineering and
Methodologt , 69 , 2007 .

[1 3] E. R. Harold,. Test your tests wíth Jes ter. }:Lttp : / /¡¡ww. ibn. com/
developerworks/1ibrary,/j -j est et /, last accessed 07-06-201 0.

[4] Hughes, J. QuickCheck Testing for Fun and Profit. In: 9th Int. Symp.
on Practical Aspects of Declarative Languages, Springer (2007)

[15] H. Li and S. Thompson. Similar Code Detection and Elimination
for Erlang Programs. In l2th Int. Symp. on Practical Aspects of
Declarative Lønguages, Sprìnger LNCS 5937, 2010.

[1 6] NoUnit. http : //nounit. sourcef orge . netl, last accessed 07-
06-2010.

[17] C. Pacheco Directed Random Testing.Ph.D. thesis. MIT Department
ofElectrical Engineering and Computer Science, 2009.

F8l ProTest. http://www.protest project.eul, last accessed 07-
06-2010.

[1 9] StateChum. http : //statechum. sourcef orge, net /, last ac-
cessed 07-06-2010.

[20] M. Sutton, A. Greene, P. Amini Fuzzing: Brute Force Vulnerability
Discovery, Addison Wesley, 2007.

[21] B. Venners. Test-Driven Development: A Cowersation with Martin
Fowlef Part V}Lttp l //vww. artima. con/intv/testdrivenP. htr01,
last accessed 07-06-2010.

[22] E. Vidal. Grammatical inference: An introductory survey. In
Grammatical Inference andApplicaliors, LNCS 862, Springe¡ 1994.

[23] N. Walkinshaw et. al. Reverse-Engineering State Machines by
Interactive Grammar Infereîce.In |4th IEEE Working Conference on
Reverse Engineering (IYCRE'07), IEEE Press, 2007.

[24] N. Walkinshaw et. al. Iterative Refinement of Reverse-Engineered
Models by Model-Based Testing. In FM'09, volume 5850 of Lecture
Notes in Computer Scicnce, Springcr, 2009.

[25] Wrangler. http : //wr¡w. cs . kent . ac . uk/pro j ect s/wrangler/,
last accessed 07-06-2010.

[26] T. Xie and D. Notkin. Mutually Enhancing Test Generation and
Specification Inference. In Proceedings of the 3rd International
Worlcshop on Formal Approaches to Testing of Sofware (FATES
2003), LNCS Vol. 293 I, Springer, 2003.

t2

Coordinating and Visualizing Independent Behaviors in Erlang

Guy Wiener Gera Weiss

Ben-Gurion University, Beer-Sheva, Israel

{gwiener,geraw}@cs. bgu.ac.i I

Abstract
Behavioral programming, introduced by the LSC language and ex-
tended by the BPJ Java library, enables development of behaviors
as independent modules that are relatively oblivious of each other,
yet are integrated at run-time yielding cohesive system behavior.
In this paper we present a proof-of-concept for infrastructure and
a design pattern that enable development of such behavioral pro-
grams in Erlang. Each behavior scenario, called a behavior thread,
or b-thread, runs in its own Erlang process. Runs of programs are
sequences of events that result from three kinds of b-thread actions:
requesting that events be considered for triggering, waiting for trig-
gered events, and blocking events that may be requested by other
b-threads. A central mechanism handles these requests, and coordi-
nates bthread execution, yielding composite, integrated system be-
havior. We also introduce a visualization tool for Erlang programs
written in the proposed design pattem. We believe that enabling the
modular incremental development of behavioral programming in
Erlang could further simplify the development and maintenance of
applications consisting of concurrent independent behaviors.

Categoríes and Subject Descríptors D.2.11 lSofiwarel: Software
Architecture-Patterns ; D.3.2 [P ro grammin g Langua ge sl: Lan-
guage Classifi cations-Erlang

Generøl Terms Design, Languages

Keywords Design Patterns, Behavioral Programming, Live Se-
quence Charts

programming. LSC is based on centralized execution of a collec-
tion of sequence charts [7, 9] enhanced with modalities that control
what must, may or must not be done. The Play Engine examines
all charts in the specification, and triggers events such that the ex-
ecution satisfies the modal specification. The LSC language also
includes rich programming constructs such as objects with proper-
ties, control flow, conditions, variables, symbolic objects and im-
plemented functions that expand the capabilities of the developed
applications. Behavioral programming in BPJ is based on running
behaviors in Java threads (behavior threads, or b-threads, for short)
that call API functions to announce events that they request, wait
for, or block, and to invoke a coordination mechanism that weaves
these requests yielding integrated system behavior.

In both approaches, candidate next events from each behavior
are considered for triggering. One of these is selected, subject to
the condition that it is not forbidden, or blocked, by other behav-
iors. Behaviors affected by the triggered event advance and perform
arbitrary processing. All behaviors then are synchronized and co-
ordinated, resulting in selection of next event in the system.

In Section 8 we outline in some more detail the different ap-
proaches of both LSC and BPJ.

In this paper we adopt the approach used by BpJ and pro-
pose (through a proof-of-concept) implementing bthreads as Er-
lang processes. We provide a central coordination mechanism, and
an interface that b-threads can use to report the events that they re-
quest, wait for, or block. We propose a design pattern for coding
behavioral programs, and provide a visualization tool that depicts
b-threads coded in the proposed pattem as transition systems.

Vy'e believe that enablìng the modular incremental development
of behavioral programming in Erlang could further simplify the de-
velopment and maintenance of applications consisting of concur-
rent independent behaviors.

The sections of this paper follow largely the section structure
used by "The Gang of Four" [2] for documenting design patterns,
including sections such as intent, motivation, applicability, struc-
ture, sample code, and related patterns. The visual tools is described
in the Structure section.

Assaf Marron
Weizmann Institute of Science, Rehovot, Israel

assaf. marron @weizma n n.ac. il

2, Intent
We propose a design pattem called BP and an associated module
(called bp), for iteratively creating a sequence of events, where the
next event is chosen with the help of the bidding protocol described
below. The bidders are Erlang processes registered as behavior
threads (b-threads). In each iteration:

1. Each b-thread places a bid:

r Watched events: events that the b-thread waits for and asks
to be notified of.

¡ Requested events: events that the b-thread proposes that
they be considered for triggering.

r Blocked events: event that the b-th¡ead forbids.

I

1. Introduction
Scenario-based programming, or behavioral programming, is a pro-
gramming paradigm introduced by the language ofLive Sequence
Charts (LSC) [1] and irs Play-Engine implemenration [3]. This
work was extended in [6] through the BPJ library that implements
behavioral principles in a traditional Java programming context. In
behavioral programming, behaviors are programmed relatively in-
dependently of each otheq and are interlaced at run{ime to create
a cohesive, integrated, system behavior. This approach turns out
to be very natural, and enables incremental development ofhighly
modular system, where the decomposition of the system is accord-
ing to behaviors - software components that may cross subsystem
boundaries and are not necessarily tied to a specific class or object.
LSC and BPJ represent îwo different approaches for behavioral

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made oidisaibuted
for proût or comercial advantage and that copies bear this notice and the full citation
on the nrst pâge. To copy otbetrise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang'10, September 30,2010, Balrimore, Maryland, USA.
Copyright @ 2010 ACM 978-l-4503-0253-ttt0/09... $10.00

13

2. When all b-threads place their bids, an auction takes place:

¡ An evaluation mechanism chooses an event requested by
some b-thread and not blocked by any b-thread.

3. B-threads are notified of the auction outcome:

o The b-threads that asked to be notified (the selected event is
in their watched set) are resumed.

4. B-threads caû execute arbitrary computations before placing
their next bid in the next iteration.

3. Motivation
The motivation for proposing the design pattem is to provide a
simple mechanism through which systems can be constructed from
software components each of which controls and coordinates a

particular behavior. As behaviors may cross object boundaries,
such construction complements the traditional approach to software
development where programs modularity revolves around objects
and data-structures. Using events as markers of system behavior,
and applying the proposed bidding mechanism for choosing events,
the resulting integrated system behavior is an event sequence that
reflects, at every step, each b-thread's view of how the system
should proceed.

The BP design pattern helps programmers maintain b-thread
independence, by unifying the occurrence of events requested by
multiple b-threads and not notifying b-threads of events that they
do not watch. Particularly, requesting scenarios need not care how
events that they trigger affect other scenarios.

4. Applicability
The BP design pattern should be used when the system's behavior
can be naturally decomposed into, or described as an interleaved
execution ofrelatively independent scenarios as described in [1, 3].
BP allows for programming each of these scenarios in an explicit
and natural way in its own module, as an alternative to allowing the
scenario to emerge implicitly from code that is scattered in multiple
participating objects.

In this context, it is worth noting that interesting behaviors often
emerge already in early stages of software design and specification,
even with small sets of b-threads. Thus, BP allows for programming
initial designs and software speciûcations to be presented to users

for feedback (e.g., for finding errors in the way requirements are

understood).
More generally, the BP design pattem is suitable for incremental

development, as it allows adding and removing behaviors with little
or no change to existing code.

Another context where BP can be particularly applicable is end-
user customization. For example, imagine a (remote) control for a

video player. If that player's behavior is programmed in BP, users

can customize it without going into existing code. They can add

or remove behaviors, say for simplifying certain activities, or for
avoiding common mistakes, by adding to the system b{hreads that
handle specific sequences of user actions.

5. Structure
5.1 Participants

In this design, the participants are:

The BP controller: A central server process.

¡ Receives the synchronization requests from b-threads.

¡ Decides on the next event.

¡ Sends the next event to b-threads that are waiting for it.

mâln

Figure 1. The collaboration between processes using BP. Filled
arrows mark function calls, vee anows mark messages.

b-threads: The work-doing processes.

¡ Bid for the next event by sending a synchronization request
to the BP controller with the following parameters: (1) Re-
quested events. (2) Blocked events. (3) Watched events.

. Wait until the BP controller sends them an event that they
are waiting for.

5.2 Collaboration

The collabo¡ation between the BP controller and the b{hreads
follow these steps (see Figure l):

1 . The BP controller is initialized.
2. B-thread processes are spawned and added to the controller.
3. The BP controller is started.
4. B{hreads call bp:sync to send their requests to the BP con-

troller, and are suspended until they receive a response from the
controller.

5. The BP controller waits until all the active registered b-threads
send their requests.

6. The BP controller decides on the next event (see the next sec-

tion) and sends responses to the b-threads that wait for it.
7. The b-threads that receive the event continue their computation

until they call bp: sync again.
8. When a b-thread exits, it is removed from the BP controller.

5.3 Model

The BP design pattern is based on the following mathematical
model [6]:

First, the code of each b-thread is abstracted as a transition
system whose states are valuations of program variables at the
times where the b-thread places its bids (synchronizes with the
other b-threads). To model the bidding, we attach to each state s

a set Ê(s) ofrequested events and a set B(s) ofblocked events, as

formalized in Definition 1. Recall that a (labeled) transition system
is defined (see e.g [8]) as a quadruple (5,8,-+,i,ni.t), where

^9
is a set of states, .Ð is a set of events, -+ is a transition relation
contained in (S x -Ð) x S, and i,ni.t € ,S is the initial state.

P

r remqve(P)
tt

I

I

I

BP

B-thread

Ail

Decide

waiting forAil

{sync, e}
"l

I

I
\l

14

The runs of such a transition system are sequences of the form
so A q 3 ... 3 ,s¿..., where so : i.ni.t, and for all
'i : 7,2,..., s¿ € S,

"o
e E,and s¿-t 1 s¿.

Definition 1 (behavior thread). A b-thread is a tuple (5,8,-+
,'init, R, B), where \5, E, -+, init) forms a labeled transition sys-
tem, R: S -+ 2" is a function that associates each state with
the set of events requested by the b-thread when in that state, and
B: S -+ 2E is a function that associates each state with the set of
events blocked by the b{hread when in that state.

Using this abstraction, we can formalize the auction mechanism
as an operator for composing transition systems, as given in Defi-
nition 2.

Definition 2 (runs of a set of b+hreads), We define the runs of a
set of b-threads {(,S2, Ee, -}¿,i,n'it¿, R¿, B¿)}T:, as the runs of the
labeled transition system (,S, E,-+,i,nit), where,S : ^gr X ... X
Sn, E : UT:,8,,'ini,t : (i,ni;h,...,ini,tn), and -+ includes a

transition (r,,..., sr) å (s'1, ..,,s'r) if and only if
nn,

e e [-J.Rr(se) A " êU B¿Gò. (1)

morningO ->
Isync(#sync{wait=lmorning], reques¡=[morning]]) I I_ <- lists: seq(1, 3) I .

eveningO ->
Isync(#sync{wait=[evening], reques¡=[evening]]) I I

- <- lists:seq(l-,3)l.

interleaveO ->
bp: sync (#sync{wait=
bp: sync(#sync{wait=
interleaveO.

displayO ->

esto ->
bp: initO ,

bp: add(spawn(fun
bp: add(spawn(fun
bp: add(spawn(fun
bp: add(spawn(fun
bp: start O .

morningl, bleçlç=[evening
eveningl, block=[morning

)
)

]
]

Event = bp:sync(#sync{wait=fmorning, evening]]),
io:format("Good -w-n", IEvent]),
displayO.

t
morning/O), 1),
display/O), 2),
evening/0), 3),
interleave/O), 4),

-'-
e is rcquosted

i:1,

-,-
e is not blæked

and Figure 2. "Hello, World ! " - An example of using the bp module

A((eeE¿*s¿\ts)n (e (Ee :=¡ sn : si))e)
n

,i:t
)ve unaffected b{h¡eads don't movc

This definition specifies a transition system whose runs are the
interleaved executions of the composed system. Specifically, we
say that a sequence of events is a run of the system if, at each step,
the selected event is requested by some b-thread and not blocked by
any. The second part of the definition says that the selected event
may change the state of the b-threads that have it in their alphabet.

Note that this mathematical model allows for nondeterminism.
In particular, if there are multiple requested events that are not
blocked the model allows choosing any of them. In implementa-
tions, however, it is easier to program deterministic systems. In
particular, we prioritize the b-threads and event requests such that
event selection is deterministic.

5.4 Code Structure

Our implementation of the BP design pattern is based on a support-
ing module, bp. The bp module exports the following functions:

init,z0 Initialize the BP controller.

add/Z Add a process with a given priority.

start,/0 Start the controller.

sWc/L Send a synchronization request, that includes requested,
blocked and watched events to the controller and wait un-
til one of the watched events is selected. The sync,/1 func-
tion takes a record as an argument. The record definition is
-record(sync, {request, wait, block}). The record
fields match the arguments described in Section 5.3, and have a
default value of an empty list. For example:

bp: sync (#sync{
reeuest=[EL], wait=[E1_, E2], block=[E3]])

Figure 3. Output of code from Figure 2

process. Section 5.2 describe the initialization sequence in more de-
tail. There are no other constraints on the calculations that b{hreads
perform before or after the calls to bp: sync.

Figure 2 shows a basic example of code that follows the clas-
sical "'Hello, World!" program and uses the bp module to issue
"Good morning" and "Good evening" greetings. The example in-
cludes four b-threads. The events in the system are morning and
evening. The morning and evening b-threads request one of
these events three times and terminate. The interleave b-thread,
in an alternating manner, blocks one of these events while waiting
for the other, causing the interleaving of the two independent event
sequences. The display b-thread prints the selected event. The
expected result - alternating Good morning and Good evening
greetings

- is shown on Figure 3.
It should be noted that at the current step of the development,

bp is not a generic module: It does not take another module as
an argument and does not deflne a behavior for another module.
Instead, it allows for starting b-threads by spawning a process. We
find this approach more flexible and free-form. However, if the code
follows specific conventions, listed in the next section, an auxiliary
visualization module can produce a diagram of it.

5,4.1 CodeVisualization

The bp module supports any unstructured code, as long as it uses
init, add, start and sync. However, if the code has a specific
structure, it is possible to produce a visual representation of its
behavior automatically: A module named bp_vis produces a di-
agram of a transition system depicting the b-thread. The diagram

Good
Good
Good
Good
Good
Good

morning
evening
morning
even]-ng
morning
evening

remove/l Remove a process from the controller.

For its basic operation, the bp module imposes a few constraints
on the structure of the code. B-threads must be spawned as pro-
cesses, and the program must include initialization code for the bp

15

case bp:sync(#sync{. . .}) of
x -> statel"O;
y -> state2o;

.nå.'

Figure 4. An example of a state case

is generated as a Graphvizl file. There are two ways to generate
the diagram: Use bp-vis as a parse-transform module, or run
bp-vis:visualize(BeamFile, GvFiIe) directly. In the flrst
case, the generated file has the same base name as the module,

The code visualizer makes the following assumptions about the
structure of the code:

1. The code for each brhread is contained in a separate module.

2. Each function that is called in a clause of a state case is a state
function, that represents the next state where:

o A state functio¿ is a function that its last term is a state case.

. A state case is a case statement where the expression is a

call to bp:sync and each clause maps from an event to a

function call. Figure 4 shows an example of a state case.

3. If a function called start is found in the module, it is assumed
to be the first state.

The format of the generated diagram follows.

. State functions appears as ellipses with multiline labels. The
first line is the function signature. The following lines show the
content of the request, wait and block arguments of the call to
bp: sync in the state case.

¡ An edge from ellipse A to ellipse B appears if one of the clauses
in the state case of A is a function call to B.

o Each edge has a label. The label format for an edge from A
to B is "Event (when Guard) / CaLL". The Event is the
head of the case clause whose body is the function call to B.
The Guard is the guard part of the head of the clause, which
is optional. The call is the exact function call to B, including
arguments.

¡ Ifone ofthe state functions is called "start", it is emphasized
by a small arrow, starting from a black dot.

For example, suppose that some device can print, scan, send a
fax and stop. The b-thread module in Figure 5 has the following
behavior: It tries to print 3 times. If the printing starts, it waits for
it to end. If it fails more then 3 times, it gives up. When waiting
for printing, it prevents the machine from stopping. Figure 6 shows
a visualization of that code. Since this b-thread does not have a

designated start function, it does not include the additional arrow.
The transition diagram figures in Section 7.2 were generated using
this code visualization tool, while designating a start function.

In the future we expect that the structural requirements that
simplify the visualization process will be expanded to include other
design patterns, or accommodate less constrained code. It is our
view that the code for behavioral program should be as free as

possible, and need not be aligned with the state transitions used
for the formal definitions or visualization. In Section 8 we discuss
the relation of our work to state transition coding with gen-fsm,
using callback-functions as well as explicit state.

thttpt / /graphviz. org

-module(printjob) .

-compile([{parse-transform, bp-vis}J) .

-include("bp. h¡l") .

-define(LIMIT, 3).

pending(N) ->
case bp : sync(#sync{request= [print],

¡¡¿i1=[print, scan, fax],
¡1eçlç=[stop]]) of

print -> workingO;
- when N < ?LIMIT -> pending(N+1-);

- when N >= ?LIMIT *> idleo
end.

workingO ->
case bp : sync(#sync{ç¿j1=[finish],

¡1eçlç=[stop]]) of
finish -> idleo

end.

idleO ->
case bp : sync(#sync{wait=[stop]]) of

stop -> ok
end,

Figure 5. A b-thread module with a structured code

when N < 3/
+1)

when N >: 3/
idleQ

pending(I.{)
requesF[print]

waiF[print,scan,fax]
block:Istop]

workingQ
waic[furish]
block:Istop]

working0

fmisl/
idleQ

print/

idleQ
waie[stop]

16

Figure 6. A visualization of the module in Figure 5

6. Consequences

Behavioral programming is based on consensus: It requires all par-
ticipating processes to agree on the next step. Therefore, it requires
a synchronization point for all b-threads that are not waiting. To
exit the blocking call to bp:sync, each active b-thread must wait
until all other active b-thread call bp: sync. Although this is a rea-
sonable demand for an agreement protocol, a specialized protocol
for a specific problem can be more efficient:

Reaching an agreement also requires sharing information be-
tween processes. In our implementation, we use a central process
(the BP controller) to collect and handle the requests from all par-
ticipating b+hreads. Therefore, this process is critical to the op-
eration of the system. In a production system, special attention
should be given to this potential single-point-of-failure, and com-
mon actions such as monitoring, automatic recovery and redun-
dancy should be considered.

In the proof-of-concept implementation, the execution rate can
reach thousands of events per second, with thousands of partici-
pating b-threads. Detailed performance analysis remains as future
work. Such analysis should take into consideration, among others,
the amount ofevent-based synchronization as compared with other
processing and computation performed by the b-threads. For appli-
cations where synchronization may introduce execessive delays we
are considering for example clustering of b-threads in synchroniza-
tion groups, or using design patterns in which long-running pro-
cesses do not run as b-threads, but instead use dynamically-created
b-threads to communicate with the rest of the behavioral program.
Lastly it should be noted, that certain benefits of programming mul-
tiple independendent b{hreads may be manifested also when the
number of processors is small, or even one, as complex behaviors
are clecomposecl into simpler ones in a natural way.

7. Examples and Sample Code
7.1 Coordinated SequentialProcessing

To illustrate how the BP design pattern can be used, we discuss,
as an example, the structure of applications that require bulk pro-
cessing of a large volumes of records to perform business opera-
tions. Examples of business operations include time based events
(e.g. generation of periodic correspondence), periodic application
of complex business rules processed repetitively across very large
data sets (e.g. interest accrual or rate adjustments), or the integra-
tion of information that is received from internal and external sys-
tems that typically requires formatting, validation and processing in
a transactional manner into the system of record. Such batch pro-
cessing systems are used to process billions of transactions every
day for enterprises around the world. Easy interweaving of such
processes can be of great value. For example - consider the printing
ofdifferent notices as well as paper advertisements and coupons for
insertion in each customer's envelope. Sequential p¡ocesses may in-
dependently customize individuat messages to customers in a large
database, but they need to be coordinated, such that all messages
to a given customer are printed consecutively. The BP design pat-
tern enables such coordination with minimal dependency across the
different sequential processes.

In BP terms, sequential batch processing can be formulated
as an iterative bidding/consensus process where, for each record
of data, a set of independent b+hreads collaborate by expressing
their views of how the record should be processed (using the re-
quest/wait/block idioms). More specifically, the system can be pro-
grammed using a sequencer b-thread that controls the sequencing
of the records and a set of b-threads that model different consider-
ations of how the records should be processed.

To demonstrate the technique, we present an implementation of
the Sieve of Eratosthenes algorithm in Figure 7. The sequencer is

sequencer(f) when I < 100 ->
sync(#sync{wait=[I], request=[I]]),
T = sync(#sync{

"¿11=
[prime, not_prime] ,

request= [prime , not_prime]]) ,
io:format("-w is -w -n", [f,T]),
sequencer (I+1-) ;

sequencer(I) -> io:format("----n").

pFactors(I) -> pFactors(2*T, I) .

pFactors(N,I) ->
sync(#sync{wait = tNl}),
sync(#sync{¡1eqk=[prime], wait = tN+l1]),
pFactors(N+I, f) .

factory(f) ->
I = sync(#sync{wait = tIl}),
T = sync(#sync{wait = [prime,not_prime]]),if

1 == prime _>
add(spawn(funO -> pFactors(I) end), j_);

true -> ok
end,
factory(I+L) .

runO ->
initO,
add(spawn(funO -> sequencer(2) end), 3),
add(spawn(funO -> factory(2) end), 4),
startO.

Figure 7. Illustration of coordinated sequential batch processing:
BP version of the Sieve of Eratosthenes.

a b-thread that leads the sequential processing of the natural num-
bers, and attempts to declare each one as a prime. The pFactors
b-th¡ead blocks the multiples of a prime number from being de-
clared as prime. The factory b-thread is responsible for spawn-
ing and registering a pFactors b-thread whenever a prime number
is discovered. Note that such dynamic addition of b-threads is an
extension of the basic collaboration described above, and requires
further attention in definition and development. The start method
starts an instance of the sequencer and the factory b{hreads.
This code does not conform with the assumptions outlined in Sec-
tion 5.4.1 above and therefore cannot be automatically visualized
by bs-wis.

7.2 Tic-Tac-Toe

As another (larger) example of a code that uses the proposed Bp
design pattern, we describe an implementation of a computer pro-
gram that plays the well known game of Tic-Tac-Toe. Game play-
ing behavior by humans is naturally decomposed into independent
behaviors of complying with the rules, random or default moves,
and an attempt to apply various tactics accumulated with experi-
ence. Thus, the purpose of this example is to show how the Bp
pattern can be used to construct a composite behavior from a set of
simpler, intuitive b+hreads.

The game involves two players: one marked x is played by the
human, and a second marked o is played by the computer. The
events in the program are pairs of the form (x,,Sq) or (o, SS),
where Sq references a square in the 3 x 3 board, and is an integer
between 1 and 9 (see figure below).

t

I7

x
1 2

0
3

X o
5

7
c
a

X
I

A game is played as a sequence of events; e.g the sequence
(x,1), (o,5), (x,9), (o,3),(x,7), (o,8), (x,4), describes a game
round in which x wins, and its final configuration is:

Below we list the b-threads ofthe program and use the visual-
ization (automatically generated from the Erlang code) to explain
their behavior.

detect-win: This b-thread detects the occurrence of winning sce-

narios. Independently of how the game is played, the basic rule
of the game that says "the first player to get three in a line wins"
can be directly translated to a simple b-thread as shown in Fig-
ure 8.

enforce_turns: Another rule for this game is that "players alter-
nate placing xs and os on the board". This, again, translates
directly to a simple b{hread as depicted in Figure 9.

disallow-square-reuse: This b-thread prevents a given square
from being marked twice. See Figure 10.

default_moves: This b-thread simply requests the marking of all
squares. The order of the requested events determines their
priorities in our strategy: try to mark the center square first, then.
the corners, and only then the remaining squares. Requested
moves will be triggered only when not blocked and when there
are no higher priority unblocked requests. With the addition
of this b-thread, the program can now play legally and can
complete any game - though its strategy is quite simplistic.

prevent-line-with-two: One of the first rules of thumb, taught
to someone learning how to play the game, is that when your
opponent (in our case the x player) is about to complete a line
of three, you should put your mark (in our case o) on that line
to preempt the attack. This rule can be directly translated to a
b-thread, as shown in Figure 12.

complete_line-with_two: This b-thread implements another basic
rule of thumb of tic-tac-toe: whenever you can complete a

(vertical, horizontal, or diagonal) line and, by that, win the game

- do it. Note that, since the winning is immediate, the attack
can have a higher priority than defense. In particular, when
prevent-lines-with-two requests to preempt an attack and
complete-line-with-two requests the winning move - the
latter request should be chosen. This is implemented in the BP
design pattern using the priority mechanism - events requested
by a b-thread with higher priority are chosen over requests ofb-
threads with lower priorities. The complete-line-with-two
b-thread is depicted in Figure 13.

intercept- single- fork: This multi-instance b-thread defends against
situations where a future marking by player x will present
him,/her with the choice of winning in one of two different
lines. For example, following a mark of square 6 and square 8

by x, player o will try to mark square 9. See Figure 14.

intercept_ double_ fork: This b-th¡ead defends against situations
where a future marking by player x will present him,/her with
the choice of creating two forks as described above by marking
two opposite corners when o marks the center. The defense used
by this b-thread is to attack, by marking square 2 and forcing the
opponent to defend and abandon his own attack. See figure 15.

This set of b-threads constitutes a complete computer program
that plays tic-tac-toe against a user. The strategy for the o player,
played by the computer, emerging from the composition of the b-
threads is optimal in the sense that the o player will never lose the
game (the x player, played by the user, can force a tie but can never
win). In addition to the b-threads, the code includes one additional
module, not listed here, containing initialization code that spawns
and registers copies of the b-threads.

8. Known Uses and Related Work
The event-based and statelike nature of BP makes b-threads some-
what similar to the gereric finite state machine (gen-f sm) module2
from the Erlang standard library. Both the gen*fsm and bp mod-
ules deal with a state-based reaction to events. However, there are
several differences between the two modules:
r gen-fsm does not provide the option to block events.
o gen-fsm does not deal with coordinating between several in-

stances.
r gen-fsm does not distiguish between events that are waited for

and other events. It will handle any call to gen-fsm : send-event
One can view the bp module as an extension of gen-fsm, designed
for coordinating between several processes.

In addition to the general capabilities and broad usage of Erlang
in concurrent processing, particular attention to programming inde-
pendent behaviors in Erlang can be seen in systems such the ERES
rule-production system [1 l] or the eXat agent programming system

[10]. What distinguishes b-thread synchronization in the proposed
pattern from the classical programming of concurrent behaviors in
Erlang is the ability of one process to prevent the occurrence of an
event requested by another process, without each party's explicit
awareness of the existence of the other party. It will be interesting
to explore the addition of the proposed synchronization approach
with its compact blocking idiom into the above systems.

The proposed pattem and module for the Erlang language fo1-

lows in the footsteps of scenario based programming and behav-
ioral programming of LSCs [1,3]and BPJ[6].

The formal visual language oflive sequence charts (LSCs) was
defined in [1]. The LSC language extended message sequence
charts (MSC)[7], and the then-current UML sequence diagrams
mainly by adding modalities to events (UML sequence diagrams
were later enhanced to express some ofthese notions [9]). The LSC
language adds to the sequence diagram a notation that distinguishes
between events that must happen ("hot"), events that may happen
("cold"), and events that must not happen (marked explicitly or
implicitly as forbidden). These modalities enable the direct exe-
cution of LSC specification where the Play Engine tool processes
the LSC specification and generates a sequence of events that sat-
isfies the specification. The Play Engine does this by keeping track
of the next candidate events on each of the charts and selecting
a next event to be triggered based on the specified modalities. If
no event can be selected without violating the specification - the
system stops. Together with other constructs (objects and proper-
ties, flow control, variables, access to functions in other languages,
symbolic messages, symbolic objects, and a notion of time), the
LSC language and the Play Engine show that independent units
of behavior description can be used not only in requirements and
specifications, but in building the final executable.

The same concepts were implemented in Java through BPJ li-
brary [5, 6] (and can be similarly implemented in other textual, pro-
cedural languages). Each behavior is coded in its own Java thread
- called a b-thread. The b-thread calls the behavioral synchroniza-
tion function of the BPJ library (called bSync), passing to it three
parameters - a set of requested events, a set of watched events and

18

2http: / /www. erlang. org /doc/nan/gen-fsm. html

a set of blocked events. The calls to BPJ also synchronize all b-
threads, by suspending each caller until al1 registered b-threads post
their wishes. Then, a central coordination mechanism selects an
event that is requested by some b+hread and is not blocked by any
b-thread, and resumes all b-threads that eithe¡ requested the same
event, or announced it as a watched event. In BPJ the b-thread re-
lies on the underlying language for flow control, variables, objects
and other programming necessities. The library and source code
examples are available at [5].

9. Conclusion and Future Directions
A proof-of-concept is described for a design pattern and a support-
ing module for composing an application from a set of behavior
threads that independently request, block, and wait for events. We
believe that this design pattern can create valuable synergy between
behavio¡al (or scenario-based) programming and functional pro-
gramming in Erlang.

Among the useful features of behavioral programming are:

o Behavioral Modularity: B-threads can be coded relatively inde-
pendent of each other - interacting mainly through events that
are part of overall system behavior. The behavior of multiple b-
threads is successfully interwoven, even though each bthread
has little or no awareness of the identity of the other b{hreads
or of their internal structure.

. Incremental Development: New modules that add or restrict
behavior can be added to an existing system with little or no
change to existing modules. The new module relates to the
behavior and the events of the existing system, and not to its
structure and code. For example, applications written in this
behavioral approach can be more readily patched to correct
errors or handle small changes in requirements. The patch, or
the new module, can watch out for the event sequences whose
handling should be changed, and override the existing behavior
with new behavior.

The incrementality of behavioral programming allows for ob-
serving meaningful behavior from early stages of development.
As each b-thread generates observable system behavior, incom-
plete versions of the systems can be used to start validating or
refining requirements and specifications.

An additional aspect of incremental development can be post-
deployment system customization, where an end-user can mod-
ify the system behavior by adding b-threads for simplifying cer-
tain user tasks.

o Naturalness: In natural language conversations and in require-
ments documents, people often describe behaviors of systems in
terms of scenarios. Therefore, behavioral programming sêems
like a natural approach.to development of software systems.

Additionally, due in part to the behavioral modularity feature,
behavioral programs can more readily "explain" their decisions
(and behavior). Events that caused transitions in a recently
executed chain of events can provide important insight into
the rationale for the program's progress, something that may
be harder to infer from a usual trace. This may be useful in
developing and debugging behavioral applications, in using b-
threads for monitoring, and in developing intelligent agents,
expert systems or systems capable of learning.

¡ Suitability to multi-core and distributed systems: In behavioral
programming each behavior thread is associated with an exe-
cutable system process or thread. This "automatically" struc-
tures the developed system as a set of concurrent processes. In
the context of Erlang, this enables leveraging the ease and ef-
ficiency of handling concunent processes in this language to-

gether with natural decomposition of system behavior, towards
a system that utilizes resources effectively while maintaining a
natural and robust structure.

The proposed pattem and module are in early development
stages and can be considered a proof-of-concept for demonstrating
the principles of behavioral programming in Erlang.

Future directions for research include devising higher level
idioms to control behavior, and developing domain specific lan-
guages based on behavioral programming principles.

For the tool, future work includes robustness improvements
and adding functionality that exists already in the BpJ library.
For example, BPJ supports event filters - calling of a function to
determine membership of an event in the sets of blocked or watched
events. This allows more flexible definition of the event sets, and
handling of very large, or possibly infinite, sets.

The visualization tool we propose here is focused on compre-
hension of individual b-threads. It will be interesting to explore
visualization techniques that assist in comprehension of sets of b-
threads, in particular the interaction between diffe¡ent b{hreads,
possibly along the line of visualizing LSC dependencies as done
in [4].

As a general programming paradigm, behavioral programming
is still in very early stages. It is presently manifested in the visual,
multi-modal language of LSC, and in the Java library BpJ. We hope
that the design pattern proposed here for functional programming
in Erlang will help expand the reach of this promising concept, and
drive additional research and development required for its success.

Acknowledgments
The research of the first two authors was supported by the Lynn and
William Frankel Center for Computer Science at Ben-Gurion Uni-
versity. The research of the thi¡d author was supported by an Ad-
vanced Research Grant to David Harel from the European Research
Council (ERC) under the European Community's Fp7 programme.

References

[] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. "/. on Formal Methods in System Design, 19(1):45-80, 2001.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pauems.
Addison-Wesle¡ 1 995. ISBN 0201633612.

[3] D. Harel and R. Marelly. Come, Let's PIay: Scenario-Based program-
ming Using LSCs and the Play-Engirze. Springer, 2003.

[4] D. Harel and I. Segall. Visualizing inter-dependencies between scenar-
ios. In R. Koschke, C. D. Hundhausen, and A. Telea, editors, SOFZ
VIS, pages 1 45-1 53. ACM, 2008. ISBN 978- l -60558- 1 1 2-5.

[5] D. Harel, A. Manon, and G. Weiss. The BpJ Library. www, cS.
bgu. ac . ill-geraw.

[6] D. Harel, A. Marron, and G. Weiss. Programming coordinated scenar-
ios in java. ln Proc. 24tlt European Conference on Object-Oriented
Programming (ECOOP 2010),2010. to appear.

[7] ITU. International Telecommunication Union Recommendation
2.120: Message Sequence Charts. 1996.

[8] R. Keller. Formal verification of parallel programs. CACM, l9(7):
37 l-384, 1976. ISSN 0001 -0782. doi: hftp://doi.acm.org/10. I 145/
360248360251.

t9l OMG. Unified Modeling Language Superstructure Specification, v2.0.
Aug. 2005. URL http : //www. omg . org.

[10] A. D. Stefano and C. Santoro. Using the erlang language for multi-
agent systems implementation. In 1AZ, pages 679-685.IEEE Com-
puter Society, 2005. ISBN 0-7 695-2416-8.

tl1l A. D. Stefano, F. Gangemi, and C. Santoro. Eresye: artificial intelli-
gence in erlang programs. In Erlang Workshop pages 62-71. ACM,
2005. rsBN 1-59593-066-3.

ì :i':.

I

i

'
i,,

19

staft (Player, [S quarelRest])
wait=[{Player,Square}]

declare win(Pþer)
requesF[{win,Player}]

start(Player, Rest)

when Rest:: []/

Figure 8. The detect-win b-thread. An instance is spawned for
each of the 6 permutation of the 3 events that comprise one of the 8
winning lines (3 vertical, 3 horizontal, and 2 diagonal) for each of
the two players (total of 96 instances). For example, an instance that
waits for (x,9), (x,5), (x,1), and announces a win by x is started
by the line spawn(cletect-win, start, Ix, [9,5,1-] I). For
this example, in the first state, Square is matched with 9 and Rest
with [5,]-1. The b-thread waits for (x, 5) and, if that event occurs,
start (x , t 5 , 1-l) is called where Square is matched with 5 and
Rest with [L] and so on. Eventually, if (x,5) and afterwards (x, 1)
occur, the b-thread requests the event (wi,n,x) to announce that x
won the game.

o,_)/

Figure 9. The enforce-turns b-thread. The variables AIl0 and
AIIX are lists of all the o events and all the x events, respectively.
Tum enforcement is achieved by altemately blocking all o or all x
events.

Figure 10. The disallow-square-reuse b-thread. Each of the
nine instances of this b-threads waits for either (x,

^9q) or (o, SS),
for a particular value of ,9q € {1,. . . ,9} and, when one of these
two events is observed, the b+hread blocks them both forever.

startO

Figure 11. The default-moves b-thread. Requested moves will
be triggered only when not blocked and when there are no higher
priority (unblocked) requests. The order of the requested events
determines their priorities in our strategy: try to mark the center
square first, then the corners, and only then the remaining squares.

{x,Square}/
start(Rest)

{x,Square} when lenglh(Rest) =: 1/
prevent(Rest)

Figure 12. The prevent-Iines-with-two b+hread. The pa-
rameter to the first state of the b-thread (called start) is a list of
length three containing the three squares of a (vertical, horizontal,
or diagonal) line that the b+hread is protecting (a copy of this b-
thread is instantiated for every permutation of the squares of each
line). Initially, the b-thread is waiting for the opponent to play the
first square on the line. When this happens, the b-thread takes a self
transition to the state start and waits for the opponent to mark the
second square . Then, if the opponent marks the second square, the
b-thread moves to the state prevent where a request to put an o on
the last square is issued.

start(Square)
waic[{x,Square}, {o,Square}]

block(Square)
blocle [{x,Square}, {o,Square}]

stafiO
requesF[{o,5}, {o,1 }, {o,3}, {o,7},

{o,9}, {o,2}, {o,a}, {o,6}, {o,8}l
wait:AllEvents

staú0
block:AllOs
wait=AllXs

{*,*}/

alternateQ

block:AllXs
waieAllOs

start([SquarelRest])
waiF[{x,Squarc}]

prevent([LastS quare])
requesF [{o,LastSquare}]

20

start([SquarelRest])
wair[{o,Square}]

complete([LastS quare])
request:[{o,LastSquare}]

{o,Square}/
start(Rest)

o,Square) when length(Rest):: 1/
complete(Rest)

Figure 13. The complete_lines_with_two b-thread. Similar
in structure to the prevent_lines_with_two b+hread, shown
in Figure 12. The difference is thar this b-thread is waiting for o
moves. Note that the b-thread is independent of the scenarios that
lead to requests of the first two o moves (issued by other b-threads).

{x,S} when
S:= SI;
S :: 52/

,E)

{o,s}/
s ite_corner(Oppo siteComers)

k0

Figure 15. The intercept_double_fork b-thread. Instances
correspond to two opposite comers. The b-thread waits fo¡ x to
mark one of the corners, then for o to mark the center and, lastly, if
x marks the opposite comer, the b-thread requests to mark square
number 2 (the middle of the upper row) with an o.

{_,S} when
s:=J;
S:: E2;
S :: E3l

stop0

x,S) when
S:: S1;
S :: 52/
third(J)

Figure 14. The intercept_single_fork b-thread. Instances of
this b{hread correspond to five squares: SL, 52 , J , El_, E2 that form
two intersecting lines where J is the junction, i.e., the square where
both lines intersect. The thread takes action if Ei_, EZ remain empty
and S1-, 52 are marked by x. When this happens, the thread requests
to mark J with o.

s tart(Oppos itec ornerc)
waic[{x,Sq} ll Sq <- OppositeCorners]

c enter(Opp os iteComers)
waie[{o,5}]

opp osite_comer(Oppo siteComers)
waic[{x,Sq} ll Sq <- OppositeComers]

attackQ
requesF[{o,2}]

start(F : [S1,S2], E: U,E2,E3I)
waiF[{x,Sq} ll Sq <- F ++ E]

++[{o,Sq} ll Sq <- E]

second(F : [S1,S2], E: U,E2,E3I)
Ìvait:l {x,sq} ll sq <- F ++ E]

++[{o,Sq} ll Sq <- E]

{_,S} when
s=:J;
S:= E2;
S :: E3l

stop0

third(J)
requesF[{o,J}]

2t

A Unified Semantics for Future Erlang

Hans Svensson

Department of Computer Science and Engineering,
Chalme¡s University of Technology,

Göteborg, Sweden

hanssv@chalners. se

Abstract
The formal semantics of Erlang is a bit too complicated to be easily
understandable. Much of this complication stems from the desire to
accurately model the current implementations (Erlang/OTP Rll-
R14), which include features (and optimizations) developed during
more than two decades. The result is a two-tier semantics where
systems, and in particular messages, behave differently in a local
and a distributed setting. With the introduction of multi-core hard-
ware, multiple nrn-queues and efficient SMP support, the boundary
between local and distributed is diffuse and should ultimately be
removed. In this paper we develop a new, much cleaner semantics,
for such future implementations of Erlang. We hope that this pa-
per can stimulate some much needed debate regarding a number of
poorly understood features of current and future implementations
uf trrlalg.

Categories and Subject Descríptors D.3.1 lFormal Definitions
and Theoryl: Semantics

GeneralTerms Languages, Verification

Keywords Erlang, Semantics

1. Introduction
In the past years quite a lot of effort has been spent on describing
and defining the semantics of Erlang; from the early work of petter-
son [5], via the formal definition ofsingle node semantics by Fred-
lund [3] and the more highJevel language philosophy description
by Armstrong [1], to the definition of the distributed Erlang seman-
tics by Claessen and Svensson [2] later refined by Svensson and
Fredlund [6]. The end result is an accurate formal semantics of Er-
lang, that in detail describe how the currenr (Erlang/OTP Rl1-R14)
implementation behave. The successful implementation of McEr-
lang (by Fredlund and Svensson [4]) is further evidence that the
semantics is actually useful and can be used for practical purposes.

Unfortunately, the formal semantics is a bit too complicated
to be easily understandable. This is a bit of a nuisance, since the
language design philosophy tll is very clean and easy to grasp.
When analyzing the current Erlang semantics we could see that
much of the complexity stems from the strive to very closely follow
the current implementation of the Erlang run-time system (ERTS).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided thåt copies a¡e not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republisb, to post on servefs or to redistribute
to lists, requires prior specific permission and./or a fee.
Blang'10, September 30,2010, Baltimore, Mtryland, USA.
Copyright @ 2010 ACM 978-l-4503-0253-ttt\/09... $10.00

Lars-Åke Fredlund Clara Benac Earle

Facultad de Informática,
Universidad Politécnica de Madrid,

Spain

{fred, cbenac}obabel.ls . fi. upn. es

The result is a two-tier semantics where systems, and in particular
messages, behave differently in a local and a distributed setting.
Also, the Erlang language has evolved over the years, leaving some
legacy constructions that could have been avoided if the language
was re-constructed today. The most striking example is the overlap
between monitors and links, where there is very little practical
difference between a trappedlink-message and a monitor-message.

With the cunent trend being the introduction of multi-core hard-
ware, and the latest advances in the ERTS with multiple run queues
and efficient SMP support; the boundary between local and dis-
tributed is diffuse and should ultimately be removed. In this paper
we propose a new, much cleaner semantics for a future implemen-
tation of Erlang, where the¡e is no boundary between local and re-
mote processes and where the semantics does not in itself hinder
parallelization.

It is not our intent to define the future semantics of Erlang, but
we hope to initiate, and stimulate, the discussion and debate of this
topic. We believe that it is vital to lift some of the current restric-
tions in o¡der for Erlang to continue to scale to upcoming multi-
core architectures. We are also well aware of all the complications
involved in (drastically) changing the semantics of a mature pro-
gramming language. The vast amount of legacy code, and back-
wards compatibility are large hurdles to overcome. Nevertheless,
the earlier we start thinking about these improvements, the more
time we have to make them before reality catches up!

Paper Organizatíon The paper is organized as follows. In Sect. 2
we begin by giving a highJevel intuitive overview of the new
semantics, before we formally state definitions and rules of the new
semantics in Sect. 3. In Sect. 4 we describe the inner workings of
the node controller. Thereafter, in Sect. 5, we resrict the possible
execution sequences by stating a rule for fairness. Thereafter, in
Sect. 6 we make a few illustrative comparisons between the new
and the curent semantics. Finally, we conclude and add some
future directions in Sect. 7.

2. Intuitive Semantics
Before we start listing definitions and semantic rules, we provide
an informal but hopefully intuitive high-level overview of the new
semantics.

In our setting, a complete distributed system consìsts of a num-
ber of nodes. The nodes are the top-level containers in such a sys-
tem. A node contains a node controller (an addition in this new se-
mantics), and a number of processes. One should note that a node
is not equivalent to a physical machine, rather the opposite, a sin-
gle machine can host many nodes. This high-level description of a
distributed system is illustrated in Figure l.

I

I'

23

monitors
Node

controllerregistry

controller
Node

links

Proc B Proc C

Node 2

message queue

expressron

Proc A

Node I

Figure 1. Distributed system - Nodes, node controllers, and processes

2.1 B.verything is Distributed

As mentioned in the introduction, with the introduction of multi-
core architectures, the boundary between local and remote is more
diffuse. Therefore, the new semantics treats all messages (includ-
ing messages sent to one-self!) equally, and all messages are sent

through a (virtual) system message queue (The ether). In practice
this means that every message-passing consists oftwo steps, send-
ing and delivering. Thus, messages sent between different pairs of
processes can be freely re-ordered.

We have also chosen to make (almost) all side-effecting actions
(such as spawning a new process, linking to a process, etc.) asyn-
chronous. To stress that many side effects have a similar impact
on the system, they are treated in a uniform way by the introduc-
tion of a node controller. The node controller is responsible for all
node-local administration.

As an example of a side effect, consider registration of a name
for a process. This is done by sending a signal to the node con-
troller. Some time later the node controller receives the signal,
decides whether the name can be registered and sends a reply to
the process doing the registration. This might seem a bit imprac-
tical from a user perspective, but nothing stops us from defining
a higherJevel function that sends the register-signal and waits for
the reply.

2.2 Uni-directional Links Only

In the new semantics we provide both the concept of littks and
monitors. However, we do not have any functionality like trapping
¿rifsl that exists in the current semantics. This means that if a linked
process terminates, the linking process is also terminated, no 'but's
and 'if's. (The trap exit functionality is in practice the same as a

I In the current semantics, processes are able to trap exit-signals, and treat
them as ordinary (information-)messages, thus avoiding termination upon
receiving an exit-signal.

monitor.) We have also opted for making links and monitors uni-
directional. That is if process .4 is linking to process B, a failure of
A does not affect B.

As a practical example let us consider how to re-implement the
supervisor behavior using uni-directional links and monitors. As-
suming that we want to supervise a child process, specified as the
tuple {M,F,A}, so that when the child terminates the supervisor is in-
formed, and if the supervisor terminates abnormally, the child ter-
minates too, then the following supervisor code fragment suffices:

SupervisorPid = selfO,
ChildPid =

spawu(fun O ->
link(SupervisorPid), apply (l'1,F,4)

end),
MonitorRef = nonitor (process , ChildPid) ,

2.3 A Built-in Registry

We have decided to make an addition to the semantics by including
a process registry in the semantics. This inclusion is questionable,
but we think that the ability to communicate with named processes
is such a central concept in Erlang that it dese¡ves a place in the
semantics.

As in current Erlang, the basic operations supported are send-
ing a message to a named process (atortnsg), sending a message
to a named process on a remote node ({"tor,oode}!nsg), and regis-
tering, unregistering and name lookup. However, for uniformity, in
this semantics names can be registered for remote processes (i.e.,
resi ster (nue , pid) does not fail if pia is a remote process), and reg-
istering a local process at a remote node is supported too (using
the operation register(node,næe,pid)). As a consequence, when a

message is sent to a remote node using the syntax {aton,node}lnsg
there is no guarantee that the process that should receive the mes-
sage is located at no¿e; thus it may be necessary to relay the message
to a process on yet another node.

24

2.4 Message-PassingGuarantees

There are few message-passing guarantees in general in the new
semantics, but for each pair of processes the order of messages
is guaranteed. That is, if process A sends a stream of messages
Mt, Mz, Ms,. . . to process B, then process B will receive the
messages in exactly that order. (With rhe possibility of dropping
messages at the end of the sequence because of a node disconnect.)

It should be noted that this guarantee matches exactly what is
outlined by Armstrong [1] in his thesis. However note that as ob-
served in Svensson and Fredlund [7], cunent Erlang implementa-
tions does not provide this guarantee, as when distributed processes
communicate, messages may be lost.

Further note that in the semantics there are no guarantees re-
garding the ordering of messages delivered to a process if that pro-
cess is addressed both directly (using its pid) and indirectly rhrough
a registered name. To exemplify we assume that a process P exe-
cutes the code fragment Q !nsg1 , q_nue !nsg where Q is bound to the
pid of a process I also registered under the name q_næe. In such a
scenario there are no guarantees provided by the semantics regard-
ing whether nssl or nss2 is delivered first to the mailbox of Q.

3. Formal Semantics
In this section we present the semantics in a style similar to earlier
Erlang formal semantics. We use this style since it is straightfor-
ward and easy to follow, while still being detailed enough to allow
precise arguments about correctness. We make the necessary defi-
nitions before presenting the semantic rules.

Definition I A process, ranged over by p € process, is a
triplet: Expression x Processldentifier x MessageQueue, written
(e, pid,q) such that

¡ e is an expression currently run by the process,
o pid, is the process identifier of the process,
e q is a message queue.

The expression (e) in a process should be inte¡preted as a normal
(Erlang) expression similar to the expressions defined in [3].

Definition 2 A process group, rangedover by pg € ProcessGrou p,
is either an empty process group Ø, a single process, or a combina-
tion ofprocess groups p91 and pgr, written as nOtllo nOz.

Definition 3 A node controller, ranged over by nc Ç NodeCon-
Lroller, is a triplet: P(Processldentifier x Processldentifier) x
P(MonitorReference x Processldentifier x Processldentifiei) x
P(Processldentifier x ProcessName), written (lnks, rnns, ieg)
such that

¡ Inks is a set of links, i.e. ruples (Iink_from, li,nk_to),
o mns is a list of monitors, i.e. tuples (mon_name, mon_frorn,

mon-to),
. reg is a set of registered names, i.e. tuples (name, pi,d).

Definition,4 A^System-message queue, also named an ether,roinged
over.by eúå € SystemMessageQueue, consists of a flnite sequeice
of triplets ldentifier x ldentifier x Signal. Let e denote theèmpty
sequence, (.) is concarenarion and (\) l. delerion of the fi^rjt
matching rriplet, e.g.:

eth : (az, b1, c1). (a1, b2, c7). (a1, b2, c2). (a1, b2,cr) \ (or, ö2, cr): (a2, fu , c¡). (a1, b2, c2). (a1, b2, c1)

Definition 5 A node, ranged over by n € Node, is a triple:
ProcessGroup x Nodeldentifier x NodeController, it is wriiten
lpg, nid,,n c] such that

o pg is a group processes running at the node,
t nid is a unique identifier for the node,
o nc is a node controller.

Let ldentifier be the union ofprocess identifiers (Processldentifier)
and node identifiers (Nodeldentifier), and let identifiers be ranged
overby id e ldentifier.

Definition 6 A node system, ranged over by ns € p Node, is
either an empty node system Ø, a single node, or a combination
of node systems nsr and ns2, written as nsr llrnsz.

Definition 7 A system, ranged over by s € System, is a tuple:
2 Node x SystemMessageQueue, written flrzs, elh] such thaf

¡ ns is a node system, and
t eth is an ether (system message queue).

Intuitively, the composition of processes into process groups
and nodes into node systems should be thought of as a set òf
processes (nodes). We will take care to deûne the semantics in such
a way as to ensure that the operators ll

"
and ll" are commutative and

associative.
To keep the semantic rules reasonably short and readable we use

some supportive functions to abbreviate some lengthy (and often
repeated) constructions.

Definition 8 Let the function isNid(z) (where z € ldentifier) return
true if the identifier i represents a node identifier, and false if it
represents a process identifier.

Definition 9 Let the function node(p) (where p € processldenti-
fier) return the node identifier for a given process identifier.

Definition 10 Let the funcrion destNid(sig) retum the node iden-
tifier of the remote node involved in the signal sig (note that the
return value is undef ined for some signals), e.g.

destNid(link(pid)) ---+ node(prid), and
destNid(spawn(e, ref)) ---+ undef ined

Definition 11 ethMatch(eth,to,from), is a function that given a
system message queue, a sender identity (Jrom), and a ¡eceiver
identity (úo) retums the first message in the queue senr.by fronl
to lo, e.g.

eth : (o",br,ct)' (a1,bz,ct). (or,b",cz). (ar,bz,ct)
:+ ethMatch(eúå.,a1,b2) - c7

Definition 12 Let the functions pids(pg) and nids(ns) return rhe
set of process identifiers belonging to processes in the process
grorrp pg and the set of node identifiers in the node system ns
respectively. Further let a process group and a system be well-
formed if its process identifrers and node identifiers are unique,
i.e., a process identifier belongs to at most one process and a node
identifier to at most one node, and an identifier is either a node
identifier or a process identifier.

In the following we assume that all (Erlang) node systems
are well-formed and that they only contain well-formed process
groups.

In the semantics, signals are items of information transmitted
between a sending and a receiving process (or node controller).
A process action, committed by a process, group of processes, or
node, is either a silent action, an input action, an output action, a
node termination, or a node disconnect.

25

si,g :::
I

I

I

I

Definition 13 (Process signals) The process signals, ranged over
by si,g € Signal are:

-- eJ.e'
silcni-

(e, pid, q) -\ \e', pid, q)

read(qr,!) |

,"ud (e,pid,h' u' Qz) 3 ("',pid,qL. q2)

test(q) |,^^, e+e
\e, pi.d, q¡ + \e', pi.d, q)

self 0+pid,rt#
\e, pid,q¡ + \e', p'id,q)

rnessage(T,,)
link(pi,d)
unlink(pød)
rnonitor(pid, ref)
unmonitor(re/)
rnonitor-no de(ni,d.)
unmonitor-node(re/)
whereis(riørne)
register(name, pid)
spawn(e, rel)
spawn-node0
nsend(narne,u)
exit(u)
died(id, u)

message
linking with process
unlinking process
monitor process
unmonitor process
monitor node
unmonitor node
lookup pid for name
register name for pid
spawn a process
spawn a node
named send

extemal termination signal
termination signal

silent action
output action
input action
node termination
node disconnect

Definition 14 (Process actions) The process actions, ranged over
byo€Actionare:

Table 1. Rules for process-local expression evaluation

side-etr

sirle -eff (args)*res ,

(res, r'd, szg) : ¡1¡5¡t(node(pid), sid,e-eff , args)

(e, pi,d, q) W (e', pid,, q)

Table 2. Rules for side effecting expression evaluation

mkSig(nid,l,fpid,ul ---+ þ,pid,message(o))
m kSig (nid, l, f{name, ni,d'), u\ ---+ þ, nidt, nsend(norne, u))
mkSig(nzd, l,lname,al ---+ (u, ni.d, nsend(nøme, u))
mkSig(nid, exit,lpi,d,,u\ ---+ (ok, pi.d,exit(u))
mkSig(riid,li.nk,[pzd] ---+(ok,nid,,link(pid))
mkSig(ned, unlink, [pzd) --+ (ok, nid,unlink(pi.d,))
mkSig(nzd, spawn, [e, rel) ---+ (ref , nid,spawn(e, ref))
mkSig(ri.id, spaun,ln'id' ,e,refl ---+ (ref ,nid' ,spawn(e, re/))

Table 3. Definition of mkSig0

not depend on anything outside the process, the context is not vis-
ible in the rules. (The ru1es are lifted to the system level by the in-
ternal-rule defined in Table 5.) In the rule silenr, if the expression e

has a transition e J. e' (a normal computation step) then the pro-
cess (and in the greater scheme the whole system) (e, pid, q) has a

transition labelled by the silent action r- to the process (e' ,pid,q).
In the ¡ead-rule, a transition from (e, p'id, q! .u . q2) to the target

process (e' , pzd, qt . qz) is enabled whenever the process mailbox
(queue) can be split into three parts q1 . u . q2, and the expression

transition receive'.
"

read(qi'u),
e' is derivable at the expression

level. (See [3] for the exact definition of the receive-ru1e.) Thus,
the rules read and receive together ensure the intuitive semantics
of the receive construct. The side effecting actions are handled
by the rule in Table 2.

Side-effectíng (node controller) expression evaluatíon Table 2

contains the rule for side effecting actions. Many of these actions
require involvement of the node controller. The side-eff rule is
generic, and include the actions: send, exit, link, unlink, monitor,
unmonitor, spawn, register; whereis, monitor-node, and unmoni-
tor-node. Al1 rules in the table are asynchronoas, e.g. whereis0
returns immediately with ok, whereas the "real" result (for example
for whereis and unlink) arrive later (as a normal receivable signal).
The asynchronous nature of these operations results in deceptively
simple semantic rules. In Table 7 the node controller side of these
rules is presented, and in Sect. 4 the more complex internals of the
node controller is explained. The side-eff-rule uses the translation

::
I

I

I

I

(\.

[idç..* ri.ø
pid ? ¡,om s'i,g

die(nid,)
disconnect (ni,d, 1, niil 2)

pi.d I u
exiting(u)
read(q, u)
test(q)
f(rr,...,an)*u

In the following we define formally the possible computation
steps of an Erlang system. In this definition we assume the ex-
istence of a set of transition ru1es for expressions, a subset of
Z(Expression x exprAction x Expression), which can be found
in [3]. For completeness we repeat below the definition of the ex-
pression actions:

Definition 15 (Expression actions) The expression actions, rang-
ed over by a € exprAction, are:

computation step
output
exception
read from queue
checking queue contents
built-in function call

Intuitively, f(ur, . . . ,un) - u corresponds to the call of a builrin
function / which returns the value o.

Definition 16 Let the function mkAction(rnsgs) be defined as fol-
lows:

mkAction (e) ---+ î
m kAction ((úo, from,sig)' ms g s) --+ to | ¡o,n sig ; m kAction (rnsgs)

Definition 17 The system transition relation is the least relation
satisfying the transition rules in Tables 1 - 9

It should be pointed out that some rules should be combined
together to achieve the desired effect. The most obvious examples
are perhaps the output-rules, where the message is sent in the
side-eff-rule in Table 2 and delivered in the ouúput-rule in Table 5.

Most of the semantic rules are self explaining, but we go
through each table below and point out some subtleties and ex-
plain the more complicated rules.

Expression evaluation ín process context Table I contains ex-
pression evaluation that is local to a process. Note that all these ac-
tions take place in a larger context (a system), but since the rules do

d.

26

node
lt(e, pid, q) ll, p9, nid, ncl ll * ns, ethn J+ fi(e', pid, ø) ll o nø, nid, ncl ll * ns, eth!

sig : ¿¡"¿loid,nornal)

rr(u'pi'd''ø)tt"no'"*':u'::::,'"::Y:*"",)rtt*ns'eth'(ni'd'pid"si's)t

fi(e,pi.d,,ø)llono,nid,nc]ll*rr,"thn
nidte¿¿sigrfllpg,ni,d,,nc]ll*ns,eth.(nid,,pi,d,,sig)\

termination

exiting

e
sparorode0*nioll e' nid,' : fresh)

SpAWnnode

It(e,pid,q)llrpg,ni,d,nclns,eth\ 4[[("',pid,q)ll"pg,ni,d,nc)ll*lØ,ni.d,,,(Ø,Ø,Ø)]llrns,ethl

function mkSig to construct an appropriate signal, this function is
defined in Table 3.

Expression evaluation ín node context Table 4 contains the sim-
ple rule for evaluation of nodeQ in the system context. The func-
tion returns immediately (i.e. it is not asynchronous). Because the
result is depending on the node context, the rule is separated from
the rules in Table 1.

The termination- and the exiting-rule are also evaluated at the
system level. Terminated processes are removed from the system
as seen in Table 4.

The last rule in Table 4 handle the slightly odd action of spawn-
ing a new node.'lhis action is an odd bird in the semantics, and the
obvious place for such a rule would be in the general side_eff-ru\e.
However, since the result is the creation of a whole node it does
not fit into the general pattern. Moreover, making the pattern even
more general was not too appealing, instead the rule is listed on its
own here. The rule makes sure that a new node is created. with a
fresh node identifier.

Node level ínput- and output-rules Table 5 and Table 6 contains
input and output rules. The ouúpuf-rule deliver messages to the sys-
tem message queue (the ether), while the intemal-rvle simply lifts
non-output expression evaluations to the system level (as discussed
above).

For the inpuú-rules we should note that the rules can be applied
in an arbitrary order for pairs of a sender and a receiver. This means
that messages (from different senders and receivers) can possibly
be reordered. However, at the same time this introduces a problem,
nãme1y that a certain (sender,receiver)-pair is never considered.
That means that the delivery of some messages could potentially
be delayed forever. Many properties can not be proved for such
a non-fair situation, to deal with this problem we have to state a
fairness rule (in Sect. 5). Also, since nothing stops processes from
sending messages to dead processes, we need rules (the missing-
rules) to eventually remove such messages. The missing,o¿"-ru1e is
also responsible for sending some node controller reply-messages,
such as link-replies (noproc) and spawn-replies (a useless pid),by
using the ncEffect0-function. The ncEffect$-function is defined in
Sect. 4.

The exif-rule handles extemal abnormal termination of pro-
cesses, the reason for termination could be a riggered link or an
explicit call to exit0. The receiving process is terminated and the
node controller is (eventually) informed.

The presented message-passing mechanism is totally asyn-
chronous, even messages sent to oneself are delivered through the
system message queue. Finally, note that messages to node con-
trollers are dealt with in Table 7.

Node controller (meta)rules Table 7 contains meta-rules for the
node controller. The rules describe how node controller signals
are treated. There are two cases, in the normal case (the nc-rule)
the signal is at its final destination and needs only to be handled
at this node controller. In the second case (the nc¡o*o,a-rule) we
handle a signal involving a remote pid at the sender side; i.e. the
signal should be passed on after doing local actions. Specifying
these actions and replies is the meat of these rules. The actions (i.e.
the definitions of the function ncEffect) are presented in Sect. 4. To
distinguish local signals from remote signals the function destNid0
is used, it is defined in Thble 8.

It should be noted that the node controller does not have a
separate message queue. Signals sent to the node controller are
consumed immediately upon delivery. Thus, there is no selective
receive for node controllers. The nc-rule and the ûc¡omara-ttJlë ãrê
also special in the sense that they (potentially) have more than one
action attached to their transitions, both an input action and output
action(s). The interpretation of multiple actions for one transition
is straightforward; the actions are ordered, just as if there had been
several consecutive transitions with a single action. The function
mkAction0 is used to create multiple actions from a sequence of
messages.

destNid(link(pzd)) ---+
destNid(unlink(etd,)) ---+
destNid(spawn(e,ref)) ---+
destNid(nsen d(name,o)) --+

node(pid)
node(pid)
undefined
undefined

Thble 8. Def,nition of destNid0

Nodefailure rules Täble 9 contains rules for failing nodes, either
when a single node crash or when two nodes are disconnected. In
both cases the node controllers are informed. Also here we see how
deferring most of the work to the node controller saves us from
complex semantic rules. The corresponding rules in the distributed
Erlang semantics fills the majority of a page. Nevertheless, the
complexity does not fully disappear, we still have to deal with some
bookkeeping inside the node controller.

Table 4. Process rules for expression evaluation at system level

)1

p J.p'
intemal

output

nln ll, no, nid', ncl ll, ns, eth \ 3 [lp' ll, P9, ni'd, nc] ll, ns, eth\

O
to lho* 3i9

, Or

Hnll .ro,ni.d,nclll*ns,ethn
totÍronsis,[Þ'llono,nid,nc]ll*nr,"th.(to,from,si,g)!

input

Table 5. System output rules

eth Match (eúâ , to , þorn) : sig : message(t,)

ffi\e,to,ø)llrw,ni.d,,nclll*ns,eth\
to?Íronsis,ffi(e,to,q.siùllrpg,nid.,nc]

llrns, eth\(to,from,si.g)\

exit
eth Match(eúh. , pid, from) : exit(u)

fi\e, pid, o) ll , ro , nid, nclll * ns , ethl
pitl ? ¡ron exit(o) ; nid lr;a died(nid,o)

fi)lSSlIl$process

fipg, nid, ncl ll * ns, eth \ (pid, Jrorn, exit (t')), (nid,, pi.d,, died(pid, o)) l

ethMatch(eúå,to,from):sig -isNid(lo)
(node(lo) : ni'd' A to (pids(ps)) v node(úo) f nids(øs)

fips, nid,, ncl ll * ns, ethn !:-r*- ::- fipg, nid",ncl
l l

"
n s, eth \ (to, from, sifi l

ethMatch(eúå,to,from) : tig isNid(úo) úo f nids(ns)

(-, ms g s) <- ncEffect(lø, to, (ø, Ø, Ø)1, from, si.g)
ttttÐÐrttÉnoae

firr, etnn lJh':]J. fins, eúñ. \ (to,from, sig) . msgs\

nc

Table 6. System input rules

ethMatch(eth,nid,,from) : s'i,g destNid(sig) : nid, Y destNid(sig) : undef ined

(lpg', nid, nc' l, msg s) <- ncEfFect(lpg, ni.d, ncl, from, si,g)

frlpg, nid, ncl ll * ns, eth\
nid. ? ¡"n sig ; mkActìon(msgs)

ffipg' , ni.d, nc'Ill , ns, eth\(nid, from, sig). rnsgs l

ethMatch(eth,ni,iL,from) : s'i,g destNid(sig) : ¿zll nid I ni,d'

(lpg' , nid, nc'\, msgs) <- ncEffect(lpg , nid,, nc], from, si,g) msgs' : (n'i,d' , from, si,g) . msgs
IIC¡omørl

ffipg, nid, ncl ll * ns, eth\
nid, ? ¡."n sig ; mkAction(msgsl)

fipg' ,nid, r¿c'] ll, ns, eth\(nid,from, sig) .msgs'\

Table 7. Meta-rules for node controller

node¡ottun
rnsgs : {(nid,' ,ni,d,died(nid, nodedown)) | nid' e nids(n)}

ffipg, nid, nclll * ns, eth\
die(zi¡l) ; mkAction(msgs)

fins, eth . msgsl

flOd? ¿isconnect disconnect(øid1,nrid2)
¡¡Og r, n'id,t, r¿cr] ll , lpg

",
nid,z, nczlll * ns , eth\

ffpgr,nid,1,t.r] ll,u¡'pgr,nid,z,ncr)ll*ns,eth.(ni,ilt,niilz,dieð.(nid,2,disconnect)).(nid,2,nid,t,died(nidl,disconnect))l

Table 9. Node failure rules

28

4. Node Controller
In this section we thoroughly describe the node controller, and de-
fine how the different signals are handled. Looking at the variety of
signals the node controller handle, it is a fairly complex construc-
tion. However, as we see below, much of the complexity is imag-
inary, the handling of each signal alone is quite straightforward; it
is mostly a matter of bookkeeping.

For brevity we refrain from introducing all node controlle¡ def-
initions and rules. Many rules are very similar to rules presented
here; for example monitor and monitor-node behave very similar
to link (with the addition of reþrences), register is quite similar to
named send, etc. First we need to define yet another couple of func-
tions, then we look at in tum handling of: link, unlink, dead,
spâwn, and nsend signals.

Definition 18 Let the function deleteDead(pid,,nc) be defined in
the obvious way; deleting all occunences of pi,d from the node
controller structure øc. In the case when the pi,d, represents a node
(i.e. it is in fact a nid),the r¿c should be cleared of all processes at
that node as well.

Noile controller - linVunlink The rules for unlink in Ta-
ble 1l are more simple than the rules for link in Table l0 since they
do not depend on the unlinked process being alive or not. The flrst
unlink-rule is the local instance, where the unlink is treated at the
iocal node controller. In this case the node controlle¡ acknowledges
the removal of the link. In the remote case (second unlink-rule) the
link is silently removed. Combined with the rules for link one can
see that as soon as the link is removed locally, there is no risk of
getting an exit-signal 1ater.

There are three rules for link, the first rule handle the case
when the link is successful (either local or remote), and the last two
handle the case when the to-be-linked process does not exist. In the
second case, if it was a remote link (the to-be-linked process was
on a different node than the linking process) the linking process is
informed via a message to its node controller (the last rule), if it
was a local link an exit-signal is constructed directly (the second
last rule). In the first rule, we simply record the link in the lr¿frs-set
in the node controller, if it is a remote link, there might be a quick
reply from the remote node controller with a died-signal, but that
is handled by the rules for died (described in the next section).

At first it might seem a bit strange that there is no acknowledge-
ment (i.e. no message({reply, . . .})-signal) for links, but since
it is not possible to trap exits in this semantic there is no real differ-
ence between an acknowledgement followed by an exit-signal, or
just an exit-signal.2

Node controller - died The two rules in Table 12 capture all
possible combinations of links and monitors to both processes and
nodes. The rule is in fact too general for some cases, but the result
of being too general is simply empty message-sets.

To illustrate how the rules works in practice, we consider two
different situations. In the first situation a local process has termi-
nated; this triggers the first ru1e. The node controller needs to send
exit and monitor signals to the local processes linked to and mon-
itoring the terminated process. The node controller also.needs to
communicate the termination of the process to all other node con-
trollers where a process is linked to or monitoring the terminated
process. Lastly, the node controller should remove all links, mon-
itors and registered names for the terminated process, since these

2 Here is a distinct difference between links and monitors, since we are al-
lowed to have more than one monitor for a pair ofprocesses, each monitor
needs to be identified by a unique reference. Thus there is an acknowledge-
ment signal for monitor, containing this reference. Apart from this, monitors
are handled similarly to links.

are not active anymore, this is done by the function deleteDead. It
should be noted that local_mons is a list, and that remote_nod,es
and local-li,nlcs are true sets. I.e. duplicates are possible in the
Local-mons, but not in the others.

In the second situation a remote node has crashed (or discon-
nected), resulting in a died-signal with a node identifier being sent
to the node controller. This triggers the second rule. This situation
involves a bit more work for the node controller, not only should it
notify local process monitoring the crashed node and then remove
these monitors from the rnns-set. The node controller also needs
to find all links and monitors for processes located at the crashed
node, and construct appropriate messages for them. However, in
the second rule there is no need to inform remote nodes, they are
already informed. Finally, in this situation as well, we clean up the
node controller structure by applying the function deleteDead.

Node controller - spawn In Table 13 the rule for spawn is
presented. The handling of spawn is straightforward, a new process
is created with afresh pid, and the new pid is communicated back
to the spawning process.

Node controller - nsend In Table 14 the rules for nsend are
presented. The two rules handle the different lookup cases. In the
first rule there is a process registered for name and we proceed by
sending the signal to that process. In the second rule, the lookup-
call retums undef ined and the node controller simply drops the
message.

5. Fairness
As we noted above, the input-rules, i.e. the rules in Table 6, can be
applied in such a way that some messages are never delivered. I.e.
the rules themselves does not ensu¡e that messages are delivered in
a fair manner. This is generally a bad thing, since many properties
can not be proved in a non-fair system. The¡efore we need to
define a fairness rule that excludes certain unwanted behavior of
the system. Fairness is defined in terms of permissible execution
sequences.

Definition 19 An execution sequence is a sequence of node sys-
tems ns¿, together with corresponding system actions o¿ written:

o0 a1 a2
zso_- hs¡+ tusz+ ,,..

Definition 20 [Fairness for execution sequences] It should hold
for all execution sequences, (n-s,d):

(pid ltron stg
Yi,.f nso+ nsi¡1 =è

t

=i > i..(",,:!-L=t:t *r.,))
I.e. every message sent is evennrally delivered.

6. Discussion
In this section we make a few illustrative comparisons between
the current and the new semantics. We also identify some practical
consequences of changing Erlang to follow the new semantics.

6.1 Everything is Distributed

The biggest, and in our eyes the most important, diffe¡ence be-
tween the distributed semantics of Erlang [6] and the semantics
we define in this paper is the changes made to message passing.
In the current semantics (describing the cument Erlang/OTp imple-
mentation) messages behave differently in a local and a distributed
setting, i.e. there are different guarantees for message ordering, and

29

pid e pids(ps) v ntd I node(pid)

ncEfFect([p9, nid, (lnks, rnns, reg)], from,link(pid)) + (lps, nid, (Inks . (frorn, pi.d), mns, reg)j, e)

pi.d (pids(pg) A nid: node(p¿d) nid : node(lrom)

ncEffect([p9, nid,nc],from, link(pid)) + (lps,nid,ncl,(from,pi,d,exit(noproc)))

pid (pids(ps) t nta: node(p¿d) ni.d I node(from)

ncEffect([p9, nid,nc],from, link(pød)) + (lps,nid,ncl,(node(/rorn), nid,,died(pi,d,noproc)))

Table 10. Node controller effect and reply for link

nid : node(f rom)
ncEffect([p9, nid, \Inks, mns, reg)!, frorn, unlink(pid)) --+

(lpg, nid, (Inks\(from, piil),mns, reg)|, (from,nid, message({reply, unlink, pzd})))

nid I node(from)
ncEffect([p9, ni,d,(lnks,mns,reg)],frorn,unlink(pid)) ---+ (lpg,nid,(Inks\(from,pid),mns,res)l,e)

Table 11. Node controller effect and reply for unlink

-isNid(p¿d)
Ioca|-linl¡s - {(pidt,pidr,exit(u))l(pidr,pid") +- Inks A node(pidr) : nid A pid'": pid'}

remote-nodes : {(node(pzd r),n'id,died(pid,a)) | (pidt,pi,dr) e Inkst) mns A node(pzdt) I ni.d A pid": pid)
locøl-mons : l(pid1, p'idr,rnessage({rep1y, monítor, {reJ , pid, ,}}))

ll (ref,pid,t,pidr) +- mns A node(pidr) : nid, A pi'd'r: pi'd'l

n cEffect ([p9, nid, (lnks, mns, reg)!, from, died (pi.d, o)) ---+
(lpg , nid, deleteDead (pz d, \Inks , mns, reg))l,Iocal-links . local-mons ' remote-nodes)

isNid(rzid')

{(pi,dr,pi,dr,exit(u)) I (pidr,pidr) <- lnks A node(pidr) : nid, A node(pid"): ni,d,'}

f(pi,dr, pidr, rnessage({reply, monitor , {ref , pid,,u}}))
ll (ref,pidr,pi.il") <- mns A node(pidt) : ni.d, A (pi.dr: pi,d v node(pi,dr): n¡¿t¡|

local-Ii,nks
local-mons

ncEffect([pg, ni,d, (lnks, mns, reg)], from, died(ni,d', ?r)) ---+

(fp g, ni d, d e lete Dea d (n. id', (lnk s, mns, reg))], Io cal -Iink s . I o cal -m on s)

Table 12. Node controller effect and reply for died

pidt : fresh)

ncEffect([p9, n'id, nc], from, spawn(e, ref)) ---+ (l(e, pid' , r) ll , ps, nid, nc], (from, nid, message({reply, ref , pi'd'))))

Table 13. Node controller effect and reply for spawn

lookup(name, reg) : piil
ncEffect([p9, nid,(lnks,mns,reg)],frorn,nsend(nøme,u)) + (lps,nid,(lnks,mns,reg)!,(pi.d,from,rnessage(o)))

lookuP(name, reg) : undef ined
ncEffect([p9, nid,,(lnks,mns,reg)l,from,nsend(name,u)) a (lps,nid,,(lnks,mns,reg)\,e)

Table 14. Node controller effect and reply for nsend

30

message delivery depending on whether the receiving process is lo-
cal or remote. The change to a fully asynchronous message passing
should enable a more efficient implementation of the run-time sys-
tem. However, there is also a downside with the more permissive
semantics. Less restrictions results in more possible interleavings,
and in effect a larger state space to explore during verification.

Further, the choice of making all side effects (with the excep-
tion of spawn-node) purely asynchronous was motivated two-fold.
(1) it made the resulting semantics a lot shorter, and therefore eas-
ier to understand, and (2) it should make the operations easier to
parallelize in a future implementation of the semantics. These bare
asynchronous behaviors would in many situations be rather incon-
venient for the programmer to use, for example when spawning a
process or registering a named process. But nothing stops us from
defining (as a BIF or equivalent) the well-known synchronous vari-
ants that are used in Erlang today, by simply encapsulating the side-
effecting action and the waiting for confirmation.

6.2 Uni.directional Links Only
Another part of the current semantics that we have found non-
intuitive is the bi-directional links. We find it a bit strange that a
process can affect the behavior of another process behind its back
by linking to it. (E.g. in the situation where process ,4 first links
to process B and then exits abnormall¡ resulting in that .B, unless
it is trapping exits, suddenly crashes.) Also the functional overlap
of monitors and trapped exits (links) makes for extra complicationi
in the semantics. Instead we propose to only have uni-directional
links (and monitors, but they are already uni-directional), and to
remove the whole exit-trapping functionality since a monitor serves
the same purpose.

The practical consequences of this change are not too dramatic,
but it becomes a bit more complicated to build the important sø-
pentision trees.However, since supervision structures are most of
the time built using the OTP-behavior (supervisor), it should be
enough to change the supervisor implementation to compensate.
The spawn-Iink construction is also easily mimicked by a slight
change to its definition.

6.3 A Built-in Registry

The builrin registry is another difference between the current and
the new semantics. However, its workings should be easily made
equivalent to the standard process registry implementation in Er-
1ang. Also, because of the introduction of a general treatment of
side-effecting actions, the inclusion of a registry affects the size of
the semantics marginally. The size argument is important, since the
main priority of the new semantics is to keep it reasonably small.

6.4 Message-PassingGuarantees

The message-passing guarantees has changed dramatically in the
new semantics. There are no longer any difference between local
and distributed message-passing, and only the order of messages
between a pair of processes is guaranteed.

7. Conclusions and Future Directions
We have presented a proposal for a future semantics of Erlang.
However, the observant reader might have noticed that there aie
very few references to Erlang in the description of the semantics.
That is, perhaps the language for this semantics is not Erlang,
maybe there is another language waiting around the corner?

Nevertheless, we hope that the presented semantics is easy
enough to follow that it can serve as a discussion starter when it
comes to improving and changing Erlang in the future. It is our
strong belief that the current message-passing guarantees must be
removed in order to fully take advantage of an extreme (32+) multi-
core architecture.

On the other hand, perhaps we can continue to work with bi-
directional links, although they are slightly uninn¡itive they have
after all worked fairly well for many years. It might not be worth
trying to make the change.

Another side to the discussion is the implications for model
checking. From a model checking perspective it makes perfect
sense to impose stronger guarantees for message-passing, as we
have in the cunent semantics. The result is a smalier state space,
a crucial detail when model checking. Therefore, from a model
checking perspective, the new, more permissive, semantics is po-
tentially going to cause problems. Everything is not lost, it should
be possible to find reduction techniques to compensate for the en-
larged state space, but it will require a bit of thought.

Future Dírectíons Since we have access to an experiment plat-
form, McErlang [4], the obvious next step is to implement this se-
mantics there. Having such an implementation is going to make it
easier to analyze semantic design decisions in more detail.

Since, as mentioned above, the new semantics results in larger
state spaces during model checking we should also put some effort
into partial order reduction techniques for the new semantics. Oth-
erwise, it will become hard to perform model checking for systems
under the more asynchronous semantics.

Acknowledgments
This research was sponsored by EU Fp7 Collaborative project
ProTest, grant number 215868. Many thanks to the anonymous re-
viewers, whose comments significantly improved the presentation
of the semantics. Thanks also to Koen Claessen for stimulating dis-
cussions and helpful comments.

References

[] J. Armstrong. Makíng reliable distributed systems in the presence of
software errors. PhD thesis, Royal Institute ofTechnology, Stockholm,
Sweden, December 2003.

[2] K. Claessen and H. Svensson. A semantics for distributed Erlang. In
Proc. of the ACM SIGPLAN workshop on Erlang, pages 7g_87, New
York, NY, USA,2005. ACM press.

t3l L-Å. Fredlund. A Frameworkfor Reasoning about Erlang Code. phD
thesis, Royal Institute ofTechnolog¡ Stockholm, Sweden, 2001.

t4l L-Å. Fredlund and H. Svensson. McBrlang: a model checker for a
distributed functional programming language. In proceedíng of the I 2th
ACM SIGPLAN Int. Conf. on Functional programming (ICFp), pages
125-136, Freiburg, Germany, 2007. ACM.

[5] M. Petterson. A definition of Erlang (draft). Manuscript, Department
of Computer and Information Science, Linköping Universit¡ 1996.

[6] H. Svensson and L-Å. Fredlund. A mo¡e accurate semantics for dis-
tributed Erlang. In Proc. of the SIGpLAN workshop on Erlang, pages
43-54, New York, USA,2007. ACM.

[7] H. Svensson and L-Å. Fredlund. Programming distributed Erlang
applications: pitfalls and recipes. In Proc. of the SIG?I-4N workshoþ
on Erlang,pages3742, New York, USA,2007. ACM.

t

3l

Chain Replication in Theory and in Practice

Scott Lystig Fritchie
Gemini Mobile Technologies, Inc.

slfritch ie@snookles. com

Abstract
When implementing a distributed storage system, using an algo-
rithm with a formal definition and proof is a wise idea. However,
translating any algorithm into effective code can be difficult be-
cause the implementation must be both correct and fast.

This paper is a case study of the implementation of the chain
replication protocol in a distributed key-value store called Hibari. In
theory, the chain replication algorithm is quite simple and should be
straightforward to implement correctly. In practice, however, there
were many implementation details that had effects both profound
and subtle. The Erlang communit¡ as well as distributed systems
implementors in general, can use the lessons leamed with Hibari
(specifically in areas of performance enhancements and failure
detection) to avoid many dangers that lurk at the interface between
theory and real-wor1d computing.

Categoríes and Subject Descriptors H.2.4 [Database Manage-
mentl: Systems-Distributed Databases; C.4 lpe(ormance of
Systemsf: Reliabilit¡ availability, and serviceability

General Terms Algorithms, Design, Reliability, Theory

Keywords Chain replication, Erlang, Hibari, key-value store

1. Introduction
A data store, whether a key-value store or file system or other kind
of database, may be distributed across two or more machines for
any combination of the following reasons:

o Availability
- It is unacceptable for data to be inaccessible or

lost when a single machine fails.

o Performance
- A single machine cannot service its intended

workload within acceptable limits (e.g., minimum throughput
or maximum latency limits).

o Capacity - A single machine cannot physically store the re-
quired amount of data (e.g., RAM capacity or disk capacity).

. Cost - A single machine may be meet all of the above goals
but is too expensive to purchase and/or maintain. Both hardware
and software (e.g., software license fees) are considered.

The challenge of building any distributed, mutable-state service
is managing changes to replicated copies of state data in a pre-
dictable manner. A distributed systems architect might turn to a

collection of formal specifications and proofs such as Lynch,s Dls-
tributed Algorithms [13). Unfortunately, translating a distributed al-
gorithm into reliable running code is a subtle, poorly understood
art.

Lamport's Paxos algorithm [12, 16] is now a well-known dis-
tributed algorithm for maintaining shared consensus, but as staff
at Google [5] and Mic¡osoft [11] have writren, it is very difficult
to preserve the algorithm's conectness and simultaneously reach
performance goals. In the Erlang community, Arts et al. 12,31 pre-
sented leader election algorithms, their implementations, the testing
methods they used, and the flaws that they discovered long after the
code was considered finished.

This paper is a case study of the implementation of the chain
replication protocol in a distributed key-value store called Hibaril.
In theory, the chain replication algorithm is simpler than the paxos
algorithm. In practice, however, there are plenty of implementation
details that have hampered creating a product that is both correct
and sufficiently fast. The experience presented here can help others
in the Erlang community and, more broadly, all distributed systems
developers to create robust distributed systems that actually work
coûectIy.

An outline of this paper's topics is as follows:

¡ Summaries of the chain replìcation technique and of an Erlang
application, Hibari, that uses chain replication for replica man-
agement.

¡ Practical problems caused by disk latency and the need for rate
control.

. Status monitoring, including how Erlang messaging infrastruc-
ture can hide network failures.

¡ Hibari's implementation of consistent hashing and replica
placement strategies,

¡ Observations about Hibari that don't merit their own sections.

r Related work and concluding remarks.

2. Chain Replication
The chain replication algorithm is described by van Renesse and
Schneider [24]. The paper specifies a variation of master/slave
replication where all servers that are responsible for storing a
replica of an object are arranged in a strictly-ordered chain. The
head of the chain makes all decisions about updates to an object.
The head's decision is propagated down the chain in strict oider.
See Figure 1 for a diagram ofmessage flows.

The number ofreplicas for an object is determined by the length
of the replica chain that is responsible for that object. To tolerate /
replica server failures, a chain must be at least / * 1 servers long.

Permission to make digital or hrd copies of all or part of this work for personal or
classroom use is granted without fee provided thât copies are not mâde oidistributed
for profit or commercial advantage md that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlmg'10, September 30, 2010, Baltimore, Maryland, USA.
Copyright @ 2010 ACM 978-l-4503-0253-UtO/09. . . $10.00

JJ

I In Japanese, 'hiba¡i" mea¡s "meadowlark." The two Kanji characters used

for "hibari", Biä, lteratty mean "cloud sparrow.',

Client 1 Head Server

Middle I Server

Middle 2 Server

reply

Tail Server Client 2

cation

Figure 1. Write and read operations upon a chain of length four.

Operations on objects within the chain are linearizable (chap-
ter 13 of [13]) when all updates are processed by the head of the
chain and all read-only queries are processed by the tail of the
chain. Strong consistency2 is maintained because read requests are
processed only by the tail of the chain.

When a chain member fails, the following steps are taken to
repair the chain.

l. The chain is shortened to remove the failed brick (call it B)
from seruice, and un-acked updates are re-sent down the chain.
All clients are notifled about the new chain configuration.

2. When brick B restarts, it is added to the end of the chain, and
all out-of-date keys are copied to B. Meanwhile, brick B is
ignored by all clients. If B receives a client request by mistake,
the request is ignored. (See also section 12.3.)

3. When the key copying phase is complete, the chain is reconfig-
ured to make B a full member of the chain in the tail role, and
all clients are notified about the new chain configuration.

See [24] for a full description of procedures necessary to recover
from chain member failure.

Client workloads with extremely large read/write ratios can po-
tentially imbalance individual server workloads: 100% ofread op-
erations are sent to the same server, the tail ofthe chain. The chain
replication implementation in CRAQ [22] allows read operations
to be handled by other servers in the chain without violating strong
consistency. Hibari does not use CRAQ's optimizations but instead
uses data placement policies to balance server workloads; see sec-
tion 11 for more detail.

3. Hibari Overview
Hibari is a distributed, fault tolerant, high availability key-value
store written in Erlang. Through use of chain replication (sec-
tion 2), all operations by Hibari clients read strongly consistent up-
dates. Hibari is one ofthe few distributed key-value stores that can
atomically update multiple keys in a single client operation (sec-
tion 9). By default, all updates are persistent: each server flushes all
updates to local stable storage before replying to a client.

Key V Key Z

r 0p Layer:

Consìstent

Hashing

Figure 2. Hibari logical architecture: consistent hashing, chain
replication, and basic storage.

Figure 3. Hibari architecture: an alternate view of Figure 2 with
each physical brick represented in a vertical column.

Hibari faithfully implements the chain replication algorithm
as described in 1241. Erlang's messaging model makes it trivial
to support the original algorithm's asymmetric message passing
for updates. Local data logging, inter-server messaging, and chain
replica repair (after the failure of a server) are implemented as

described.
Hibari's performance is typically quite good, individually and as

a cluster. On typical commodity 1-2U rack-mountable server hard-
ware, Hibari can sustain a throughput of several thousand updates
of I kilobyte values per second per server. Clients see throughput
increase linearly as seruers are added to the cluster.3

High availability is achieved by using replication chains longer
than one server and by reacting quickly (e.g., within a few seconds)
when a server fails. Availability is further assisted by distributing
keys across the cluster using consistent hashing: when a chain has

failed, all keys managed by other chains are unaffected by the
failure. Also, machines may be added to or removed from Hibari
clusters without intemrpting service.

3.1 Physical and Logical Bricks

A brick is a server that stores persistent data. Figures 2 and 3 por-
tray a cluster of five physical bricks (mapping one-to-one onto
physical machines, typically Linux-based) with five replication
chains. Each chain is of length two; the chain's data is available
for reads and writes as long as the total number of failures within
the chain is less than two.

3 Assuming that chains are evenly balanced across physical machines; see

also section 1 1.

Mliddlê

Layer:

Chain

ReplicationTail0

Chaìn 0

Headl

Taill

cha¡n I châin 2

T
I Hêâd2 I

-,J_l_lt

[1!-] @

uhain 3

Tail4

Eq
cha¡n 4

Key X

1 0 logical bricks

5 physical bricks

Consistent hashing by client: {Table, Key} -> Chain

30

Tail0 Châin 0

Headl Taill Chain 1

Chain 2Hèad2 ïailz

Chaìn 3Tail3

Tail4 Head4l Chain 4

2 Read operations can only retum an object's last update.

34

CREATE TABLE foo (
BLOB key;
BL0B value;
INTEGER tinestanp;
INTEGER expiration_time ;
ERLANG-PROPERTY_LIST proplist ;

) UNIQUE PRIMARY KEY key;

Figure 4. SQL-like representation of a Hibari table.

As far as Hibari Admin Server (see section 7) is concemed, data
is stored by a "logical brick." The five physical machines, called
"physical bricks," in Figure 2 are each configured with two logical
bricks. The logical bricks are striped across the physical bricks
so that each physical brick contains one logical brick in a "head"
role and one logical brick in a "tail" role. Using consistent hashing
(section 3.3) and techniques described in section 1 1, each physical
brick's CPU, RAM, and disk workloads will be in balance under
most conditions.

The Admin Seruer monitors the status of each logical brick,
If a physical brick crashes, then clearly all logical bricks on that
machine will fail. The reason for a physical brick's crash is not
usually important: any hardware failure, such as power supply or
disk volume, that disrupts a logical brick is sufficient to trigger
reaction by the Admin Sewer.

If deployed on virtualized hardware, "physical brick" could
mean either the physical hardware or the virtualized hardware. Vir-
tualized hardware complicates management of the actual physi-
cal locations of logical bricks. Hibari's current code base does not
make any attempt to enforce replication on distinct physical bricks.
During development, it is useful to test clusters ofhundreds or thou-
sands of logical bricks on a single physical machine (with or with-
out hardware virtualization). But right now, it is ultimately a hu-
man administrator's responsibility to ensure the physical diversity
of each logical brick within a chain.

3.2 A Client's View of a Hibari Cluster

Each key-value pair is stored in a Hibari table. Tables were first
implemented to provide separate key namespaces, that is, to per-
mit storing the key "f oorr multiple times, each in a different table.
Later, tables became a convenient administration tool for config-
uring behaviors such as consistent hashing (section 3.3) and key
migration (section l0).

Data in a Hibari table is stored in one or more chains. Each
chain stores data for only one Hibari table. Each logical brick stores
data for only one Hibari chain. Figure 3 depicts a typical layout for
chains for a single Hibari table; see section 1 1 for discussion of
replica placement strategies.

Each key in a Hibari cluster has the attributes depicted in
pseudo-SQl in Figure 4; technicall¡ each key stored by Hibari
is actually part of a 5-tuple. Going forward, the more familiar term
key-value pair will be used instead, and the other attributes will be
mentioned only when the context requires it.

Each Hibari client receives status updates f¡om the Hibari Ad-
min Server that contain server status updates. Using the mapping
data within each status update, each client knows the head and tail
bricks for all chains in all tables within the cluster. Clients usually
send thei¡ requests directly to the cor¡ect brick and do not incur
intra-cluster query forwarding penalt¡ except during cases of key
migration (also called key repartitioning, see section 10).

A1l attributes in Figure 4 except value are always stored in
RAM by the logical brick. The value attribute may be stored on
disk or in RAM as a pei-table configuration option. As a result,

Hibari logical bricks can consume a lot of RAM, proportional to
the number of keys stored in the brick and (for RAM-based value
blob storage) the sum of all value blob sizes.

3.3 Consistent Hashing

Hibari uses a consistent hashing technique [10] to map a {:f , K}
tuple to the name ofthe chain that is responsible for storing that key
K intableT. The key K, or configurable prefix of K, for example,
the first 4 bytes, or all bytes between the first two ASCII '/' (slash)
characters, is hashed using the MD5 algorithma and mapped onto
the unit interval [0.0,1.0). The unit inrerval is divided into an
arbitrary number of ranges, where each range represents a chain
name. Each chain can appear one or more times in the range map.
The top third of Figure 5 depicts a range mapping of two chains
onto the unit interval; each ofthe two chains has an identical chain
weighting factor. (The bottom two-thirds of Figure 5 is discussed
in section 10.)

The relative size of each range is determined by the chain
weighting factor. Assume a hypothetical chain mapping where the
chain weighting factor for chain Cr is twice as large as the weight-
ing factor for chain Ce. The sum of the size of range interval(s)
found in the range map will be twice as large for chain Cr as
the sum fo¡ chain Cg. Smaller weighting factors can be used to
bias distribution of keys away from some chains (and therefore
away from some physical bricks/machines) that have lower capac-
ity (e.g., slower CPU, less RAM, or smaller disk capacity).

T\¡vo hash mappings are used to implement key migration (or
key repartitioning). In normal operation, the maps are the same.
During key migration, the maps are used to calculate the curent
and new/desired location of a key. Key migration is a dynamic,
online process that can expand or shrink a cluster as well as to
change the relative chain weighting factors.

3.4 Single Data Center

Hibari was designed to provide strong consistency within a single
data center. Al1 deployments to date are in a single data center. A
Hibari chain can have members in multiple data centers, but there
are several practical complications in such a scheme:

¡ By definition, each update operation must traverse the entire
replication chain. If chain members are in different data centers,
each update operation will pay a penalty ofthe sum ofthe wide-
area network latencies of all network links between the data
centers.

o A client application in data center D1 that attempts to read a key
stored by a tail brick in data center D2 must pay the penalty of
the wide-area network latency between Dt and Dz.

o The Hibari Admin Server is not currently designed to run si-
multaneously in multiple data centers.

4. Problems with Disk Write VO Latency
All distributed systems architects have to face the tough facts of
economic reality: if a system costs too much, then it won't be built.
Deployment on cheap-enough hardware can also mean deployment
on not-fast-enough hardware. The pressure ofmeeting performance
goals can make cutting algorithmic comers very tempting. Archi-
tects must never forget that any change to a distributed algorithm,
no matter how small or innocent the change seems, may in fact
invalidate the algorithm.

Fo¡ the purposes of this paper, "big data" means that the total
amount ofdata and metadata stored (including all replicas) is larger

4MD5 was chosen for convenience and relatively low computation cost.
Neither the larger output range or collision resistance of more recent cryp-
tographic checksum algorithms is necessary.

--0=noexpiry
-- Usually enpty

35

Ghain 1

50.0%

Chain 2

50.0%

Chain 1

33.310

1.0

Chain 3

16.7o/o

Chain 2

33.3"/o

Ghain 3
16.7o/"

0.0

0.0

Chain 1

25.0%

Chain 4

8.33%

Chain 3

12.37o

Cha¡n 2
25.0o/o

Chain 4

8.33%

Chain 3

12.3o/"

Chain
4

4,15o/o

0.333 0.500

Chain
4

4.15o/o

0.250 0,333 0.459 0.750 0.833 0.959 1.0

Figure 5. Consistent hashing map after two migrations: 2 chains, then 3 chains, then 4 chains. All chains have equal weighting factors.

than the sum of RAM in the cluster. The price of RAM-based and
flash RAM-based storage is too high for many big data applica-
tions. Only traditional hard disks are cost-effective enough to sup-
port free or advertising-supported applications such as email ser-

vices. Free email services now routinely provide email users with
storrge quotas in the range of 1-25 gigabytes per user, with "unlim-
ited" storage available at extremely low monthly fees.

Rotating disk media can provide total storage capacity at a low-
enough cost for most big data applications, but their average ran-
dom I/O operation latencies are quite high: at least 4 milliseconds
for top-of-the-1ine, 15K RPM SCSI disks and at least double that
amount for slower, cheaper disks. As a result, it is in any applica-
tion's best interest to minimize the number of random VO opera-
tions that it generates.

The write-ahead log technique has been used by database sys-

tems for decades to aggregate disk write operations, minimizing
random disk VO operations by appending log entries to a log file.
Another common technique is group commit, which flushes many
transactions' wofih of log entries to stable storage with a single
fsync(2) system call (or OS equivalent).

Hibari uses both techniques, a write-ahead log and group com-
mit, to minimize random disk I/O required to store reliably all up-
dates received by a brick. The latency penalty of the f sync (2) sys-

tem call is required to avoid data loss in the event of a cluster-wide
catastrophe, such as a data center power failure.

Systems calls, such as r.¡rite(2) and f sync(2), that operate
on local file systems can block for tens of milliseconds (or more)
per call. Such blocking delay is unacceptable in almost any latency-
sensitive application. To solve this problem, each gen-server-
based Hibari logical brick sends all write and sync requests to a

central write-ahead log (WAL) process (shared by all logical bricks
on that Erlang node) to request write(2) and fsync(2) system
call execution. The gen-server process is then free from blocking
to work on other tasks while the I/O operations are pending. The
WAL process sends messages back to the brick when the I/O calls
have finished.

The chain replication protocol already requires that each write
operation have a serial number associated with it and that each

update propagates down the chain in serial number order. The WAL
process uses these serial numbers to signal to each brick the largest
serial number that has been safely flushed to disk. Each brick can

then send those updates to downstream bricks at its leisure.

Unfortunately, Hibari's early implementations of the communi-
cation between brick and WAL server processes were fraught with
subtle, difficult-to-find race conditions: writes were written to the
local WAL out of order, f sync (2) operations were acknowledged
with wrong log serial numbers, and bricks sent log replay messages

downstream in incorrect order. The QuickCheck softrvare testing
tool [17] has been invaluable for helping create the conditions nec-
essary to exploit the very small windows of vulnerability of many
of these bugs.

Many of the bugs above have caused data loss. Most would
never have been created if the code could ignore the reality of deal-
ing with slow disk devices. Few data buffering hacks go unpun-
ished.5

5. Problems with Disk Read VO Latency
Each Hibari data server maintains key and key metadata in RAM
but stores value blobs either in RAM or on disk. For big data pur-
poses, Hibari must store value blobs on disk. As a consequence,
any client 'get' or 'get-many' operation may trigger disk IiO.
If the available cache is too small, and/or if the client application's
access pattern doesn't provide sufficient temporal locality of refer-
ence, then disk read I/O operations are inevitable.

Hibari tries to minimize the number of disk operations required
to read a key's value blob by always storing in RAM the value
blob's exact storage location: write-ahead log file number, starting
byte offset, and blob size. The brick can read any value blob with a

single pair of lseek(2) and read(2) system calls.
Hibari's 'get' and 'get-many' operations are not the only

source of disk read VO workload. Two more significant sources
are the following.

1. Chain repair - Chain repair can generate a huge amount of disk
read UO. For each value blob that a brick under repair does not
have, the upstream brick must read the blob from disk before
sending it downstream to the repairee brick.

2. Key migration -
Sometimes called key repartitioning, reshard-

ing, or rebalancing, the Hibari key migration process moves
keys (and associated values and metadata) from one chain to
another (see section 10). Any key that must be moved during a

36

5 Bonowed very loosely from Patrik Nyblom.

key migration must have its value read from disk by a brick in
the source chain before it is copied to the destination chain.

5.1 Read Priming

As described in section 4, many system calls involving the local file
system can block the caller. Any file open(2) or read(2) system
call has the potential to block a Hibari logical brick process for
many milliseconds each. On extremely overloaded systems, each
call can easily take over 100 milliseconds, which in turn can have
enormous negative effects on latency-sensitive applications.

To avoid blocking brick processes with read-only disk I/O,
Hibari borrows techniques used by the Squid HTTP proxy [19] and
Flash HTTP servers [15]. Before a brick attempts to open or read
a file, it first spawns a "primer" process that asynchronously opens
the file and reads the desired data. This process acts like adding
water to a pump to "prime" the pump: all necessary file metadata
and data is ¡ead into the OS page cache. The primer process uses
the standard Erlang f ile API to do its work. When flnished, the
primer process sends a message to the logical brick process that
the priming action is complete. Then the brick process can read the
blob (using the same API) with very little probability of blocking.

This priming technique has the disadvantage of reading the
same data twice: once by the short-lived primer process and once by
the long-lived brick process. However, even with value blobs up to
16 megabytes in size, the overhead isn't big enough to worry about.
The major advantages are that the Erlang file module already
supports all operations that the primer process requires, and the
probability of blocking the brick process is reduced to practically
zero. The reduction of average read latency significantly outweighs
thu tlisatlvantages.

5.2 Access by Lexicographic vs. Temporal Orders

For both chain repair and key migration workloads, the primer
technique only hides a portion ofthe latency required to read large
numbers of value blobs from disk. Both workloads generate UO
based on the lexicographic sort order of the keys. However, the
value blobs are stored on disk in temporal order, that is, relative to
the time when they were received.

The mismatch between lexicographic and temporal orderings
can create a significant amount of random I/O workload, as far as
the underlying disks are concemed. For key migration workloads,
the VO cost is largely unavoidable. Brick repair times can take a
few seconds or several days, depending on several factors.

. If the brick under repair was down for only a shoÍ time, the
total number of keys that require repair is likely to be small,
and their value blobs are likely to be in the OS page cache.

. For a brick that is completely empty (e.g., a new machine with
a new, empty file system), a manual function is provided that
transmits keys and value blobs in an order that is sorted by each
value blob's location within the write-ahead 1og. The sorting
can help reduce the amount of random pattem read disk I/O
required to read a large number of value blobs. The savings can
be very significant when the total size of value blobs is in the
range ofhundreds or thousands ofgigabytes.

r For repair tasks that fall in the middle, the number of keys to
repair is high, but the cost of starting repair completely from
scratch is even higher. In this middle case, there is no choice
other than wait for the standard repair technique to finish and
to accept the amount of random read disk I/O required to do
it. For a chain that contains a terabyte of data or more, the time
required to finish chain repair can be minutes (best case), hours,
or even days (worst case). System planners and operations staff
must keep this in mind as they plan their data redundancy

strategy, that is, how big should each brick be and how long
should each chain should be.

6. Rate Control
Modem hard disks are orders of magnitude slower than other com-
ponents in the system: CPU, RAM, system buses, and even com-
mercial gigabit Ethernet interfaces and switches are all less likely to
be the slowest system component. To avoid overloading disk sub-
systems even furthe¡ rate control mechanisms are necessary to con-
trol anything that can generate disk I/O.

Hibari has explicit controls for both batch sizes (e.g., number of
keys per iteration of an algorithm loop) and bandwidth (e.g., total
number of bytes/second) for the following.

1. Chain repair operations, key migration operations (see sec-
tion 5), and number of primer processes for prefetching value
blobs from disk.

2. Log "scavenging" operations, which reclaim space from Hi-
bari's otherwise infinite-sized write-ahead log. The scavenger,s
activity can create a large amount of extra disk I/O, more than
enough affect clients by increasing latency. See the Hibari Sys-
tems Administrator's Guide at [9] for a detailed description.

During key migration periods, it is possible for a client's request
to be forwarded back and forth between a key's old chain location
and its new chain location. This forwarding loop is usually quickly
broken once the key has been stably written to the new chain. If
a forwarding loop is detected (using a simple hop counter), an
exponential delay is added at each forwarding hop to try to avoid
overloading bricks in cithcr chain. Al¡o, the loop will be br.okcu if
the lotul number of hops exceeds a conflgurablc number.

Hibari also has an implicit limit on the number of simultaneous
client operations that a single brick can support. The simple tech-
nique is borrowed from SEDA [26]: if the client request is too old,
then drop the request silently. Sending a reply to the client will cre-
ate even more work for an overloaded server to do, so the cheapest
thing to do is to do nothing. Each Hibari client request contains a
wall clock timestamp. If that timestamp is too far in the past, the Hi-
bari brick will ignore the request, assuming that the request waited
in the brick's Erlang mailbox for so long that the brick must be
overloaded.

To help synchronize system clocks, it is strongly recommended
that all Hibari machines, servers and clients, run the NTp (Network
Time Protocol) service. Synchronization down to the femtosecond
is not necessary; all clocks within even 100 milliseconds is good
enough. However, deployment on virtual machines, such as Xen
or VMware, should be avoided unless the guest OS's clock can
reliably match the host OS's clock (which is assumed to be stable).

Unsynchronized guest OS clocks can cause bricks to drop client
requests silentl¡ via the mechanism described two paragraphs ear-
lier. The silent drops cause client-side timeouts that can be very
confusing, unless you happen to be looking at "operation too old,'
counter statistics. That counter should only ever increment during
periods of server overload; any other time is a near-certain symp-
tom of unsynchronized OS clocks.

7. Cluster Management and Monitoring
The original chain replication paper [24] describes a single mas-
ter server that is responsible for managing chain state and moni-
toring the status of each server within each chain. To be accepted
commercially, howeve¡ single points of failure must be avoided or
minimized to the greatest extent possible.

Hibari implements the single master entity as a single Er-
lang/OTP application that is managed by the Erlang kernel's "appli-
cation controller." The application controller coordinates multiple

rr ìi

5t

Erlang nodes to run the management/monitoring application, the
Admin Server, in an active/standby manner. This indeed creates a

single point of failure: if the machine running the active Admin
Server instance crashes, the Admin Server's services are lost.

Failure of the Admin Server is not usually a significant problem.
The Admin Server is required only when bricks crash or restart
within the clustel or if an administrator wishes to query cluster
status or to reconfigure the cluster. Without the Admin Server,
Hibari client nodes may continue operation without enor, as long
as other bricks also fail while the Admin Serve¡ is down.

The Admin Server requires approximately 10 seconds to restart.
The Admin Server's private state (including histories of the down/-
up status of each logical brick and chain) is also distributed across

bricks within the cluster. If the Admin Server's private state were
managed with chain replication, then there would be a "chicken
and the egg" problem when the Admin Server bootstraps itself. To
avoid a circular dependency, the private state is replicated using
quorum voting-style replication.

7.1 Detecting Brick Failure and Network Partition

The original chain replication paper [24] makes two assertions that
are extremely problematic in the real world. The first is "Servers are

assumed to be fail-stop." The second is'A server's halted state can
be detected by the environment." If either assumption is violated,
the system can quickly make bad decisions that can cause data loss.

The biggest problem with detecting halted nodes is the prob-
lem of network partition. Partitions are usually caused by failure of
network equipment, such as an Ethernet switch or failure of net-
work links such as a telecom dafa circuil" Howeve¡ any failure of
hardware and/or software that creates arbitrary message loss can be
considered a network partition.

With message passing alone, it's impossible to tell the differ-
ence between a network partition, a failed node, or merely a very
slow node. The builrin Erlang/OTP message passing and network
distribution mechanisms cannot adequately handle network parti-
tion events by themselves.

To fix the worst problems caused by network partition, Hibari
includes an OTP application called "partition-detector." Running
on all Hibari servers, the sole task ofthis application is to monitor
two physical networks, the 'A' and 'B' networks, for possible
partition. All Erlang network distribution traffic is assumed to use

network '.4' only. UDP broadcast packets are sent periodically on
both networks. When broadcasts by an Erlang node are detected on
network 'B' but have stopped on network 'A' , then a partition of
network 'A' may be in progress.

The Erlang/OTP application controller can still make faulty de-
cisions when a network partition happens; the application con-
troller does not interact with partition-detector application. How-
ever, after the application controller restarts an Admin Server in-
stance, the partition-detector application can abort the initialization
of that instance when it believes there is a partition in effect, raise
an alarm, and leave the Admin Server processes in an idle state.

This situation must then be resolved by a human administrator.

7.2 Fail Stop Means ... Stop?

Violation of the "fail stop" assumption have also caused problems
for Hibari. Hibari's sponsor, Gemini Mobile Technologies, is not
responsible for day-to-day operations and monitoring of its cus-
tomer's systems, so all we know and theorize comes from after-
the-fact analysis of failures in customer lab or production systems.
In these post mortem analyses, we identified two significant prob-
lems:

1. A bug within the Erlang/OTP 'net-kernel' process that can
cause deadlock and thus cause communication failures between

Erlang nodes. One instance of this bug hit a customer's sys-
tem on at least 10 different machines within a 30 minute in-
terval, including both nodes that managed the Admin Server's
active/standby fail-over.

2. System 'busy-dist-port' events can trigger interference in
process scheduling and extremely high inter-node messaging
latencies. Al1 Erlang messaging traffic to a remote Erlang node
is sent through a single Erlang port which represents a TCP
connection. Ifthe sending node detects congestion (e.g., a slow
receiver, intermittent network failure), then any Erlang process
on the local node that attempts to send a message to the remote
node will be blocked: the Erlang process is removed from the
scheduler and will remain unschedulable until the distribution
port is no longer congested.

The combination of 'net-kernel' deadlock, wild variations
in message passing latency, and process de-scheduling can create
a situation that is difficult to diagnose. If a brick is merely slow to
respond to status queries by the Admin Seruer, Arpaci-Dusseau et
al. suggest calling it "fail stutter" [1]. But if the brick responds too
slowly, the Admin Server may interpret a performance problem as

a failure instead.
One such problem, affecting both the Admin Server node and

many others within a cluster, caused Hibari's largest deployment to
suffer from multi-hour transient availability failures. If a brick does
not respond to a status query by the Admin Server, it is considered
failed and removed from the chain. A few seconds later, the brick
would catch up and answer new queries. The Admin Server would
forcc thc brick to crash, triggcring ûutomûtic repoir and eventual
reioining the chain. Ifthe situation is bad enough, the chain can be
(and has indeed been) whittled down to zero bricks.

One solution to this problem has been a small patch to the
Erlang virtual machine to make the buffer size for inter-node
network disribution ports configurable. The default size of the
erts-dist-busy constant is 128 kilobytes. However, even a value
of 4 megabytes appears to be too small for the amount of messaging
data that Hibari bricks send during bursty traffic pattems.

Another solution uses information from Hibari's partition--
detector application to supplement the monitoring info that the
Admin Server uses. If a system monitor 'nodedo¡rn' message is
received, the partition detector's state is queried to check if a net-
work partition was a possible cause of the message. The same is
done if a query of a remote brick's general health status fails due to
timeout or tnodedown' reasons.

In hindsight, the single Admin Server process has had more
problems in production than we had anticipated. The solutions
outlined above have not been in use long enough to judge their
effectiveness. However, given the problems that we know have
happened in production networks, it is likely that a distributed
manager application would likely have been fooled by the same
conditions and made similarly bad decisions.

7.3 The Admin Server as a Single Entity

The single running Admin Server instance has a convenient conse-
quence: behavior during network partition events is easy to reason
about. An administrator knows where the Admin Server might run:
all eligible nodes are configured statically, so there are (typically)
only two or three machines where the Admin Server may be run-
ning. Furthermore, using Figure 6 as an example:

r If an entire chain is on the same side of a partition as the
Admin Serveq then Chain I is healthy and usable by Client 1.

Client" 2 is the far side of the partition and therefore cannot
access Chain 1.

38

@@
Cha¡n 1 Sample key Data stored in value blob

/42/ 1,/ t Text of comment #l on post #l
/42/1,/2 Tþxt of commenr #2 on posr #1
/42/2 Text ofpost #2
/42/sunnary Next post number, number of active

posts, number ofdeleted posts, ...

Figure 7. A sample Web blogging application's posts table.

Admin Server

Client 1

Network

Partition

Chain 3

Client 2

Figure 6. A network partition scenario.

¡ If the entire chain is on the far side of the partition relative to
Admin Server, then Chain 3 is healthy and usable by Client 2.
Client 1 is the far side of the partition and therefore cannot
access Chain 3.

¡ For chains that are split by the partition, the bricks on the same
side of the partition as the Admin Server will be reconfigured
into a new chain. In Figure 6, Chain2 will be reconfigured to a
chain of length one that contains only Brick 3. The new.Chain 2
is accessible by Client I but not by Client 2.

The CRAQ paper l22l proposed a distributed chain monitor-
ing and management scheme. Hibari's Admin Server pre-dates the
CRAQ paper and therefore couldn't take advantage of its sugges-
tions.

8. Erlang Messaging Is Not Reliable
The original chain replication paper [24] says, 'Assume reliable
FIFO links." There is no such thing in the real world. Erlang's
messaging model is frequently described anecdotally as ',send and
pray."

The original chain replication paper says that the tail of the
chain, after processing an update successfully, acknowledges the
update back "upstream" all the way to the head. These acknowledg-
ments are vital for chain repair purposes. The Hibari implementa-
tion avoids the cost of an acknowledgement per update (which can
be as high as several thousand updates per second per chain) by
using a once per second acknowledgment that contains the largest
update serial number that has been processed by the tail.

The once per second optimization is fine if all communication
links are indeed reliable and FIFO. However, Erlang's communica-
tions links are not reliable.

Svensson and Fredlund describe in [21] under what conditions
the usually-reliable messaging between two Erlang nodes can turn
unreliable. It is possible for a brick to send three updates down-
stream, with serial numbers ,Sr, ,92, and ,S3, respectively. It is pos-
sible for the Erlang network distribution mechanism to delivei the
messages containing ,91 and ,93 and drop the message containing
,92. In this situation, a Hibari tail brick might acknowledge serial ,S3
as the last processed serial number, and the head brick will mistak-
enly assume that the ,92 update has been processed by all members
of the chain.

Fortunately, the Erlang process monitoring BIF nonitor O will
deliver a {,D0WN, , . . . } message to the receiver when the connec-
tion between nodes has been broken and may have dropped mes-
sages. Hibari now uses this mechanism to detect dropped messages.
Ifa {'DOWN,,...} message is received, then subsequent replica-
tion 1og replay messages must pass a series of strict sanity checks.
If the checks fail, then the receiving brick will crash itself.

It is imperative that all bricks replay all replication log messages
in exactly the same serial order. By crashing immediately, the brick
that first notices a dropped message will avoid propagating out-of-
order messages downstream. Hibari's automatic chain repair will
compensate for the lost message.

9. Micro-Tþansactions
Though not mentioned in the original chain replication paper
1241, l22l mentions the possibility of implementing a ,,micro-

transaction": an atomic update of multiple keys by a single transac-
tion in certain limited situations. All update operations are sent to
the head of a chain, and the head can make any decision it wishes,
including a non-deterministic decision.6 Therefore, the head can
decide on the fate of multiple operations that are sent in a single
client request: "commit" by applying changes for all operations in
the request, or "abort" by applying none ofthem.

Hibari has implemented a similar transaction feature. A client
can send multiple primitive query and update operations in a single
protocol request to a Hibari data server. The limiting factor is that
all keys for the primitive operations in the request must be keys
that the brick is responsible for. This limit is the reason for using
the word "micro-transaction" instead of "transaction."

To implement request forwarding, for example, when a client
sends a request to the wrong brick, each Hibari brick is already
aware of what range of keys it is responsible for. Mic¡o-transactions
introduce a second reason why Hibari bricks must maintain this
awareness: if a brick detects that a micro-transaction attempts to
operate on keys stored in multiple chains, the micro-transaction
must be aborted.

To use micro-transactions effectively, the client application
must be aware of the key prefix scheme used by each table. It
is the client's responsibility to create micro-transactions where a1l
keys are managed by the same chain. This implicit knowledge
could be made explicit by changing the client API: add a parameter
to specify the consistent hash string, similar to a ,,bucket', in the
Riak client API [18]. By using either implicit key prefixing or an
explicit bucket-like grouping, the client controls whether any two
keys must be stored in the same chain.

For example, assume a need to build a simple Web blogging
application. On a per-user basis, the application requires storage for
user authentication data, biographical data and preferences settings,
blog postings, and comments on blog postings. The blog postings
and comments would be stored in a single table called posts. The
hashing key prefix, conflgured when the posts table was created,
would be a variable prefix delimited by two slash characters.

See Figure 7 for example keys that would be stored in the posts
table for user #42. The value of fhe /A2/stnnary key would
contain metadata for the user's collection of postings: the number to
assign to the user's next post, the number of active/undeleted posts,
the number of deleted posts, etc. Al1 comments for post #1 would be
retrieved by a ,get-many' operation with the {binary_pref ix,

ry
ry

E @

39

6 Non-deterministic choices are mentioned in [24]

add-nelr-post(UserID, PostText) ->
Prefix = t/t ++ integer-to-list(UserID) +t "/",
MetaKey = Prefix ++ rrsunnaryrr,

{ok, 01dTS, OldVat} =

brick-simple: get (posts, MetaKey) ,
#post{next-id = NextID, active = Active} =

OldMeta = binary-to-tern(01dVa1),
NewMeta = 0ldMeta#post{next-id = NextID + 1,

active=Active+1),
PostKey = Prefix ++ integer-to-List(NextID),
%% replace op: Abort if the key does not exist
"/,'I or if current tinestamp /= 01dTS.
'/,'/, add op: Abort if the key already exists.
Txn = lbrick-server:nake-txnO,

bríck-server : nake-replace (MetaKey ,

tern-to-blnary (NewMeta),
o, lttestset, oldrs]l),

brick-server : nake-add (PostKey, PostText) I ,

lok, ok] = brick-simpte:do(posts, Txn).

Figure 8. Example code to add a new Web blog posting using a

micro-transaction.

'/42/I/") option to limit results to only those keys that have a

prefix that matches post #1's comments.
To create a new posting, the micro-transaction feature would

be used to keep the metadata in the sumnary key consistent despite
races with other metadata updates. A simple function, without error
handling code lbr sake of simplicity, is shown in Figure 8.

10. Automatic Key Partitioning and Migration
Some key-value stores in the open source world [14, 23] do not
include automatic support for key partitioning (also called "key
sharding"): they assume the client will implement it. Unfortunately,
coordinating the actions of many distributed clients in a 7007o bug-
free manner is a very difficult task.

Other distributed storage systems place significant resrictions
on key migration/repartitioning. For example, the MySQL Cluster
RDBMS did not support repartitioning until April 2009, and then
only to expand the size of the cluster t20l - reducing cluster size
was not supported.

Reducing cluster size is a valuable feature. Also, support for
heterogeneous hardware is very desirable. It is nearly impossible
to buy the same hardware more than three months after a system
has been deployed in the field, much less three years or more in the
future.

The original chain replication paper [24] is silent on the subject
of key migration. Hibari provides support for key migration as well
as support for heterogeneous hardware. Both are accomplished by
its consistent hashing implementation.

Each Hibari server and client node maintains two complete
consistent hashing maps for each Hibari data table: one old/cuffent
map and one new map. During normal operations, the two maps are

identical. However, during a key migration period, the two maps
will be different: the current map describes where keys are stored
in the current scheme, and the new map describes where keys are

stored in the desired scheme.
The bottom two-thirds of Figure 5 shows an example of the

chain mappings used to migrate a table from two chains to three
chains and later four chains. A key 111 with an MD5 hash that
maps to 0.1 on the unit interval would be stored in Chain I and
would not move in either key migration. Akey K2 with an MD5
hash that maps to 0.49 on the unit interval would initially be stored
on Chain l. The first key migration would move Kz from Chain 1

to Chain 3. The second key migration would move 1(z from Chain
3 ro Chain 4.

The method demonstrated in Figure 5 attempts to minimize key
movement and to evenly distribute migration workload. However,
the Admin Server API permits the flexibility to choose arbitrary
map definitions for a key migration. As a planning tool, an API
function is provided to calculate how many keys would be moved
between all pairs of chains, given a specific hash map.

Hibari's key migration is performed dynamically, while all
bricks and clients are in full operation. The chain head brick selects

a "sweep window," a range of keys (in lexicographic sort order),
and copies the keys to their respective destination chains. When all
destination chains have acknowledged successful writes, the sweep
window is advanced, and the process repeats. All chain heads per-
fom key migration sweeps in parallel. Operations by clients on
keys inside the sweep window are deferred until the sweep window
advances.

Due to the realities of message pasÀing asynchrony, it is pos-
sible for clients to send queries to the wrong brick in the wrong
chain. Each brick will determine if a query has been sent incor-
rectly and, if so, forward the query to the appropriate brick. Most
forwarding involves only one extra hop or are loops that exist for
very small periods of time (typically much less than one second).
The forwarding delay and maximum hop mechanism described in
section 6 take care of rare, longJived forwarding loops.

Hibari's key migration implementation is currently missing a
feature requested by at least one customer: the ability to halt a mi-
gration. If the I/O workload caused by migration causes severe la-
tency problems for normal Hibari client applications, the customer
wishes to suspend migration until peak client workload subsides.

Aborting a migration entirely would be much more difficult.
The sweep key mechanism would have to "run backward": a sweep
of the key space in reverse order would send each key-value pair
from its destination chain backward to its source chain. Rather
than implement this complex feature, it is much easier to permit
the cunent migration to map Mn to finish, and then trigger a new
migration Ío map Mn¡t where Mn-t : Mn+t to move all keys
back to their original location.

11. Replica Placement
Terrace and Freedman l22lhave discussed replica placement strat-
egy: where should various chain members be located physically
and logica1ly? For example, all replicas within a chain should not
be within the same physical data center rack: rack-wide power fail-
ures and network outages are too common, even in well-managed
data centers.

One of chain replication's nice features is that it doesn't make
many demands on replica placement policy, giving an administrator
great flexibility. For example, a Gemini customer decided that chain
lengths of three would be sufflcient to meet its availability goals.
The Hibari default replica placement arranges bricks within chains
as ifthe underlying physical machines we¡e in a ring: chain 1 uses

machines A + B + C,chain2usesmachines B + C + D,and
so on. In the case of 26 physical machines, the fina1 chain would use

machines Z + A + B. (See also Figure 2 for an example of a
ring of five machines.)

Using the above ring strategy, the resources of each machine
are likely to be used equally: each physical machine would host an

equal number of head, middle, and tail bricks. This balance was
pleasing to the customer. However, the operations impact of key
migration did not appear so pleasing when considering expanding
the size of the cluster. If the new machines are inserted into the ring
between A and Z, then the machines nearby, that is, machines á,
B,Y, and Z, will endure greater load caused by key migration than
the other 22 original nodes.

40

Machine A Machine B Machine C lMachine GMachine D Machine E Machine F Machine H Machine I
Head0

Tail l.
Middle2

Original Machines

Middle0 +
Headl +
Tai12.

Tail0.

Middlel +
Head2 +

Head3 +
Tail4.

Middle5 +

Original Machines

Middle3 +
Head4 +
Tai15.

Tail3.

Middle4 --+

Head5 +

Head6 --f
Tail7.

MiddleS -+

New Machines

Middle6

HeadT

Tail8.

--) Tai16.

+ MiddleT +
HeadS +

+

+

Figure 9. Replica placement using groups-of-3-machines strategy: start with six machines, then add three more. Machines that maintain
head bricks are bold-faced to highlight the striping pattem.

This customer decided to use a different placement strategy,
called groups-of-three-machines strategy. For each Hibari table,
a group of three chains is sriped across a small group of three
machines. This process would repeat until all machines were ac-
counted for. See Figure 9 for an example. The result provides equal
workload sharing: each machine still has an equal number ofhead,
middle, and tail bricks. Also, adding new machines (in groups-of-
three) will create a balanced workload during key migration: as-
suming that all chain weightings are equal, then roughly 50Vo of all
keys in chains on machines .4 through f' will migrate to chains on
machines G through 1.

On top of the groups-of-three placement strategy, the customer
is free to use rack-aware placement also. For example, each physi-
cal machine in a group-of-three can be placed in a different rack.

12. Other Observations
This section contains a number of observations about Hibari's im-
plementation and production deployments that don't merit entire
sections to themselves.

l2.l Using gen-server
Hibari's implementation makes heavy use of the Erlang/OTP
gen-server behavior, largely because its serial method of han-
dling messages maps very well onto the serialization that a well-
behaved chain replication server must do. Howeve¡ a single Erlang
process cannot consume more than a single cPU core',s worth of
computation resources. Due to Hibari's one-to-one mapping of log-
ical bricks to Erlang processes, an administrator who wishes to take
full advantage of multi-core and multi-CPU systems must provi-
sion more chains than strictly necessary so that many logical bricks
will be assigned to a single physical brick.

The extra logical bricks come at a cost of management com-
plexity. The Admin Server now must keep track of more bricks
and chains than is otherwise strictly necessary. The overhead of
monitoring each brick is small, but when monitoring a few thou-
sand bricks, the total cumulative workload can cause problems.
The biggest single bottleneck is updating the Admin Server's pri-
vate state storage bricks. For the sake of simplicity, updates to the
private state bricks are serialized. When a cluster with over 3,000
logical bricks are booted simultaneously, the number of state tran-
sitions that are generated each second can exceed the state storage
bricks' maximum update rate. A future release of Hibari will fix
this problem.

12.2 Chain Reordering

Chain reordering doesn't appear in either the original chain repli-
cation paper l24l or the CRAQ paper 1221, but it's valuable from
an operations perspective. As originally described, a chain can be-
come reordered by the failure and repair of member servers. In the
long term, such reo¡dering can destroy an administrator's intended
balance of workload across hardware resources.

For example, if a chain is configured ês 81 + B2 + Bs and
bnck Bz fails, then after repair is finished, the chain's order will

be .B1 + Bs + F2.If brick Br fails later, the chain's order will
be Bs + B2 + B1 (again, after repair). Without reordering, the
chain will remain in this order until yet another brick fails. Hibari,
however, will reorder the chain back to Bt - Bz + .B3 once the
repair of .B1 is complete.

12.3 Key Timestamps

Each key in a Hibari server has a timestamp associated with it.
Each server enforces a rule that each update must srictly increase
the key's timestamp. This feature prevents multi-client races that
attempt to update the same key. The timestamp can also be used
for "test and set" behavior, which will abort a micro-transaction if
the key's current timestamp does not exactly match a timestamp
observed in an earlier operation.

Key timestamps have subsequently become extremely impor-
tant for optimizing brick repair. Other projects such as Dynomite
[7] and Riak [18] use Merkle trees to quickly calculate which keys
two se¡vers share.

Hibari uses a simple "I have"/"Please send" iterative protocol to
identify keys that need repair. Each key and its timestamp are sent
in the "I have" phase. Because all keys and timestamps are stored in
RAM, no disk IiO is required (by either the upstream/online brick
or the downstrean/repairing brick) to complete the "I have" phase.
Disk VO (to retrieve value blobs) is required only for keys that are
missing or out-of-date on the downstream brick.

12.4 Read-Ahead

Read-ahead optimizations by the operating system's disk subsys-
tem can often degrade performance. Most of Hibari's read-only
disk operations are random in nature across mostly small pieces of
data, usually only a few kilobytes each. Read-ahead mechanisms
that try to read hundreds or thousands of kilobytes merely create
higher latency for all disk operations.

There is one case where Hibari could use very aggressive read-
ahead buffering by the OS: during brick initialization's sequential
scan of the brick's write-ahead log. The Erlang virtual machine
does not support system calls like fadvise(2) andnincore(2),
so it has no custom control over read-ahead behavior. We have not
yet been desperate enough to try using the newer R13B Erlang NIF
feature or an older-style driver to implement these system calls, but
we probably will, someday.

12.5 File Checksums

Hibari stores all log data on disk with MD5 checksums. Any data
conuption detected by an MD5 checksum will cause a brick to
take itself out of service. Automatic chain repair will identify the
keys lost due to corruption and re-replicate those keys. The bad file
is moved to a separate directory to prevent future access. By not
deleting the bad file, Hibari hopes to avoid reusing the bad disk
block(s) that caused the original problem.

Unlike GFS [8], Hibari's netwörk messages are not yet pro-
tected by checksums. It is possible for a bit error to escape the net-
work protocols stack's checksum regime and affect Hibari clients
and/or downstream bricks.

i

4l

12.6 Murphy's Law

Anything can and does happen in a production environment. The
"impossible" is possible, and if something can go wrong, it will.

In one memorable case, the Erlang/OTP "kernel" application's
error-logger process was overwhelmed by over 85,000 error mes-
sages that were riggered by Erlang's system-monitoro BIF in un-
der one minute. We know that such system messages can be gen-
erated extremely quickly by the Erlang virtual machine. Hibari's
process that receives the system events will only forward 40 events
per second to the errorJogger. 7

So, how can a process that throttles itself to generate only 40
enor messages/second send over 85,000 messages to enorJogger
in under one minute? After all, (40 messages/sec)(l minute = 60
seconds) = 2,400 messages. Intensive code review of the rate limit-
ing mechanism has found no fault. And we know for certain that all
85,000 messages were generated in under 60 seconds. This mystery
will probably never be solved.

I2.7 Otherobservations

. It is too easy, especially when subject to schedule pressures, to
shoot yourself in the foot with Erlang. Code with side-effects
is difficult to understand, to test, and to support .. . yet manage-
ment of side-effects (i.e., mutable state) is Hibari's reason for
being. If we were to rewrite Hibari from scratch, we would be
extra careful to segregate code with and without side-effects to
simplify testing by QuickCheck and other tools.

r An early implementation decision for Hibari, left ambiguous by
the original chain replication paper and discarded by the CRAQ
paper, was that any single logical brick can be a member of only
one chain. In hindsight, it was a good decision. The complexity
of implementing the key migration logic for a logical brick that
stores keys for multiple chains would have been painful.

o Hibari relies on Erlang's network distribution service for all
significant cluster communication. The shot't term impact is
positive: Erlang message passing 'Just works."8 The long term
impact is negative: nobody knows the largest practical size ofa
single Erlang cluster. To build a Hibari cluster with thousands
of nodes, we may have to move away from Erlang's built-in
messaging or, perhaps, re-write Ericsson's network distribution
code.

13. Related Work
Citations of related work have appeared throughout the paper;
however, a few other prior works should be mentioned.

As described in the introduction, others have written about the
experience of implementing distributed algorithms; citations of [3,
5, 1 1l only scratch the su¡face of recent publications. Any Erlang
developer who attempts to implement a distributed algorithm from
scratch or modify one should read [2] and [21] before starting.

Consistent hashing was introduced by Karger et al. in [10].
The technique has become popular for replacing central directory
services for many key + location mapping needs. Central directory
servers, in most cases, run on a single host and are therefore a

single point of failure for availability and also a likely performance
bottleneck.

Amazon's Dynamo distributed hash table [6] uses a layer of
indirection in its consistent hashing implementation. Hibari's im-
plementation is quite similar. The main differences are in naming
and that Hibari's number and size of hash interval partitions can be

?The message flow is: Erlang VM + system event receiver process +
enor-logger process.
8 An important exception is described in section 8.

changed by using key migration. Also, Hibari's hash partition sizes
may be heterogeneous, as demonstrated in Figure 5.

Replica placement is the main topic of [25] and is also discussed
in [8] and 1221. The Cassandra distributed database has plug-in
API [4] that helps encourage experiments with different placement
policies.

14. Conclusion
Using the Hibari distibuted key-value store as a case stud¡ we
have shown that the path from a pure, proven algorithm to real-
world implementation is not smooth. Most of the problems we've
encountered with Hibari, both with implementation coffectness
and with performance, apply not only to Erlang but all distributed
computing environments.

We all share the same limitations, such as hard disk drives that
grow ever slower relative to the computers they are paired with,
failure-prone networks, the maximum speed of light, the funda-
mental properties of asynchronous messaging, and the problem of
making theoretical ideas such as "fail stop" into an equivalent real-
ity. We must never forget that any change to a distributed algorithm
or its environment or implementation, no matter how small or in-
nocent the change may appear, may in fact invalidate the algorithm
. . . and it may be weeks, months, or even years before we notice the
error.

15. Availability
In July 2010, Gemini released the Hibari source code under the
Apache Public License version 2.0. Its source code and documen-
tation, including Systems Administrator's Guide and Developer's
Guide, is available at}rtt"p: / /}l,lbari . sourceforge . net/.

Acknowledgments
Many thanks to Gemini Mobile Technologies, Inc.: to the Shibuya
development team for code and documentation reviews and to the
Shibuya field engineer team for their invaluable customer support.
I also owe thanks (and probably quite a few drinks) to the ACM's
reviewers and to Olaf Hall-Holt, Satoshi Kinoshita, James Lar-
son, Romain Lenglet, Jay Nelson, Joseph Wayne Norton, Gary
Ogasawara, Mark Raugas, Justin Sheehy, Ville Tuulos, and Jor-
dan Wilberding. Finally, thank you to Louise Lystig Fritchie for
her unstinting patience and editing wizardry. All remaining errors
are mine.

References

t1l R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter fault tol-
erance. In The Eighth Workshop on Hot Topics in Operating Systems
(HotOS Wil), pages 33-38,2001.

[2] T. Arts, K. Claessen, J. Hughes, and H. Svensson. Testing implemen-
tations of formally verified algorithms. In Software Engineering Re-
search and P ractice, 2005.

[3] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of
a fault-tolerant leader election protocol in erlang. ln L¿cture Notes itt
Computer Science, pages 140-154. Springe¡ 2005.

[4] Cassandra Wiki. URL http: //wì.ki . apache. org/cassandra/-
0perations. Accessed on 31 July 2010.

t5l T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. ln PODC '07: Proceedings of the twenty-
sixth annual ACM symposiwn on Principles of distributed computing,
pages 398-407, New York, NY 2007.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A, Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon's highly available key-value store. In Proceedings of SOSP,
pages 205-220,2007 .

42

[7] Dynomite key-value store. URL http:,//gíthub. con/-
cliffmoon/dynomite. Accessed on 31 July 2010.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
SOSP '03: Proceedings of fhe nineteenth ACM symposiun on operat-
ing systems principles,pages 29-43, New York, Nl 2003.

[9] Hibari. URL http:,//hibari.sourceforge.net/. Accessed on
31 July 2010.

[0] D. Kargex E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. p.

Abstract. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In In proõ.
29th ACM Symposium on Theory of Computing (STOC), pages 654_
663,1997.

[l1] I. Keidar and L. Zhou. Building reliable large-scale disrributed sys-
tems: When theory meets practice. ACM SIGACT News, 40(3),
September 2009.

[2] L. Lamport and K. Marzullo. The part-time parliament. ACM Trøns-
actions on Computer Systems, 16:133-169, 1998.

[13] N. Lynch. Distributed Algorithtns. Morgan Kaufmann, 1996.

[14] Memcached. URL http: ,//nemcached. orgl. Accessed on 3 I July
2010.

[5] V. S. Pai, P. Druschel, and \ü. Zwaenepoel. Flash: An ef;frcient and
portable web server. ln Anrutal Technical Conference. USENIX, 1999.

[16] R. D. Prisco and B. Lampson. Revisiting the paxos algorithm. In
Proceedings of the 11th Intemational Workshop on Distibued Algo-
rithms (WDAG 97), volume 1320 of Lecare Notes in Computer Sci
ence, pages 1 1 l-125. Springer-Verlag, I 997.

[17] Quviq AB. QuickCheck property-based sofrware testing tool. URL
http://¡¡r¡¡.¡.quviq.conl. Accessed on 01 August 2010.

tl 8l Riak key-value store. URL http: //wiki . basho . con/display/-
RIÂK/Riak. Accessed on 3l July 2010.

[19] Squid. Squid http proxy. URL http://www.squid-cache.orgl.
Accessed on 3l July 2010.

[20] Sun Microsystems. Sun announces mysql cluster 7.0 for
real-time, mission-critical database applications. URL
http : //r¡ww. nysql . com/news-a::d-event s/generate-
article.php?id=2009_06. Accessed on 0l August 2010.

[21] H. Svensson and L.-4. Fredlund. Programming distributed erlang
applications: Pitfalls and recipes. In ACM Erlang Workshop. AClvl
Press, 2007.

[22] J. Tenace and M. J. Freedman. Object storage on CRAe: High-
throughput chain replication for read-mostly workloads. In USEñIX
Annual Technical Conference, San Diego, CA, 2009.

[23] Toþo Tyrant. URL lnttp //tg79tln.net/tokyotyrant/. Ac-
cessed on 3l July 2010.

[24] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. tn USENIX OSDI,2004.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Malrzahn. CRUSH:
Controlled, scalable, decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing
(sc'06). ACM,2006.

[26] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In .lO^fp '01: proceedings of
the-eighteenth ACM symposium on operating srstems principles, pages
230-243, New York, NY,2001.

t.

l

i

43

Analysis of Preprocessor Constructs in Erlang *

Kitlei Róberr

Department of Programming Languages
and Compilers, Faculty of Informatics,

Eötvös Loránd University
kitlei@inf.elte. hu

Bozó István
Department of Programming Languages
and Compilers, Faculty of Informatics,

Eötvös Loránd University
bozo_i@inf.elte. h u

Kozsik Tamás

Department of Programming Languages
and Compilers, Faculty of Informatics,

Eötvös Loránd University
kto@aszt.inf.elte. h u

The rest of the paper is structured as follows. In Section 2, the
RefactorErl tool is introduced shortly. Section 3 describes the
preprocessor constructs that can appear in Erlang source code.
section 4 discusses how preprocessor constructs are represented.
Transformations may involve changes in the AST that also affect
these preprocessor constructs; the way this is handled is presented
in Section 5. Section 6 describes related and futu¡e wo¡k. and Sec-
tion 7 concludes the paper.

2. RefactorErl

Tejfel Máté
Department of Programming Languages and Compilers,

Faculty of Informatics, Eötvös Loránd University
matej@inf.elte.hu

Abstract

Program analysis and transformation tools work on source code,
which - as in the case of Erlang - may contain macros and other
preprocessor directives. Such preprocessor constructs have to be
treated in an utterly different way than lexical and syntactical
constructs. This paper presents an approach to treat pfeprocessor
constructs in a non-invasive way that is reasonably efficient and
supports code transformations and analyses in an Erlang specific
framework.

Tóth Melinda
Department of Programming Languages and Compilers,

Faculty of Informatics, Eötvös Loránd University
toth-m@inf.elte.h u

code. The primary concern ofRefactorErl, as its name suggests, is
refactoringl, however, it is capable of running different anãfuse. on
the source code as well.

Categories and Subject Descriptors D.2.7 lSoftware Engineer-
lngl: Distribution, Maintenance, and Enhancement-Restructuring,
reverse engineering, and reengineering

General Terms Algorithms, Design, Languages, Reliability

Keywords Erlang, macro, preprocessor, refactoring

1. Introduction

RefactorErl is a source code analyser and transformation tool orig-
inally developed for refactoring Erlang programs. The latest re-
lease of the tool contains 22 refactonng transformations. Refactor-
Erl provides additional facilities for program manipulation such as
clustering functions and other Erlang forms based on how tightly
they are coupled [5]. It introduces a powerful query language [3] to
collect information about an Erlang program for analysis or refac-
toring as well. This query language operates on the level of se-
mantic entities of Erlang and is directly accessible through the user
interface of RefactorErl, making it possible for programmers to ob-
tain knowledge about the structure and the semantic relationships
of, and also to compute different software complexity metrics [4]
about, an Erlang program.

RefactorErl represents an Erlang program as a three layered se-
mantic program graph (SPG). The SPG is a rooted, directed graph
which contains lexical, syntactic and semantic nodes and edges.
The syntactic nodes and edges constitute the abstract syntax treè of
the represented Erlang program and provide the basis fo¡ construct-
ing the SPG. After parsing, the different asynchronous semantic
analyser modules of RefactorErl add semantic nodes and edges to
the SPG such as binding information about variables or the call
graph. The semantic analyzer framework is incremental, and it au-
tomatically restores the consistency of the semantic program graph
after a source code transformation and also after manual editing of
the source code.

Proper management of preprocessor constructs in a program analy-
sis and transformation tool poses a challenge. This paper proposes
a graph representation of such constructs in RefactorErl t2l-This
representation stores all syntactical and lexical elements of a given
Erlang source code exactly once, while clearly indicating the used
preprocessor constructs. The paper also introduces the necessary
infrastructure to automatically address the changes that have to be
made to the representation if the source code is transformed so that
it affects preprocessor constructs.

The hosting tool, RefactorErl, is an Erlang-specific tool that com-
prises a back-end for representing the AST built upon Erlang source

* Supported by KMOP-I.1.2-0811-2008-0002 and Ericsson Hungary

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies æe not made or distributed
for profit or commercial advantâge and tlat copies ber this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, ¡equires prior specific permission and,/or a fee.
Erlang'10, September 30, 2010, Baltimore, Mayland, USA.
Copyright @ 2010 ACM 978-l-4503-0253-l/10/09. . . $10.00

45

1 Refactoring is the process of changing the structure of a pro$am without
changing its externally observable behaviour.

The query language is implemented with traversals in the SPG
based on path expressiores. A path expression can be defined by
giving a start node and a list of edge labels to follow. The graph
edges can be traversed forwards and backwards, and it is possible
to filter the result with syntactic or semantic information.

This paper describes how the various preprocessor constructs of
Erlang are represented in the semantic program graph, as well as

how refactorings interact with these constructs.

3. Preprocessor constructs in Erlang

In order to make decisions about the choice of representation, let
us determine the kinds of preprocessor usage first. There are five
preprocessor constructs to be considered: macro definitions and
undefinitions, macro substitutions, conditional compilation, and
file inclusion. Other constructs such as records may be affected by
the preprocessor (snnp-types.hrl in the snnp application does
conditionally define the fields of a record, as seen in Listing l). The
approach that we present in the rest of the paper is applicable with
minimal modifications to represent these constructs, therefore we
shall not elaborate on them further.

Macros may have parameters, even of arity zero, which adds a

little technical hurdle, as seen in Listing 3. In this example, ?nl
is defined with no parameters, while ?n2 is defined with an empty
list of arguments.

-define (n1 , g) .

-define(n2O, e).
I

2

3

4

5

6

7

f1O -> ?nlo
12O -> ?n2o

% returns tht
o/o returns 'g'

co -> h

Listing 3. The role of parameters in macro substitutions

The difference is subtle: the macro substitution on line 5 involves
only ?ml, while the substinrtion on line 4 involves the parentheses
as well: ?n2 () . The preprocessed code is shown in Listing 4.

1

2

3

4

flO -> eo
12() -> g.

,/ ret
ret

urns 'h'
urns 'g'

gO -> h

-ifdef (SNMP-USE-V3).
-record (message , {version ,

-eIse.
-record (nessage , {version,
-endif.

Listing l. Conditional record definition in snmp-types.hrl

The most important question we are seeking the answer to is the
following: what is the list of tokens a macro can be expanded to
when a macro substitution is encountered?

Erlang/OTP R13804 contains 1 .45 million lines of effective code,
23024 macro definitions, 1204 conditional compilation constructs
(out of which 305 of them contain an -else), and 2530 instances
of fi le inclusion. Out of the 23024 maqo defi nitions, 1 1 499 (almost
507o) are simple numerical constants. The other half of the macro
definitions is quite diverse: variables, strings, binaries, tuples and
lists of constants, record accesses, references to other macros and
function calls are all among them in various proportions.

Simple macro use The simplest case is where a macro is defined,
and then it is used, as in Listing 2. In most of the cases, the body
of the macro is an atom or a number. The substitution is trivially
made.

-def ine (m , I23)

Listing 4. Listing 3 after preprocessing

The rules for macros were made more lenient in the recent R14A
release of E¡lang/OTP: the source code in Listing 5 compiles, with
f retuming {f , g, h}. Previous releases of the compiler reject
this source code, complaining that macros cannot be ¡edefined.

-define(rn, f).
-define (mO , g).
-def ine (¡n(X) , X).

vsn-hdr, data)).

coronunity , data))

I

2

3

4

5

6

f o ->

fO -) ?n

Listing 2. A simple macro definition and substitution

{zn, ?n O , ?ro (h) }
Listing 5. Defining macros with the same name but different ari-
ties

All of the above macros are well-behaved: they are expanded into
a series of tokens that form a syntax subtree. However, this is not
always the case; later we will describe cross-cutting macros that do
not have this property.

Another interesting case is the vanishing macro. The vanishing
macro is a macro, usually having no arguments or an empty ar-
gument list, that has an empty body. Listing 6 demonstrates this
along with the peculiarity present in the Rl3 release series of Er-
lang/OTP that the ending parenthesis of macro definitions can be
left out as a "nicety" (as of ErlangiOTP R14A, ending parenthe-
ses are required). Counterintuitively, neither function no-params
nor function no-parans2 has any parameters. Since the substitu-
tion of a vanishing macro is expanded to no tokens, how can it be
connected to the syntax tree? A simple solution is to represent van-
ishing macros as special comments.

-define (vanish,.
-define (vanish2 O ,.

no-parans(?vanish) -> 1.
no-params2 (?vanish2 O) -> 2

46

Listing 6. The vanishing macro

An example of the vanishing macro can be found in the ttb. erl
module of the observer application of Erlang/OTp. The code is
shown in Listing 7; line 8 contains the vanishing definition of the
macro. 4

-ifdef (debug). s

-def ine (get-status , 6

; get-status -> 7

erlang: display (t

dict: tã-tist (NodeInfo)) , l
loop(NodeInf o)). l:

-erse l1

-def ine (get-status,) .

-endif.
Listing 7. A conditional from ttb.erl, one case is always non-
syntactic, the other is always vanishing

A very unfortunate and badly readable case of macro application
is when the tokens resulting from the substitution do not form the
front of a full syntax subtree; this is called a syntactically cross-
cutting macro substitution. In Listing 8, we see a macro that is
used in two similar expressions. There is one notable difference:
the substitution cross-cuts the syntax tree on line 4 while it does
not on line 3 because of the left-associativity of the addition oper-
ator. Thus, we can conclude that syntactical well-behaviour is the
property of the macro substitution, not the macro definition. While
this example can be amended by additional parentheses, there are
even worse cases of non-syntactical macros; Listing 16 on page 4
shows two particular cases.

-define (two, 1+1) .

loop (NodeInfo) ->
receive

j(seuerdl cases,..
{stop , Fetch0rFotnat , Sender} ->

a_ Iong_body
I note the ni,ssing ; here

; get-status ->
erlang: display (

dict : to_1ist (Nodefnf o)),
loop (NodeInfo)

end .

Listing 10. ?get-status is substituted

Undefinìfíon Macros can be undefined in the code, ensuring that
they have no definition thereafter (Listing I I). Of course, undefined
macros cannot be dereferenced.

-undef (n).

Listing 11. A macro is undefined

External møcro definìtíon It is not always possible to determine
the configuration of a macro by only using static analysis of the
source code itself: macros can originate from the command line as
well, as seen in Listing 12. Macros defined on the command line
cannot have parameters, and they are restricted to constructing a
single atomic value, making all of their uses syntactical.

r erlc -Dx=ok test. erl
z erlc test . erl

#
*

r-s
l-sx

def ined
not defined

i, ...
t:

;

ir
I
i

-) ?two + 1

-) 1+ ?tr"¡o

Listing 8. A macro with both a syntactical and a non-syntactical
expansion

The first macro definition on line 2 in the already mentioned List-
ing 7 shows an example of a non-syntactic macro in actual code. In
conÍast to the macro in Listing 16 (where it could be determined
only at the point of substitution whether the macro is syntactically
cross-cutting), this definition of the ?get_status macro always
cross-cuts the syntax if used, because it begins with a semicolon
that is syntactically always below a clause, and never its first token.

Let us examine the only use of the macro in the code of ttb. erI,
the abridged version of which is shown in Listing 9. Supposing
the crosscutting definition of the macro is in effect, the code is
transformed into the one shown in Listing 10. The semicolon is
part of the substitution, but the whole receive construct is not the
outcome of the substitution, therefore the substitution is cross-
cutting.

r loop (Nodefnfo) ->
z receive
z /" seueral cases.,.
.{ {stop, Fetch0rFor¡nat , Sender} -)

:
t -'olrt;oo1u.' the nissins ; here

t ?get_status
s end

Listing 12. A command line macro definition

If we encounter a substitution for a macro that was neither defined
nor undefined previously, we have to conjecture that the definition
of the macro is supplied extemally.

Conditìonal compilation A conditional compilation construct is
replaced during preprocessing by one of two series of forms, de-
pending on the definedness (-ifdef) or undefinedness (-ifndef)
of a certain macro. If conditional compilation is used, a macro sub-
stitution has the potential to be expanded in more ways than one.
In Listing 13, f O will return either ,a, or ,b,, depending on the
configuration of ,x, at line 1. We will indent conditionally com-
piled forms for enhanced readability, although this is not common
practice in real code.

-ifdef (x).
-define (y, a) .

-else.
-define (y, b) .

-endif.

fo
co

I

2

3

4

5

6

1 fo -> ?y

Listing 13. A macro with ramified definitions

Listing 9. Usage of ?get-status in ttb.erl

47

Since it is the intention of the programmer that both cases of the
conditional compilation be present in the source code, a refactoring
tool cannot ignore one of the cases: if the condition is reversed, the
forms from the other branch will be used, therefore all refactorings
have to deal with both b¡anches. In Listing 14, for example, when
renaming function f , both instances of f have to be renamed.

-ifdef (x).
f o -> 1.

-e1se.
f o -> 2.

-endif.

cO -> fo
Listing 14. A function with ramified definitions

It is possible to write conditional compilation constructs that leave
the configuration of a macro garbled, as seen in Listing 15. While
this code can be compiled, if the definition of x is removed from
line l, the code becomes invalid. For this reason, we shall require
(and check) that the configurations of all macros be compatible
at the end of each conditional compilation branch. The undefined
configuration of the macro is only compatible with the undefined
configuration (see Listing 3 1); all other configurations can be com-
bined.

r -define (x, 1) .

z -ifdef (x).
3 -undef (y).
¿ -define (y, 1) .

s -e1se.
6 -undef (y).
r -endif.
¡ fO -> ?y.

Listing 15. Conditional macro configurations

Furthermore, it is possible to write code in which different defini-
tions of the same macro cross-cut the syntax tree in different ways,
as seen in Listing 16. Depending on whether ?x is present, the sub-
stitution on line 6 is expanded either to t*2+g () or l+n : g ().

Such macros make code maintenance extremely hard. An approach
for handling such macros was described in [0], however, we have
decided to restrict our representation so that whenever a macro has

more than one body, they are required to be expanded to a syntac-
tically conect subtree, the top node of which is an expression.

-ifdef (x) .

-def ine (Y , '* 2 +) '
-eIse.

-define(Y, + n :).
-endif.
fO -> 1 ?y gO.

Listing 16. Macro with two different non-syntactical bodies

Fortunately, the majority of conditional compilation cases are used
for debugging purposes, similar to the one shown in Listing 17.

Such cases can be represented more conveniently than the geueral
case, as described in Section 6.

-ifdef (ny-debug).
-def ine (dbg , io : f orroat (rrdebuggnsg")) .

-e1se.
-define (dbg, ok) .

-endif.
Listing 17. A very common case of conditional compilation

Include files Finally, include files can also affect the configura-
tion of macros. A common way is that a macro is defined in a . hrl
file (less often, in an . ínc file), and it is included in an . er1 filc
(possibly through a chain of includes). Out of the mentioned23024
macro definitions in Erlang/OTP, 15996 (69 Vo) are found in . hrl
files. As a prime example, wx. hrI contains some record definitions
and 3333 maqo deûnitions, all of which are constants or calls to a
function that retums constants.

A simple case of file inclusion is seen in Listings 18 and 19.

% header , hrl
-def i.ne (m , 1) .

Listing 18. A macro is defined in a header file, header

T" incLuiler , erl
-include ("header. hr1 ") .

fO -> ?m.

Listing 19. A macro is defined in a header flle

In some cases, a macro is used in a . hrl file, either as a condition
in conditional compilation, or in the body of a function. This is par-
ticularly womisome, as the code that appears on line 2 in Listing 20
contributes to two distinct syntactical parts, but in a different way:
once it appears in the syntax tree of includerl. er1 from List-
ing 21 with the body 1, and once it appears in the syntax tree of
includer2. erl from Listing 22 with the body 2. In Listing 23,
we have to go outside the language to determine the body, as it is
extemally supplied. Worse still, these macro substitutions may be
part of rather dissimilar ASTs: imagine the macro bodies of List-
ing 16 coming from two include files in the manner of Listing 20.
This is clearly not good: at some point, we will have to output a
textual source file, and by allowing such syntactically bad cross-
cutting macro bodies, we would have a hard time reassembling the
text. Instead, we have chosen to disallow syntactically cross-cutting
macro bodies if the macro has more than one body; with syntacti-
cally well-behaved bodies, we can join their top nodes and insert
this node in the syntax tree. This way, ?n on line 2 can be repre-
sented with one node that has two trees below it, one coming from
the body 1 and another from the other body 2. This representation
is described in detail in Section 4.

/" heøiIer . hrl
f O -) ?¡n.

Listing 20. A macro is passed to a header file

r % includ,erT. erl
z -define (m, 1).
: -include ("header. hr1")

48

Listing 21. A macro is passed to a header file

includer, erl included, hrl

lfdef

?m

nod exp incl ifdef els e

¿l

Figure 1. Macro configurations

t T" incLuder2, erl
z -define(n, 2).
: - includs (rrþsader . hrl'r)

Listing 22. Amauo is passed to a header file

% includ,erS. erl
T" ?m i,s eøternaLLg d,efined,
I when compi,Ling incLud,erS. erL
-include ("header . hrl") .

Listing 23. A macro is passed to a header file

As RefactorErl contains powerful querying facilities, it is not too
difficult to find macros in the loaded files that are ambiguous or
otherwise inconvenient. While changing these code parts might be
very difficult (see Listing 1 and Listing 9), at least it is possible to
identify the worrisome code parts using the representation that is
described in Section 4.

Dßøllowìng circular íncludes In our representation, we disallow
cifcular includes. They present lots of subtle complexities, and
probably because of them, they are not common in practice. In the
following, we present a nontrivial case study.

Listings 24 and 25 show a subtle combination of include direc-
tives, conditional compilation, and macro undefinition. When com-
piling rnessy. erl, some macros are set, and then head.er. hrl is
included for the first time. Among others, ?x is defined, therefore
the first branch of the conditional construct is inserted on line 2.
This branch undefines ?x, then includes header.hrl for the sec-
ond time. Since ?x is now undefined, the second branch is taken this
time around, which undefines ?x again - this has no effect, ?x is
still undefined. Now we expand ?cal1Other, with the parameters
?f1 and ?f2, which currently expand to f1 and f2. Thus, we get
the first function, line 5 in Listing 26. Now, we continue with the
remainder of the first branch from the first inclusion. Through two
redeflnitions, we have now exchanged the roles of ?f,1" and ?f.2.
Finally, expanding ?caltOther again, we now get the mirroring
countdown function f 2/0.

% heaiter , hrl,
-ifdef (x).
. -undef (x) .

- include (rrheader . hrI")
-undef (f1).
-def ine (î.L, f.2) .

-undef (f2) .

-define (f2, f1) .

-e1se.
-undef (x).

-endif.

?callOther (?f 1, ?f.2)

Listing 24. Messy circular include

"/o nessg . erL
-nodule (nessy)

-export (tf1l11).

-define (calt0ther (ThisFun , 0therFun) ,
ThisFun(1) -> truê;
ThisFun (N) -> OtherFun (N-1))

-define (x, x).
-define(f1, f1).
-define (f2, f2) .

- inc lude (I'he ade r . hr I ,')

Listing 25. Messy circular include

-nodule (nessy) .

-export (tf1l11).

f1 (1) -> true;
f1 (N) -> f2 (N-1)

f.2 (t) -> true ;
f2 (N) -> f1 (N-1)

¡

t

49

Listing 26. Messy circular include, preprocessed

t % header.hrL
z -ifndef (guard).
¡ -define (guard)
a/o
s -endif.

Note that postulating the non-circularity of includes does not dis-
qualify the multiple inclusion of the same include flle. Some inter-
esting macro constructs are still present, e.g. header guards, shown
in Listings 27 and28.

% i,ncl,ud,er . erL
- include (" header . hrltr) .

-include ("header. hrl"),
Listing 27. Header guard

4. Representation

We now define the SPG representation of Erlang programs that
stores all syntactical and lexical elements exactly once, while
clearly indicating the relations of preprocessor constructs present
in the source code.

Macro environments An Erlang source file consists of a list of
forms. We split these forms into macro environments. The bound-
aries of all macro environments (except for two notable differences,
see below) are determined so that they contain the longest range of
forms where all macros have the same configuration. In general,
such a macro environment will begin with a -def ine or -undef
di¡ective, and contain function forms or non-preprocessor directive
forms. Macro environments following a conditional or include en-
vironment may start with the latter, changing the configuration of
no macros from the previous environment.

We assign conditional compilation constructs a specific kind of en-
vironment. This environment can simultaneously change the con-
figuration of several macros, because it has two lists of environ-
ments under it: one for each form list of the conditional construct.
The macro configuration changes of the two branches have to con-
form to each other.

Include files also have their designated macro environments. The
macro environments of the included file act as if they were inserted
in place.

Listings 29 and 30 with the accompanying Figure I illustrates most
possible combinations of macro environments. The graph shows
the fi1e nodes on top, the macro environments in grey, and the forms
of the file in the bottom, with slightly abbreviated notation. The
contents of the macro environments indicate the changes of macro
configurations that take place in the environment. The first environ-
ment of includer. erl begins with a -nodule form, which does
not change any macros. The second form in the file does change
the configuration of ?n, therefore, it has to be put into a new macro
environment. The third form, a function form, also becomes a mem-
ber of this environment. Next up are two special forms: an include
form and a conditional -ifdef form. The conditional form has two
sub-environment lists, both of which have only one element. All of
the edges and nodes of these two branches are labelled with ?n and

-?n respectively, indicating that these parts of the graph should
only be visible depending on whether ?m is defined.

% includ,er , erl
-nodule(includer).
-define (n, ?M0DULE) .

-export (tf /01) .

-include ("header. hrI") .

-ifdef (n).
fO -> ?n

-e1se.
f o -> 1.

-endif.

Listing 29. Macro configurations

t % h,ead,er,hrl
z -undef (n) .

: -def ine (n, ok)

Listing 30. Macro configurations

Listing 28. Header guard

Summary of possible confi.gurations In this section, we have in-
vestigated the possible configurations that a macro can take, which
has to be considered when encountering a macro substitution. The
following five distinct configurations are possible.

¡ A single body, either allowing or disallowing it to be syntacti-
cally unfitting in substitutions.

r Multiple bodies, disallowing them to be syntactically unfitting.

. Extemally defined.2

o Undefined.

¡ A combination of an extemal definition and one or more bodies
is also possible, if an include file is included both from a file that
does not reference the macro, and an include file that defines
one or more bodies for the macro.

Límitatíons and applícabilíly We can handle preprocessor con-
structs with certain - not too limiting - restrictions.

o We do not handle programs with compilation errors.

. We require that the configurations of all macros be compati-
ble at the end of each conditional compilation branch. This is
checked when the tool loads the files.

¡ We restrict our representation so that whenever a macro has

more than one body, they are required to be expanded to a

syntactically correct subtree. This is also checked when the tool
loads the files.

¡ We do not handle circular includes. This restriction could be
relaxed if necessary. This is also checked when the tool loads
the files.

2 If the configuration of the macro is previously unknown, this is the only
available confi guration choice.

I

2

3

4

5

6

'7

I
9

10

1l

50

file,erl

f s

def

Figure 2. An abstract view of Figure 6 with condition -?rn

def -?m def

Figure 3. Figure 5 before merging is done

the first environment of an include file are the environments (last
sub-environments) preceding forms that include the ñle.

Figures I and 4 show examples of predecessor environments in
dashed lines. Figure I contains no environments that have more
than one predecessor. As the environment before the -ifdef con-
struct is an -include construct, making the last environment
of the include file (where ?n is defined) the predecessor of the
-ifdef environment. Both sub-environments ofthe -ifdef envi-
ronment inherit this predecessor from the parent environment. As
header.hrl is included by only one form, the first environment
of the include file (an undefiniton of ?m) has only one preceding
environment: the second macro environment of includer.er1.
However, the first macro environment of the included file in Fig-
ure 4 has four preceding environments, as the file is included in
three places. Both sub-environments of the -ifdef environment
befo¡e the -include construct in f ilel. erI contribute to the set
of preceding environments.

The configuration of a macro at a substitution can be determined
by inspecting the changes that the preceding macro environments
introduce. The following configurations are possible.

. If no previous environment changes the configuration of the
macro, we conclude that the macro is extemally defineda. Ex-
ternally defined macros cannot cross-cut the syntax.

¡ If a single -define is found, the macro has one body, and it is
allowed to be syntactically cross-cutting.

r If several bodies are defined in the paths of a conditional con-
struct or in differeut irrelutlilg lìlcs (see Ltsttng 20), rhe macro
lras multiple bodies, and they are not allowed to cross-cut the
syntax.

Loadíng the files Files are loaded into the system one after the
other. When an environment has more than one preceding environ-
ment, they are checked for conflicts: non-conforming macro con-
figurations such as the one in Listing 31, where one path has ?x
defined and the other does not. are not allowed.

-ifdef (n).
-define (x, a) .

-e1se.
-undef (x).

-endif.

ii,

:...:

j

li

:-.'l

Tags of condítíons The representation also tags all nodes and
edges by the set of conditions that they are under.3 These tags are
used to temporarily create an abstract view of the graph that shows
only the parts relevant to a specific set ofconditions. Figure 2 shows
such a view on Figure 6 with the condition -?rn; the original source
code is shown in Listing 48. As the condition of the -ifdef is
already determined, only the second branch is present. Also, the
tags ?m and -?m are no longer visible.

After the abstract syntax tree is constructed, automatic semantic
analysers are run on all forms for all configurations that the form
contains. The analysers add semantic nodes and edges to the graph,
tagged with the configuration that they are run under. After an
analyser is run in all possible configurations, nodes and edges with
different tags but the same semantic contents are merged. This
helps us keep the graph small, and dec¡eases exponential explosion.
Figure 3 shows the semantically analysed graph of Listing 47,
which is merged into Figure 5.

Preceding environments All macro environments have a set of
preceding environments. For the very first environment of a file
that is not included from any other file, this set is empty. For
top-level environments that have no parent environment, the set
of predecessors contains the last sub-environments of the previous
environment in the file if the previous environment is a conditional
construct o¡ an include file, and the previous environment as the
only element in all other cases. The flrst sub-environments have the
same predecessor as the parent environment. The predecessors of

3The edges have anotherkind oftag as well, which is used for syntactical
construction, and makes convenient queries possible. Fo¡ futher elabora-
tion, see [8, 9].

Listing 31. Non-conforming macro configurations

When a macro substitution is encountered, the system checks the
current configuration of the macro. If it has exactly one body, it
is expanded to tokens (possibly cross-cutting the syntax), with ad-
ditional edges marking the tokens as results of a macro substitu-
tion. If the macro is not allowed to be syntactically cross-cutting, a
syntactical macro node is inserted, similar to the workings of the
epp_dodger module of the standard library of Erlang/OTp [1].
These nodes are similar to the environment nodes of conditional
compilation: they split the syntax tree into different paths, all nodes
and edges of which are tagged with their originating configuration,
as seen in Figure 4, which is based on Listings 32-35.lnthis exam-
ple, three files set up different configurations for the same macro,
then include header.hrl, which contains a substitution of the

4Analysers may take into account the buitd scripts used, and can pre-
cisely determine whether all externally defined macros are present. As build
scripts come in such a wide variety, we did not take this approach. It would
not take too much effort, however, to introduce an annotation that explicitly
identifi es extemally defi ned macros.

file,erl

lfdef

s

51

filel. erl

¡fdef included, hrl

7

f

?X

file3, erl

Figure 4. Multiple substitutions for ?ü

macro. Since three bodies and an extemal definition is associated
with the macro at the environment where the macro substitution
occurs, all bodies of the macro are required to comprise a syntax
subtree. A disambiguation node is placed in the syntax tree, and
the different bodies are all constructed below, with the appropri-
ate condition tags (?rn and -?m for the two conflgurations from
f ile 1 . erI, and no restrictions for the other two cases).

% ¡tt,el . erl
-ifdef (m).

-def ine (x , bodyl) .

-else.
-define (x, body2) .

-endif.
-include ("header. hr1") .

Listing 32. Multiple substitutions for ?n

r % fi'Le2.erl
z -include ("header. hr1")

Listing 33. Multiple substitutions for ?m

r % fi'Le3.erl
z -def ine (x , body3) .

: -incLude ("header. hr1")

Listing 34. Multiple substitutions for ?n

% header , h'rl
fO -) ?x.

Listing 35. Multiple substitutions for ?n

An include file is reloaded every time it is included by another flle.
Forms with macro substitutions are updated to reflect the changes
in macro confi gurations.

5. Analysis and transformation

Transformations in RefactorErl are formulated as transformations
of the syntax tree: insertions and deletions of nodes and subtrees,
and updates of nodes. After the transfonnations are done, semantic
analysers are run, which bring the SPG up to date so that the new se-

mantic nodes and edges reflect the new connections (variable bind-
ings, function calls etc.) in the code. This section describes how to
transform the AST core of the SPG with respect to preprocessor
constructs, and how the analyser infrastructure is prepared to make
correct nodes and edges for all macro configurations.

One possibility would be to prepare the transformations themselves
to deal with preprocessor constructs. Howeve¡ since macros can
occur almost anywhere in the source code, this approach would
likely result in compromises: ope¡ations adressing the correct use
of macros would be scattered in the code of the tool thus making
it error-prone and hard to maintain. Also, this would make writing
new transformations more difficult.

Our choice is to let the transformations describe only the syntactical
changes, and create an infrastructure that automatically handles the
preprocessor constructs on the way. 5

Let us examine how the syntactical changes made by the transfor-
mations can interact with the va¡ious preprocessor constructs.

The -undef directive affects only transformations that insert new
forms with macro substitutions in them. The transformation has to
ensure that the macros used inside the function are bound appropri-
ately. For example, if ?x is extracted from line 3 in Listing 36, the
transformation has to place the extracted function directly before
or directly after line 3, otherwise the substitution ?x would not be
expanded as before.

-undef (x).
-define (x, 1) .

fO -) ?x.
-undef (x).

Listing 36. Extracting a macro expression to a function

As only syntactical changes are made, the syntax nodes of macro
substitutions can be temporarily changed. In Listing 37, there are

two calls to 1/Q, both coming from macro substitutions. If the
function is renamed to g/0, the transformations, unaware of the
macro expansions, will change the underlyingfunction application
name syntax nodes.

-define(m1, fO).
-define(n2(X), XO).
fO -> ?nl, ?n2(f).

Listing 37. Macro substitutions before 'f is renamed to 'g'

One possibility is to remove the affected macro substitutions from
the code, and leave only the expanded nodes, as seen in Listing 38.

This can always be done, and it does not need to change the original
definitions of the macro.

5 Of course, there are several transformations that deal specifically with
preprocessor constructs: renaming, moving, inlining or extracting a macro,

or moving functions, macros or records to an include file. Obviously, in
these cases, the transformations themselves have to handle the preprocessor

constructs.

?m -?m

syntâx tree syntax tree
of bodyt of body2

?m -?m

syntax trëê
of body3

52

r -define(nl, fO).
z -define (n2 (X) , X O)
3 gO -> CO, gO.

Listing 38. Macros inlined after renaming

However, the intention of the programmer is likely different: if he
did not want the macro calls in the code, he would not have put
them there in the first place. Therefore, if possible, it is better to
change the macro substitution arguments and the macro definition
to fit the changes in the syntactical structure, as seen in Listing 39.

r -define(ml, gO).
z -define(n2(X), XO).
s f O -> ?nl , ?n2(g) .

Listing 39. Macro substitutions after'f is renamed to ,g,

Tracing the changes back to the definition and the arguments is not
always possible. Listing 40 shows a case where the body of ?n is
used once as the name of a function, and once as an atom. If the
function is renamed, changing the macro body would also change
the value of the atom.

-defíne(n, f).
fO -) fun ?m/0, ?n.

Listing 40. Semantically inconsistent macro use

Side effects (message passing, fi1e operations etc.) and type con-
versions make it impossible to do refactorings right in every case.
Let us consider the code in Listing 41, which shows a scheme
that is similar to some functions that can be found in production
code. This function calls another one from the same module, ex-
cept that the function name is saved to a file, transformed arbi-
trarily and then read back. The halting problem assures us that it
is impossible to tell even whether the function call on line 6 is
reached (change_file_arbitrarily might run forever), and the
function name might be changed both by the algorithm and other
actors transforming the file while change_f ile_arbitrarily is
running. Renaming any function in the module raises the question
whether the atom original_fun_name should be changed as well;
this question cannot be answered in general, consequently all func-
tion renamings should be disabled by a conservative approach.

Since such problems are quite common, refactoring tools have to
make a compromise between correctness and usability by extend-
ing range of decidable cases (e.g. RefactorErl uses data flow to de-
tect expressions that bind the same value, one application of which
is to trace where a function name might have come from), and help-
ing the user in the undecidable cases as much as possible.

r f O ->
z AI = original_fun_nane,
: write_fun_nane_to_fi1e(41, "file.txt"),¿ change_file_arbitrarily("fi1e.txt"),
s A2 = read-fun-nane-from-fÍ1e("file.txt'r),
o erlang: apply (?MODULE , 42, tl) .

Listing 41. Name transformation

Include flles introduce other realistic cases of the same problem.
In Listings 42-44, the macro substitutions in the two modules both
expand to function applications, but the called function is not the
same: includerl:f /Q in one module, includer2:f/O in the
other. Thus, if one is renamed, the substitution of ?n cannot be
amended by changing the macro definition in the include file, lest
the other function call is changed as well.

Listing 42. Semantically inconsistent macro uses in including fi1es

t '/, inc|ud,erl, erl
z -module (ínctuderl) .

3 -export (tfl01).
¿ -include ("header. hrI").
s fO -> ?nO.

Listing 43. Semantically inconsistent macro uses in including files

t I i.ncLuder2. erl
z -module (includer2) ,

3 -export (tfl01).
¿ - includs (rrþs¿der . hrl ")s fO -> ?nO.

Listing 44. Semantically inconsistent macro uses in including files

In Listing 45, the macro ?n is expanded to a function application
with a module qualifier. If a transformation removes the module
qualifier, the macro definition is not applicable anymore.

-define(n(X, y), x:yO).
f O -) ?n(?MODULE, f).

Listing 45. Macro with a module qualifier

Besides inlining the substitution, another valid approach is to offer
a newly devised macro that is as close to the original one as
possible, as seen in Listing 46.

-def ine(n(X, y), X:yO).
-define(m2(Y), YO).
f O -> ?n2(r) .

Listing 46. A new macro is introduced

t o/" header . hrl
z -define (n, f)

Condílíonal compílatíon Probably the hardest question is how
conditionally compiled code parts should be transformed. A pri-
mary concern is the soundness of the transformation, but efficiency
cannot be disregarded: introducing a new conditional compilation
construct splits the code into two paths, foreshadowing exponential
explosion.

In the following, we describe our approach to handle the transfor-
mation of conditional compilation constructs. First, we present a
basic approach that is generally applicable but not too efficient in
certain cases, then we will shortly discuss the possibilities for im-
provement.

Refactoring is done in two phases. The flrst phase collects informa-
tion by walking the edges of the SPG and querying its nodes, while
the second phase makes the actual transformations: insertions and
deletions of edges, and insertions, deletions and updates of nodes.

Conditional compilation constructs branch the code into two paths6
depending on the presence or absence of a macro. Let us call a sub-
set of all such macros a conditional configuration. Each conditional
configuration gives us an abstract view of the SpG, as the path cho-
sen at each conditional construct is known.

53

6 If no -else directive is present, the second path contains no forms.

file.erl

ifdef

I

file.erl

lfdef

def
?m

def
?m

g

r -ifdef (m).
z f O -> 1.
3 -else.
¿ f O -> 2.
5 -endif.
6 go -> f o.

dêf
-?m

Figure 5. Two code paths, neither has side effects

We perform the refactoring on all possible conditional configura-
tions, then we merge similar nodes, as we want all syntactic nodes
to be represented only once in the graph. This is illustrated in List-
ing 47 and Figure 5: the code on line 6 is present in both code paths,
which leaves two distinct g function nodes after renaming f to I in
both paths, shown in Figure 3.

However, storing the whole graph for all configurations is too
costly. Our current measurements show that for one macro con-
ûguration, each kilobyte of source code generates approximately
150 kilobytes of internal representation. While this requirement
is imposing, it is within the limitations of current personal com-
puters to load a typical stand-alone application of 400kB-3M8,
which will require around 60-450 MB of storage. Dedicated ma-
chines should handle larger systems as well, such as all applica-
tions of Erlang/OTP (around 50 MB of code, which requires some-
what less than 8 GB of storage when loaded). However, adding a

macro configuration naïvely doubles the space requirement. There-
fore, our choice of representation uses tags to distinguish between
the different code paths, as described in Section 4.

Since conditional compilation cannot cross-cut forms, semantic
nodes and edges that do not cross form boundaries, such as vari-
ables, are not directly affected. However, they can still pass on in-
formation, e.g. through data flow.

def -?m def

Figure 6. TWo code paths, one with side effects

6. Related and future work

There are several possible approaches to representing preprocessor

constructs for analysis and transformation purposes. It is possible
to choose to work solely with preprocessed code, but it does not
capture the intent of the programmer, who used the preprocessor
constructs on purpose. When handling preprocessor constructs, two
approaches are common.

It is possible to restrain the use of preprocessor constructs, requir-
ing them to be "meaningful" in some way, and rejecting code that
contain "ugly" constructs. An obvious restriction is that the code
should only contain syntactically well-behaved macros. With this
restriction, the source code with macros can be represented as a
tree-based extension of the syntax tree.

This is the approach taken by the epp-dodger module in the
standard library of Erlang/OTP [], which is used in the refactoring
tools Tidier [6] and Wrangler [7]. This approach can handle most
code if the programmers are not overtly adventurous in their use

of macros. However, some rare cases may go beyond these limits.
Also, as the syntax tree is not regarded as a whole (the subtrees
of macro bodies are not connected to the substitution node), extra
effort is required to correctly handle all subtle cases.

The other common approach is to represent as much of the prepro-
cessor language as possible including cases that are very hard to
handle. In spite of these hardships, there are several such results for
the C programming language and its preprocessor language. C has

a very similar preprocessor language to Erlang, and its facilities are

heavily used in most large projects.

Garrido describes in her dissertation [0] how preprocessor con-
structs in C are represented in CRefactory. As C and Erlang have
many similarities regarding their preprocessors, it is no surprise that
the two approaches are very similar; this dissertation was a major
influence on our chosen representation. The main difference is that
our internal representation contains semantic information as part
of the SPG, while CRefactory collects semantic information while
walking the graph.

Emst, Badros and Notkin [11] present an empirical study of the
preprocessor usage in C. While this paper does not focus on such

statistics, it is possible to compile one in the future. A free suite of
software of comparable size is available for Erlang: Erlang/OTP
R13804 contains approximately the same number of lines, 1.4
million, as is investigated in the aforementioned study. Also, the
site trapexit features 1445 open source projects in Erlang, which
could be analysed.

Listing 47 . Two code paths

In Listing 48, after the two runs of the function semantic analyser
has produced the two distinct semantical nodes in Figure 6, they
cannot be merged: one has a side effect, the other does not.

r -ifdef (n) .

z 1(X, Y)
: -eIse.
¿ f(X, Y)
s -endif.
e g(X) -> f(x)

-> x + Y.

-> x ! Y, Y

Listing 48. Two code paths, one with side effects

54

Improvements on the basìc algoríthm The approach described
in this paper can be improved in various ways. An obvious way to
improve the performance of preprocessing is to branch the trans-
formations on conditional configurations only as needed. If no path
expression that the transformation runs passes any edge or node that
is tagged with a condition, then the transformation ends normally,
without interfering with preprocessor constructs. Currently, refað-
torings in RefactorErl generally take a little but noticeable time to
complete; if this interval is increased exponentially by the number
of conditional configurations, the user may easily get upset.

Another possibility for improvement is to treat conditional compi-
lations such as Listing 17 speciall¡ so that they do not require a
separate pass for the simpler branch. The main branch with the de-
bug message still has to be represented, as it may contain variables
or expressions.

One further possibility is to make use of our knowledge about the
behaviour of certain semantic analysers, and instead of separately
running them for both conditional branches and then compacting
the resulting nodes, the appropriate nodes can be made in one pass.

References

[1] Syntax-Tools Reference Manual.
http : /,/www. erlang. orgldoclapps/syn¡¿x_¡q61s7

[2] Horváth, Z.,Lövei, L., Kozsik, T., Kitlei, R., Bozó, L, Tórh, M.,
Király, R.: Modeling semantic knowledge in Erlang for refactoring,
Proceedings of the Intemational Conference on Knowledge Engineer-
ing, Principles and Techniques, KEPT 2009, Cluj-Napoca, Romania,
Studia Universitatis Babe$-Bolyai, Series Informatica, vol. 54(2009)
Sp. Issue

[3] Lövei, L., Hajós, L., Tóth, M.: Erlang Semantic euery Language, On
the 8th Intemational Conference on Applied Informatics, ICAI 2010

[4] Király, R., Kitlei, R.: Implementing structural complexity metrics in
Erlang, On the 8th Intemational Conference on Applied Informatics,
ICAI 2010

[5] Lövei, L., Hoch, Cs., Kö116, H., Nagy, T., Nagyné-Víg, A., Horpácsi,
D., Kitlei, R., and Királ¡ R.: Refactoring Module Structure, In
Proceedings ofthe 7th ACM SIGPLAN workshop on Erlang, pages
83-89, Victoria, British Columbia, Canada, Sep 200g.

[6] Sagonas, K., Avgerinos, T.: Automatic Refactoring of Erlang
Programs Proceedings of the 1 lth ACM SIGPLAN conferencson
Principles and practice of declarative programming, 2009, pp. 13-26.
ACM, Coimbra, Portugat, 2009. ISBN 978- 1 -60558-568-0.

[7] Li, H., Thompson, S.: Tool support for refactoring functional
programs, Proceedings ofthe 2008 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, pages
199-203. ACM, New York, NX USA,2008. ISBN 978-t-59593-977-
7.

[8] Kitlei, R.: Reconstructing syntax in RefactorErl phD workshop,
Central Europen Functional Programming Summer School, May
2009

[9] Kitlei, R., Lövei, L., Tórh, M., Horváth, Z.,Kozsik, T., Kiráty, R.,
Bozó, I., Hoch, C., and Horpácsi, D.: Automated syntax manipulation
in RefactorErl In 14th Intemational Erlang/OTp User Conference,
Stockholm, Sweden, Nov 2008

[0] Garrido, A.: Program refactoring in the presence of preprocessor
directives Ph.D. thesis, Department of Computer Scienie, University
of Illinois at Urbana-Champaign, 2005

[11] Ernst, M.D., Badros, G. J., Notkin, D.: An empirical analysis of C
preprocessor use, IEEE Transactions on Software Engineering, vol.
28, no. 12,Dec.2002, pp. 1146-1170.

7. Conclusion

'We have presented some challenges that handling preprocessor
constructs poses. In this paper, we have presented a way to over-
come these challenges, which allows us to do more comprehensive
analysis and transformation of Erlang source code. The challenges
are partly representational, but they stem from the algorithmical
question: how can transformations on the source code be made so
that they confo¡m to the will of the programmer, when preprocessor
constructs are present in the source code?

After assessing the possible cases of preprocessor usage, we have
proposed an algorithm and a fitting representation. The purpose of
the algorithm was that neither the transformations nor ihe ieman-
tic analysers should be aware of the presence of preprocessor con-
structs in the code. Rather, the problem is solved on a higher level
of abstraction by the transformation framework, transparently han-
dling the conditional configurations.

l

55

Generic Load Regulation Framework for Errang

Ulf Wiger
Erlang Solutions Ltd

ulf . wiger@erlang-solutions . con

Abstract
Although Telecoms, the domain for which Erlang was conceived,
has strong and ubiquitous requirements on overload protection, the
Erlang/OTP platform offers no unified approach to addressing the
problem. The Erlang community mailing list frequently sports dis-
cussions on how to avoid overload situations in individual com-
ponents and processes, indicating that such an approach would be
welcome. As Telecoms migrated from carefully regulated single-
service networks towards multimedia services on top of best-effort
multi-service packet data backbones, much was leamed about pro-
viding end-to-end quality of service with a network of looiely
coupled components, with only basic means of prioritization and
flow control. This paper explores the similarity of such networks
with typical Erlang-based message-passing architectures, and ar-
gues that a robust way of managing high-load conditions is to reg-
ulate at the input edges of the system, and sampling known internàl
choke points in order to dynamically maintain optimum through-
put. A selection of typical overload conditions are discussed, ánd
a new load regulation framework - JOBS - is presented, together
with examples of how such overload conditions can be mitigáted.

Categorícs and Subject Descriptors C.4 lperformance of Sys-
rezsl: Reliability, availability and serviceability

General Terms Regulation, Performance

Keywords Erlang, Performance, Throughput, Regulation

Vaodelkm

Figure 1. Failures in the US Public Switched Telephony Nerwork,
outage minutes by cause, see (Kuhn 1997).

1. Introduction
The Erlang programming language (Armstrong 2007) is predomi-
nately used in server-side applications and various forms of mes-
saging gateways. These systems are often exposed to bursty traffic,
and need a strategy for coping with overload conditions. Still, over-
load remains one of the most prominent causes of service outage
(See Figure 1). As Erlang is a highly concunent, message-passing
language, overload conditions have much in common with ôonges-
tion problems in communication networks and other traffic engi-
neering systems. Indeed, Erlang-based applications are often alìo
part of such communication networks, and must take responsibil-
ity for delivering predictable throughput, in order not to become a
congestion point and cause even greater problems.

Pemission to make digital or bard copies of all or part of this work for personal or
classroom use is granted without fee provided that còpies are not made oidist¡ibuted
for profit or commerciâl adva¡tage and that copies ber this notice ând the full citation
on the first page. To copy otherwise, to republish, to post on serve¡s or to redistribute
to lists, requires prior specific permission md,/or a fee.

Blang'10, September 30,2010, Baltimore, Mæyland, USA.
Copyright @ 2010 ACM 978-l- 4503-0253-1tr0/09. . . $10.00

3û.*tg

ra*l
ùlay 26.2008

Figure 2. Result of high ranking on Reddit.com, see (Wilson
2008).

While the telecoms domain has changed since Erlang was in-
vented - nowadays, telecommunication is mainly regarded as a spe-
cific form of Internet multimedia - Erlang-based applications ãre
still often used in systems serving human communication pattems
- instant messaging, Voice over IR search and document ratìng net-
works. As Web users on a global scale can .,flock" towards infor-
mation, online services can be exposed to extremely bursty input
loads (See Fig 2).

Some notable Erlang-based products have boasted impressive
¡esistance to overload (see Fig 3 and Fig 4), but not much has been
written about how it is done.

Hìrmãn...exLHetdwsre

HumÐñ. æ.Nalute

6âth,\råle

Ovell:d

L':.'. il:. f']."i!i
l*sì[s ?0:S07i,J.:1, !9. 1,;¡:,

vísrta {g,l?3

'lrl.
ll \,'"'

V's{ls 3,3I1

57

Figure 3. AXD 301, throughput under load, see (Wiger 2001).

ftrqs¡putl200
{cüedrtß} lû00

800

s00

400

200

0

rÊ +s S +" not ,sÊ ('ñ S,"-6t$ú,¡$ S .$$.Fo

Loâd {qur¡åge}

Figure 4. Dispatch Manager, increasing and then decreasing load,
C++ vs Erlang; in this test, the C++ application dies after 480
queries/s, see (Nyström et al. 2008).

In the following sections, we will list some typical problems that
can arise in Erlang-based applications due to overload, and describe
some common mitigation strategies. We will then outline a general
approach to load regulation of Erlang programs, and describe a

framework designed to offer generic support for load regulation,
addressing these problems.

A perhaps unusual approach in this paper is to compare regula-
tion of Erlang-based systems with the problem of achieving Quality
of Service (QOS) for multimedia traffic over IP networks. An in-
tuition for this might be that Erlang, being a concurrency-oriented
language, supports the building of message-passing systems, some-
what similar to that of a communication network. Erlang was de-
signed for soft real-time, where response times are usually quite
good, but no hard guarantees are given. This could also be said for
IP networks with DiffServ QOS (see (Peuhkuri 2010)).

Our hypothesis is that lessons can be learned by studying the
migration of voice traffic from dedicated circuit-oriented networks
to packet-oriented best-effort IP networks, with an intemediate
step based on ATM - a packet-oriented technology capable of
supporting guaranteed bit rates. ATM lost to IP much due to its
higher complexity, cost of interfaces and failure to provide high-
speed interfaces for the core network in a timely fashion (see (Gray
2000)).

Our proposed approach is to consign load regulation to the
edges of the system, and to be very careful with adding flow-control
measures in core components. The reasoning behind this is further
expanded in subsection 3.3, Stateless Core.

Draupner wave record

20

Êro
e12

.9
6l
o

o

'Jø

Jânuary 1 1995 al 15:20, hs ' 'l 1.0m

0 200 400 600 800 1000 1200

Timè (5)

I

I

I

t,.l I I .t. .r t. ¡. ll rl

Figure 5. Time history including a possible freak wave event,
Draupner platform, North Sea Jan I 1995, see (Haver 2003).

2. Common Problems
2.1 Active sockets

All communication between Erlang processes and external entities
is done through ports. Ports behave more or less like normal
processes, in that they send a message to the "port owner" process
when there is incoming data, and they are instructed to send data
by sending them a message in return.

Ports are by default intemrpt-driven, but in the case of inet
ports (sockets), they can operate in different modes:

r {active , true} - incoming data on the socket is immediately
passed to the port owner.

r {active,f alse} - nothing is sent until the port is instructed
to do so.

. {active , once} - the port sends one message as soon as there
is available data, then reverts to {active, false} mode.

In the case ofTCP sockets, keeping the port in {active,true}
mode means that senders will immediately be free to send more
data. This can be fatal if the Erlang system is not able to process
incoming data fast enough. It is generally considered prudent to
keep the sockets in {active,false} or {active,once} mode.
It should also be noted that the low-level POSIX socket API is
"passive", in that data must be explicitly read from the buffer.

2.2 Memory Spikes

Garbage-collected languages are known to sometimes exhibit
bursty memory allocation behaviour, and Erlang is no exception.
Certain job types may be more demanding for the garbage col-
lector, e.g. by building large terms on the process heap, causing
repeated garbage collection sweeps that fail to free up data.

Traditionally, this has been a well-known, but reasonably man-
ageable problem. Erlang offers the ability to trace on garbage col-
lection events in real-time, making it possible to quickly identify
processes that cause memory allocation bursts.

However, multi-core architectures introduce the possibility of
multiple schedulers injecting this sort of behaviour simultane-
ously, potentially causing lethal memory allocation peaks. We have
seen this happen during load testing of otherwise robust message-
passing systems. The phenomenon is non-deterministic and can
require hours ofload test to discover. For lack of a better analysis,
we called them "monster waves" (see Figure 5) although we do not
yet know exactly what causes it. If the analogy would turn out to
be appropriate upon further study, it would be highly interesting to
explore ways to predict such patterns before they occur (see e.g.

Figure 6).

(hll Tqru,ahpul
ln 9¡ of ¡mimum swl¡imblt
çlll hrulliqt {$t{p + F¡F*}
üpÌcitT

a/
:llll .dl sl'üCs r
t l5 nll/s sñt$i¡i{

tqt* ls&

RçJ.{þd

l,(üdfffir hû¡dllüs
of rcJftlrd rdls

(ulls

lfrl'l¡

{% (lffcrod l¡¡¡d
¡n 9i. ef rar¡münr
(!l¡ lruughlul

tm.Á

A lC++ A []Purc

58

frilUld[lq]irstiNr &{l} ir¡ ,ï9. ¡+ì¡r¡d {d,ll!d.111€¡ tlrdrtqnrc4s

5

LATEST-LOG

.t
xtrt !sJ

C{,nrpùsrr rf lilllt ùi,crlcwqitw*iift Scìr ì'dìS ss.ù

mnÊsìa

ïabtes

t

I

.30 .æ .t0 0 ro ¡0 30

.5

't0

Figure 7. Dumping of Mnesia's transaction log

Figure 6. Approximating the Draupner monster wave using a b¿å
o¡der non-linear equation, see (Taylor et aL.2006).

2.3 AsynchronousProducers

Message passing in Erlang is asynchronous. If a synchronous di-
alogue is needed, this must be accomplished with a requeslreply
pair of messages. Reply messages are necessary if the client needs
confirmation that the request has been handled, but it also has a
flow-control effect.

Some behaviours in Erlang are primarily asynchronous. The
OTP behaviour gen_event is one example. An event notification
is done with an asynchronous message, whereas the processing
of the event involves a sequence of (synchronous) calls to user-
defined handler functions. The error_logger process typically
pretty-prints each event and logs it to disk, spending far more
effort on each event than the sende¡ does. Therefore, it is quite
easy to overwhelm the error logger and potentially killing the
whole system. It should be noted that this can happen without any
particular wrongdoing on the part of the user, even though it has
happened that unsuspecting developers have triggered this problem
by relying on the error_logger for debugging output

2.4 UnnecessarySerialization

Getting the right granularity of concurrency as well as the right
balance between synchronous and asynchronous communication is
quite difficult, especially for the novice programmer. One example
of a beginner's error is to think that each component must have its
own process - typically a gen_server. In large organizations, this
model can be favoured for organizational reasons - it is easier to
perform unit tests if you have your own process. As noted above, it
also introduces natural flow control, as the caller necessarily must
wait until the work is done.

This style of programming can easily lead to excessive s enaliza-
tion, and the introduction of bottlenecks. We are reminded of Am-
dahl's argument (Amdahl 1967), stating rhat .,the effort expended
on achieving high parallel processing rates is wasted unless it is ac-
companied by achievements in sequential processing rates of very
nearly the same magnitude." Simply put, while excessive serializa-
tion may give benefits in terms of flow control, it is likely to come
at the expense of throughput.

2.5 ExcessiveContention

There are very few shared data structures in Erlang. ETS tables are
a form of off-heap storage, either hash tables or b-trees, which can
optionally be shared among all processes in the system. This means
that the ETS tables must be p¡otected internally by mutexes.

ETS tables became ubiquitous early on, when contention was
not a problem (there was only one cpu, and one scheduling thread),
and putting the data in ETS was often a way to speed up processing
compared to using functional data structures on the process heap.
But with the introduction of multi-core and multiple scheduleri,
lock contention has significantly altered this relationship.

Another area where contention can become a problem is
rnnesia transactions. Mnesia employs deadlock prevention, which
is a reasonably scalable method of avoiding deadlocks in a dis-
tributed environment. However, deadlock prevention introduces the
risk offalse positives (it allows lock dependencies to flow only one
way, thus making deadlocks impossible, but also punishing some
transactions that were never in danger of deadlocking). The greater
the number of concunent transactions operating on the saûte data
set, the g¡eater the risk of such false positives.

2.6 Large Message Queues

Erlang's support for selective message reception is a great strength,
but the implementation - pattern-matching over a single rnes-
sage queue - has rather poor complexity. Behaviours such as
gen_server normally pick the first message in the queue (a
constant-time operation), but in the handling of a message, it is
quite possible that the server communicates with other processes
and resorts to selective message reception. If the server cannot
keep up with incoming requests, each time it performs a selective
¡eceive, it must scan all messages in the queue - an operation that
becomes more costly the more it falls behind.

In OTP R148, an optimization enables functions like
gen_server:callO to run in constant time, regardless of the
length of the message queue, but processes that use selective mes-
sage reception in places where they also receive 'norma1, messages,
will not be able to benefit from the optimization (see e.g. subseciion
2.7).

2.7 Mnesia Overload

Mnesia supports checkpointing to disk of data that is supposed
to be persistent. Specifically for data that resides both in RAM
and on disk, at transaction commit, Mnesia logs the persistent
operations to disk by appending them to a commit log. At periodic
intervals, Mnesia reads the commit 1og (starting a new log for
future commits) and distributes the changes into table-specific logs,
periodically merging those logs into the actual table image (see
Figure 7).

_ This procedure is quite fast, as it relies entirely on streaming
data to and from the disk, but on occasion, the next 1og dump may
be triggered before the previous 1og dump has finished. When thii
happens, Mnesia will report that it is overloaded.

I

mnesia_tm

59

mnesiâ-tmmnesiâ tm

r"1
\

\
"overload!"

Figure 8. Overload of the mnesia transaction manager.

Another form of overload in Mnesia is when a transaction man-

ager is not able to keep up with updates originating on remote
nodes. This calì c¿ìuse the message queue to grow in the transac-
tion manager pfocess, slowing it down and causing it to fall even
further behind (see subsection 2.6). Mnesia detects this and reports
that it is overloadetl, but the'overloaded' event is only issued on
the node where thc ovelload was detected - not on the nodes where
the load originateC (see Figure 8).

3. RegulationSúrategies
Before looking at concrete techniques for mitigating the problems

mentioned, we should pause to consider what kind of system an

Erlang-based progrem comprises from a regulation standpoint - if
indeed such a distir¡ction can be made. There are several possible

strategies for regrilating the work of a system.

3.1 Feedback Control

Ll the textbooic "Applied Optirnal Control and Estimation" (scc
(Lewis 1992)), Frank L. Lewis gives the following description:
"Feedback control is the basic mechanism by which systems,
whether mechanical, electrical, or biological, maintain their equi-
liblium or homeostasis. [Itl nlay be defined as the use of difference
signals, determinerj by comparing the actual values of system vari-
ables to their desi¡ed values, as a means ol controlling a system. An
everyday example. of a tèedback control system is an automobile
speed control, which uses the difTerence between the actual and the
desired speed to vary the fuel flow rate. Since the system output is
used to regulate its input, such a device is said to be a closed-loop
control system."

Feedback Control saw its first applications in ancient Greece,
where in 270 B.C, Ktesibios invented a float regulator for a water
clock. The regulator kept the water level in a tank at a constant
depth, which resulted in a constant flow of water through a tube
at the bottom of the tank, filling a second tank at a constant rate.

The ùater level in the second tank could then be used to measure

elapsed time.
The development of Feedback Control stalled when Bagdad fell

to the Mongois in 1258, but was revitalized during the Industrial
Revolution, and iras now evolved into a discipline based on mathe-
matics (modern ccntrol theory) and engineering. Given that a sys-

tem can be described in terms of a mathematical model of the input
signal and the desirecl output, a feedback circuit can be constructed.
Regulation can then be tuned by combining suitable measures of
proportional, derivative (change-oriented) and integral (stabilizing)
feedback (see also (Tireorem.net 200 I)). Special care must be taken
to ensure that the feedback loop doesn't in fact make things worse,
e.g. by introducing oscillations in the system. A large part of liter-
ature on how to do this deals exclusively with linear and determin-
istic systems.

To establish a secure footing in control theory, we should re-
quire deterministic mathematical models of the processes we wish
to regulate, but this scems problematic given our context. Not only
do such models generally not exist for the problems we wish to at-
tack, but requiring such models would introduce a very high thresh-

Figure 9. Principle ofa DiffServ network, see (Peuhkuri 2010).

old for most Erlang programmers. This view also finds support in
(Welsh er al. 2001).

However, by constructing a regulation framework which pro-
vides the means to measure and control throughput rate and load
characteristics, we might well be able to lay a foundation on which
we can apply simple "engineering-style"l feedback control, and
perhaps add more sophisticated regulation techniques later on.

3.2 FrequencyRegulation

Depending on the characteristics of the system, it may be desirable
to regulate based on frequency. One might want to control that the
system outputs work at a given rate, or estimate the frequency of
incoming requests.

Output rate regulation is relatively straightforward: the very
simplest form would be to start an interval timer, which periodically
sends a message to a producer or performs a given task.

Frequency estimation is a bit more difficult. It is common to as-

sume that the incoming traffic follows a random distribution, and
can be modeled as a Poisson process (see e.g. (Welsh et al. 2001)
and (Wikipedia 2010)). In the case of estimating arrival frequency
for the pu¡poses of load regulation, we ought in particular to look
at non-homogeneous Poisson processes - where the rate is not ex-
pected to be constant over time. There is an OTP library, overload,
which implicitly estimates request frequency (see 4.2).

3.3 Stateless Core

Along with increasing demand for performance-critical services

on top of IP networks, much effort has gone into engineering

Quality Of Service guarantees on top of TCP/IP. These efforts
have suffered from much the same problems that plagued ATM,
which led to the currently dominant trend of using IP routers in the
core network with only minimal support for packet classification
and prioritization. This model is known as the DiffServ model
(see (Peuhkuri 2010) and figure 9), or the stateless-core model, in
contrast to the Integrated Services (IntServ) model, which dictates
per-flow handling throughout the network. The word 'stateless' in
this context refers to the router's knowledge - or lack thereof - of
individual packet fl ows.

One of the arguments favouring a stateless core network is the

amplification problem, where errors in the core network have much
greater impact than errors in the edge network. This has particularly

I as in: relying more on intuition and pragmatic experimentation than a

mathematical model

l¡

ffi
I

l- - , node Non-DStrãffic

AF31 PHB

.. * AF32PHB

-* EF PHB

Cole
node

\
I
I
,

I
I
I
t

E8ress/¡ngress

node {D5-Dsl

t, DS\/
t,

DS region

domain \

/\
L-

60

influenced network administrators to favour simple solutions (see
(Bell 2003)).

We believe that this dynamic is vital even in software com-
ponent design. Adding logic to handle congestion issues in core
software components leads to increased complexity. Also, as these
components tend to have little information about the particulars of
each application (due to their generic nature), it may be necessary
to support different regulation scenarios (see e.g. 6.1).

To the greatest extent possible, we advocate that generic com-
ponents should stay neutral to load regulation strategies, and focus
on being as simple and generic as possible. We do propose adding
diagnostic functions allowing users to sample performance charac-
teristics. This is important not least for debugging, but can also be
used e.g. in connection with the JOBS framework.

4. Specific Techniques
4.1 Worker Pool

Worker pools are commonplace not least in programming lan-
guages that depend on POSIX threads for concurrency. As creating
such a thread is quite a heavy operation, it is usually better to create
a thread pool at startup, and then pick the first available thread for
a unit of work.

In Erlang, this technique is reasonably common in connection
with socket servers (e.g. HTTP servers). A predefined number of
acceptors can be created, and indeed, all can call accept0 on the
same socket simultaneously. An incoming request is routed to one
of them, and this worker can either acknowledge immediately to an
acceptor pool manager, allowing a new worker to be created, or it
can do so once it has finished serving the request. The latter would
serve as a form of overload control, whereas the former would
primarily increase throughput.

4.2 Request Frequency Estimation

The Erlang/OTP f¡amework has a library module called overload,
which was developed for the very first commercial Erlang-based
product, Mobility Server. It is a server which simply keeps track
of the frequency of requests to perform work. It grants requests,
as long as the frequency stays below a predefined threshold, and
then denies requests above that limit (using a hysteresis function to
keep denying requests until the frequency has come well below the
threshold again). The server uses a simple exponential formula to
calculate the frequency (see (Ericsson 2010b)):

i'(n) : K'f i.(n - 1)e- K Q@)-r@-t))

where I is the intensity (frequency), 1l, or 'kappa', is a constant
which regulates how quickly the calculation responds to changes in
intensity2, and T(n) is a timestamp signifying the time of event rz.

While simple, the module lacks the ability to discriminate be-
tween different types of work. Also, in many cases, it is not suffi-
cient to simply 'deny' a request, so some form of queueing system
is typically needed. Ifwe have a queue, the rate ofjobs entering
the queue is not nearly as interesting as the number ofjobs leaving
it, and we don't need an exponential distribution to regulate thaf.
Setting a timer corresponding to the period], and dispatching the
nextjob(s) when it fires is sufficient3.

4.3 Credit System

Credit systems are often combined with queueing semantics. The
basic principle is that each client is assigned a quota of sorts, and

2 The time it takes for a change in intensity is approximately f.
3 We would have to adjust for timer drift due to scheduling delays and the
time it takes to perform the actual dispatch.

is allowed to do work until the quota is exhausted; at this point,
it must wait until it is assigned a new quota. Erlang,s reduction-
counting scheduler works according to this principle, and the TCp
request window is also a form of credit system.

At the Erlang application level, one may implement a form of
quota system with a gen_server and simple counters, e.g. using
ets: update_counter/3. A process wanting to start a task, makes
a synchronous call to the quota server, which grants permission if
there are credits left; otherwise, it saves the request and responds to
it only when already running tasks have finished and returned cred-
its. One complication is that one must handle the case where tasks
do not finish in an orderly fashion. If each task runs in a dedicated
process, credits can be ¡eturned when the process terminates.

A clear advantage of the Erlang programming model with
lightweight, pre-emptively scheduled processes, is that the process
asking for permission can simply wait in a (blocking) synchronous
call, assuming that the process is dedicated to one task, or sequence
of tasks.

4.4 Smoothing

Subsection 2.2 dealt with memory spikes, especially in multi-core
systems.

A queue-based regulation system may have the effect of smooth-
ing out bursts ofjobs, reducing the risk of "monster waves',. In our
own experience, identifying jobs that resulted in large message
heaps (using erlang:systen_nonitor/2) and then regulating
them with a combination of a queue and a counter-based credit
system (see subsections 4.6 and 4.3) can mitigate this problem.

4.5 Back-pressure

Subsection 2.1 dealt with the possibility to keep network sockets
in passive mode. From a load regulation standpoint, it is essential
to make use of this technique in order to benefit from the transmit
window in TCP.

If the clients are cooperative, or able to use some custom proto-
col, back-pressure can be achieved through a credit system involv-
ing the client (see subsection 4.3). However, in many cases, using
standard protocols is part of the product requirements, and few of
these protocols support any form of credit or backpressure mecha-
nism. See (Wang 2010) for an interesting discussion on the subject.

Even internally to the system, it may be critical to monitor the
status of potential bottlenecks and feed back information to the load
regulator, allowing it to adjust the throughput rate.

4.6 Job queue

Erlang-based systems are replete with queues: scheduling queues,
message queues, I/O buffers, etc. As a rule, the Erlang runtime
system handles all queueing of processes and messages, with the
exception of process message queues, which are a fundamental
concept in the language.

We can see that queues are a common way to achieve fairness
and balance among multiple tasks, and it makes sense to use them
at the application level as well as for lowlevel units of work. We
can thus model a type of queue that deals with more coarse-grained
tasks. We call this type of queue a "job queue". At the moment, we
do not care about how this queue is implemented, only how it is
used.

In short, we classify incoming requests as the beginning of a
specific type of work (a 'Job"), and enter it into the appropriate
job queue. At some point, we extract the job from the queue and
either accept it or reject it. Depending on job type, the queue may
be configured with a timeout, at which point we must reject the job,
as it may not make sense to continue. An example of this is where
protocol timers define a maximum wait time.

6l

90th fJercenlile
Reiect rate
Tåíget

90ih
RT. no overload æntrol
RT-õ--'c-.

"-l--

Figure 10. SEDA: Response times with and without overload con-
trol, see (Welsh et al. 2001).

For timelimited requests, it may make sense to handle jobs in
LIFO order rather than FIFO. During normal operation, it makes no
difference in practice, as the queues are expected to be short, and all
job requests handled within specified time limits. However, during
bursts of incoming traffic, the last entries may be those most likely
to complete, as they have used up less of the alloted time waiting
in line. Given that the position in line is stochastic anyway, there is
not much use in being "fair" to thosejobs that happened to arrive at

the head of the hurst; they are no more "deserving" of being served
than the last entries.

Why bother at all about the order, then? Depending on queue
implementation, there may be a significant cost difference between
the two alternatives. If the queue is implemented as a list, LIFO-
style enqueue/dequeue are both O(1), whereas with e.g. the (FIFO)
queue module in OTP, enqueue is still O(1), but dequeue is amor-
tized O(N). Presumably, lower queueing overhead contributes to in-
creased capacity in the number ofjobs that can be handled, which
would seem to be the most fair overall.

A LIFO list-based queue also has the advantage that if there is
a point where remaining jobs can be discarded (e.g. because the
client has already given up waiting), this can be done by simply
discarding the tail of the list. On the other hand, the queue will be
subject to garbage collection sweeps, which incur a cost propor-
tional to the amount of live data for each sweep.

A queue can also be implemented as an ordered-set ETS
table, sorted on timestamp, in which case FIFO and LIFO have the
same complexity - O(logN). This sort of queue has worse constant
factors, but predictable behaviour overall.

In both cases, one should queue only a reference to the requested
work, not the full set of input parameters, in o¡der to avoid unnec-
essary copying.

4.7 The SEDA framework

The Staged Event-Driven Architecture (SEDA), described in e.g.
(Welsh et al. 2001), (Welsh and Culler 2001) and (Welsh et al.
2000) is a comprehensive, and highly interesting example of the
use ofjob queues to achieve high throughput and load tolerance in
Internet services (see Figure 10).

We believe that the findings from the SEDA framework corrob-
orate our own, and it is perhaps worth noting that we have reached
very similar conclusions, while we have approached the problem
from different angles.

An important difference between SEDA and the JOBS frame-
work is that SEDA was designed with 'conventional' languages
(such as Java and C++) and concurrency models in mind. The stated

Outgoing
Events

Event Queue

Controllers

Figure 11. A SEDA Stage, see (Welsh et al. 2001).

premise was that there are two generally accepted models for im-
plementing concurency in high-availability Intemet service frame-
works: POSIX threads and event-driven programming (or a combi-
nation of the two).

"The key idea behind our framework is to use event-driven pro-
gramming for high throughput, but leverage threads (in limited
quantities) for parallelism and ease of programming. In addition,
our framework addresses the other requirements for these applica-
tions: high availability and maintenance of high throughput under
load. The former is achieved by introducing fault boundaries be-
tween application components; the latter by conditioning the load
placed on system resources." (see (Welsh et al. 2000), pg 2).

While this is a pcrfcctly acccptablc prcmisc. Erlang offcrs sig-
nificantly different characteristics. The main criticism that POSIX
threads are resource hungry and have scalability problems, and that
event-based programming can get complex, are not as relevant in an

Erlang context, as Erlang's processes handling is quite lightweight
and scalable.

In a sense, a significant part of SEDA attempts to provide
benefits that are already available to the Erlang programmer. Our
assumption is that the load regulation framework should not try to
enforce a concurrency model on the programmer, as it would not
likely be an improvement over the existing concurency model in
Erlang. For this reason, the JOBS framework is quite similar to
a subset of SEDA - the actual request queueing and dispatching
component, called a SEDA Stage (see Figure l1). Of course, with
a thread pool of size 1, the SEDA Stage also looks quite similar to
an Erlang process.

We suggest that the SEDA framework can be a great source of
inspiration on how to evolve the JOBS framework, but we imagine
a much more coarse-grained division into load-regulated blocks -
primarily doing admission cont¡ol at the input edges of the system,

and otherwise relying on Erlang's concurrency model and design
pattems to enable high throughput.

5. Load Sampling
The following subsections will give examples of common sampling
points, for determining overload conditions. Which methods to
choose will vary depending on the characteristics of the system as

well as the Erlang/OTP version used.

5.1 Run queue

In a single-core Erlang VM, the run queue is a fairly reliable indi-
cator of high load. The mn queue is normally zero, or close to zero
in a system that is not overloaded. Sampling the run queue is easy,

and a very cheap operation (erlang: statistics (run-queue)).
On a multi-core system, this indicator is likely less practical, as

sampling the total run queue length involves acquiring a global lock

45

840

Ërt

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

I
û. 2s

-g
l-20

ãrs
Hlo

E

'õ"
ú

248 '16 32 64 128 256 512

Number of clients

¡\ Ét551

Handler

Th
11

'c*Tr

62

on all scheduler run queues. It is possible that future implementa-
tions will loosen the atomicity requirement, making the function
more scalable.

5.2 Memory

There are a number of memory-related indicators available in the
Erlang runtime system. It is important to understand that the sam_
pled values are rough estimates, and do not reflect things like mem-
ory fragmentation, etc.

Depending on the nature of the application, it might be best to
use either total memory, the size of the shared binary heap, or the
total size of the process heaps as a main indicator. profiling of the
system is needed to determine the most suitable choice.

5.3 ETS Tables

The total amount of data in ETS tables can sometimes be a reliable
indicator of the "load" of a system. The total amount of data can
either be sampled using erlang:nenory(ets) or by summing
the results of ets:info(Table, nenory). The former is moré
accurate, according to the OTP team.

It might sometimes be the case that a single table, or a subset of
all tables, best reflect the system load. Again, profiling is needed to
determine this.

5.4 Number of Processes

In principle, Erlang can handle a huge number of concurrent pro_
cesses - up to 268 million (see (Ericsson 2010a)). However, due to
]nemory constraints (pre-sizing the process table), the configurable
hard limit is usually set much lower than that, and the default pro_
cess count limit is cunently 32768. This means that it is quite pos-
sible for a system to run out of processes. In some sysiems, the
number of concurrently executing processes might also be a good
measure of the load.

_ In the old days, one could get the current number of processes
by calling length(processesO), which has O(N) èomplex-
ity. The function erlang : systen_info (proces s_count) yìelds
the same result, but in a much more efficient way. The function
erlang : systen_info (process_Iinit) might also be useful.

5.5 Message Queue Size

Subsection 2.6 dealt with the problems of large message queues. It
is possible to sample the message queue length through

-

process_info(Pid, nessage_queue_Ien). Rather than sam_
pling all message queues in the system, one might want to single
out a few strategic processes. In most cases, the BIF
erlang: systen_nonitor (pid, [{large_heap , Sz}]) should
be able to detect large message queues indirectly, as the message
queue is part of the process heap. Howeve¡ if a significant poftiõn
of the data in the queue are binaries (which are stored on a sèparate
binary heap), such queues may go unnoticed. The problem with
large message queues depends on the number of mesiages, not the
amount of data.

5.6 Response Times

Increasing response times is often a fairly good indicator of over_
load problems. One of the untold stories from the AXD 301 days
is that it was made to sample the response times of neighbour-
ing nodes, since some of them (of a competing brand) had a ten-
dency to die when exposed to more than l50Vo load, e.g. while
re-establishing connections after a link failure. The AXD 301 was
capable of slowing down, queueing up traffic, so that other nodes
in the network wouldn't topple over from overload.

. In this case, sampling response times had a smoothing effect
(see subsection 4.4), but it would also be possible to deteõt local
overload by measuring one's own response times. This could be

done by measuring the difference between input and output rates, or
by simply timing some strategic gen_server: callO operations
in the system.

6. Rules of Thumb
6.1 Regulate at the Input Edges

In section 3.3, we described the cunent trend in Ip networking to
rely on minimal classification in the core network, and relegate
regulation to the edges of the network.

Our experience from regulating Ertang applications is simila¡. It
is costly and awkward to implement overload controls in each core
component. It is generally better to make them as fast as possible,
and insert minimal logic to allow them to indicate if they arè getting
overloaded. One could imagine complex components like mnesiã
using a load regulation framework for tasks like transaction log
dumps.

In fact, this could also serve to illustrate our point: there is
an option, dunp_1og_Ioad_regulation true I false, which
makes it possible to have mnesia run the transaction log dumps at
lower priority. This can make sense in e.g. a telecoms system, if
mnesia is used primarily for configuration data, and performance_
critical processes do not write to persistent tables at aú. In a system
where writes of persistent data are frequent, it makes no sense to
perform this type of regulation, as the log dumps must rather be as
fast as possible in order to keep up with the traafic load.

6.2 Regulate Only Once

An additional problem with regulating in generic components is
that it becomes difficult to know if a job has already been regu-
lated. If classification is done at the input edge, where a unit of
work enters the system, it is possible to classify and regulate only
once, thereby reducing overhead, and allowing for more predictablê
behaviour.

- However, if a job crosses node boundaries inside the system, it
is wise to regulate also on the receiving node. One shoulá bear in
mind that the job has now been accepted by the system, and work
has already been invested in it. Therefore, it should receive higher
priority (e.g. higher throughput) than new job requests entering the
system on that node.

With a queue-based regulation framework, classifying the re-
quest as an already accepted request would involve putting it in a
separate queue.

There may be other cases where it makes sense to regulate
multiple times, and we can consider that the SEDA approacñ is to
view multiple regulation steps as building blocks to be combined
(see (Welsh et al. 2001)).

6.3 Regulate All Types of Work
It is easy to make the mistake of regulating only the most important
jobs. However, ensuring that only the important jobs submit to
load regulation and queueing, while other jobs are allowed to run
unrestricted, essentially introduces priority inversion.

Therefore, all significantjobs should submit to load regulation.
By significant, we mean that the cost of performing load regulation
on the job is insignificant compared to the cost of performìng the
actual work.

6.4 Rejectable vs Non-Rejectable Jobs
A very common type of activity for Erlang-based applications is
session establishment (phone calls, logging in to chat groups, etc.)

I" .uy note immediately that a request to establish a session may
be rejected, whereas it makes little sense to reject a request to end â
session. Even in the case where the dialogue times ouiand the user

il

t

t

63

gives up waiting, we should remember the request to terminate the

session, thereby freeing up resources in the system.
In other cases, regulatory requirements may forbid us to reject

even session establishment requests. For example, it is not accept-

able for a telephone switch to reject emergency calls. They should

be serviced even under extreme overload.
In other words, we must be able to distinguish between re-

jectable and non-rejectablejobs and treat them accordingly.

6.5 Reject Window

There are three cases to consider once we have decided not to
service a request:

l The client does not expect a reply

2. We have time to send a reject message to the client

3. The client has already given up waiting for a reply

It is considered good form not to send reject messages after the

expiration of the protocol window during which the client expects

to receive such a message. If we hold requests in a queue until they

can be served, we should be able to detect whenjobs are too old to
even be rejected, and simply discard them all.

6.6 Priorities/lVeights

Erlang has some support for process priorities, but it is generally
believed in the Erlang community that priorities should be used

sparingly or not at all.
In our approach, we choose to prioritize work units rather than

processes. It is possible in this model to assign different weights to
differentjobs, and this may be advantageous for a few reasons:

o Some jobs may be defined as more important than others (e.g.

emergency calls vs normal calls)

. We may already have invested processing time in a job. This
could happen if part of the job is handled on one node and the

rest on another. Thejob should be given greater priority on the

other node, compared to jobs we have not yet committed to.

6.7 Do not optimize for fair weather

It is quite easy to conclude that load regulation must be as cheap as

possible, and start designing schemes that perform very well under
normal conditions. An example of such a scheme is a credit system,
where a pool of credits is periodically ¡efil1ed, and jobs are allowed
to execute immediately as long as there are credits in the pool.

Such a scheme may have excellent properties for other reasons,

but it is important to keep in mind that it usually serves no purpose

to save CPU cycles when there is plenty of CPU capacity to spare.

As justification for this, consider that the nature of Internet service

systems, or telecoms systems, is to serve the offered traffic, and

nothing else. Any surplus capacity remains unused, and should
merely be viewed as spare capacity in preparation for traffic peaks.

An application running on a multi-purpose server, on the other
hand, cannot easily make this assumption.

Load regulation needs to be the most efficient when there ìs
overload, and tesources are scarce. Queueing models tend to dis-
play this behaviour; they seem unnecessarily expensive when there
is no overload (and therefore no need to regulate), but become in-
creasingly effective when throughput is high, because of caching
and batching effects.

Node C

Figure 12. Architecture of the JOBS framework.

7. The JOBS Framework
7.1 Introduction

The JOBS framework brings together experiences from several dif-
ferent load regulation techniques, and tries to facilitate most of the

techniques above.

7.2 Architecture

Figure 12 illustrates the process model of the JOBS framework.
The job server selects a queue based on job type, and fetches

the configured set of regulators for that queue. There are a number
of different regulator types:

. rate - given a frequency /, ensures that the rate of accepted
jobs does not exceedf

. counter - ensures that the number of simultaneously executing
jobs of the given type does not exceed the defined value.

. group-rate - the total rate ofjobs accepted from all queues

with the same group rate can not exceed the given frequency.

7.2.1 Counter-basedregulation

Counter-based regulation provides a form ofcredit system. It can be

used to reduce contention e.g. when running mnesia transactions,

and has been found to actually improve throughput that way.
The counter system is based on gproc's counters and aggre-

gated counters (see (Wiger 2007)), mainly to avoid reinventing the

wheel. Each worker is assigned a counter with some given value.

We make use of gproc's ability to handle complex aliases, and name

the counter after the associated regulator, with a JOBS-specific pre-

fix. Counters in gproc are "shared properties", so each process can

have its own instance, which is exactly what we need. When the

regulator is instantiated, an aggregated counter is also created. As
new jobs are dispatched, the aggregated counter is automatically
updated with the corresponding increment. This way, the aggre-
gated counter provides the total value for regulation. If the worker
process dies, gproc detects this and removes the counter, automati-
cally adjusting the aggregated counter as well.

It would be possible for the dispatched process to access the

counters, e.g. to reduce them incrementally for long-running jobs.

No API for this has been implemented, but it could be done through
the normal gproc counter API, and any changes would immediately
be reflected in the aggregated counter.

Node B

Node A
c

" 2. enqueue

workers

:/
. 1. ask

applya. {ok,.,.} '

3. dequeue i

C

64

7.2.2 Rate-based regulation

Rate-based regulation is done by remembering the time of the latest
dispatch for each regulator. The number ofjobs to dispatch at the
time of a check ir L&;Al, where 4 is the current rime, fi is
the time of the last dispatch, and 1 is the pre-calculated dispatch
interval corresponding to the configured maximum rate.

After each dispatch, if the queue is non-empt¡ a timer is set to
the time remaining until the next dispatch, or 0, if the next dispatch
is already overdue. If the queue is empty, it will not be checked
again, until a new request arrives.

In other words, the rate regulator will always attempt to dispatch
jobs at the maximum allowed rate. The dispatch rate will of côurse
never be higher than the arrival rate.

7.2.3 Group rates

It is possible to group regulators, by specifying the group_rate
option. When a regulator belongs to a group, the rate parameters
of the group are updated each time a regulator is used. The least
value from comparing the group regulator and the specific regulator
is picked. This can be used to specify a maximum total raie of a
group ofrequests, while allowing for greater peaks in the individual
request types.

7.2.4 Feedbackmodifiers

Distributed feedback-based regulation is accomplished by letting
the sampler processes exchange status information. The job servei
process receives an instruction to apply "modifiers',, each indicat-
ing a specific sampler type and giving a type-specific ..degree" of
overload (a degree of 0 means no overload).

Each regulator in cach queue then dete¡urines inclividually how
to respond to each damper, e.g. by reducing the nominal rate by
some multiple of the degree. The simplest configuration is to pro-
vide a {Moditier,Factor} tuple, in which case the Modifler
value is multiplied by Factor to produce a reduction value in per-
cent of the defined maximum rate.

A more advanced case would be to name a function which,
when called with a modifier value returns a reduction value. Differ-
ent sampler callbacks (see section 7.8) could export such modifier
functions for convenience and as examples for the user.

7.3 Regulation API
The basic API for submitting to load regulation is:

jobs:ask(JobType) ->
{ok, Opaque} I {error, Reason}

Reason = rejected I tineout
If there is no registered job type matching JobType, an excep-

tion is raised.
The recommended way to end the job is to let the process

terminate, i.e. create a temporary process for each job. If the process
n99dl to be kept in order to perform more work, it must explicitly
tell the job regulator when it has completed the job:

j obs : done (0paque)

It is also possible to do this as a one-liner:

jobs:run(JobType, Fun) -> Result

Result is the ¡esult of calling Fun0, when the job request has
been accepted. Ifthejob request is denied with {error,Reason},
erlang: error (Reason) is raised.

7.4 Management API
It_is possible to dynamically add, remove and reconfigure queues.
This is partly intended for continuous maintenance and evólution

of a system, but could also be used for dynamic regulation, e.g.
changing the regulation parameters based on policy control, sam-
pling feedback or operator intervention.

One could also imagine implementing a .,training,, function,
where the feedback from the sampler is used to find an optimal
throughput level. No experiments have been done with this yèt.

7.5 Inspection API
A vital part of the run-time management function is to be able to
read the current configuration. Thus, all configuration values are
available at run-time. Furthermore the queue and regulator plugins
must support an info/2 function for real-time inspection of key
performance indicators (e.g. current queue length). It is possible tô
provide information on custom attributes; the default rétum value
for unsupported attributes is 'undef ined , , .

7.6 Regulator Plugins

It will be possible to define a custom regulator plugin, although at

lhe !¡ry of writing, the API has nor yer been defined. Most liiely,
it will have a very narrow regulation interface: one function which
is called at each check interval, and a facility for outside control.

The suitable time to define this ApI is when there is a good case
for a new regulator type. Suggestions are most welcome.

7.7 Queue Plugins

The default queue implementation is an ordered-set ETS table,
maintaining a FIFO queue of {Tinestanp, JobRef} tuples. It
is possible to define a different type of queue through a callback
interface. The API looks roughly as follows:

-type tj.nestanpo :: integero.
-type jobO :; {pidO, referenceo}.
-type entryO :: {tinestarpO, jobO}.

%'t"

"/,% Create a new instance of a queue; returD a
'/,"/, *q{} record.
'/:%

-spec new(optionsO, #q{}) -> #q{}.

T,'T

%% The queue is being deleted. Delete any fi1es,
%7. ets tables, etc. that belong to the queue.
-spec delete(#q{}) -> true.
,I'A

%% Enqueue a job reference; return the updated queue
%'/,

-spec in(tinestanpO, ¡obO, #q{}) -> #q{}.

'/,"/,

%7. Dequeue a batch of N jobs; return the nodífied queue.
%v,

-spec out(N:: integer0, #q{}) -> {[entryOJ, *q{}}.

'/"'/,

%% Return all the job entries in the queue
'/,1t"

-spec aIJ.(#q{}) -> [entryOJ.

't/:
7.7, Return infornation about the queue
"/:r
-spec info(atomO, #q{}) -> anyO.

I

i _l¡ :.
1 !i::
f';
T:,

i,

t.,
¡

fl

65

't/,
7.7. Return all entries that have been in the queue
%7, longer thafl Q#q.nax-time.
%'/,

-spec tinedout(#q{}) -> lentryOJ.

%T,

7.7. Check whether the queue is emPty
't/,
-spec is-enpty(#q{}) -> booleanO.

7.8 Sampler Plugins

As the indicators for determining overload can vary significantly
between systems, the sampler behaviour provides a plugin APL
The callback API is designed to be as simple as possible:

%'/, Initíalize the plugin;
%% called at startup or L'hen pJ.ugin is added
init(Argurnent) ->

{ok, InternalState}.

7.7, A message (e.g. a nnesia event) has arrived
%7. to tlie sampler
handle-msg(Msg, Tine, State) ->

{1og, Va1ue, NewState} | {ignore, Ne$State}

7.% A sa¡nple j.nterval has triggered
7.7. Sanple and return the resuLt.
sample(Tine, State) ->

{Value, NeuState}.

7.7. Catculate ùr ovêrl-oãd fäctor, based on thë hisLur.y
7.% of sanples and possible indicators based on inconing
7.7. messages.
catc(History, State) ->

{Factor, Nelrstate}.

The history is simply a list of {Tine, Value} tuples. A default
function is provided for assessing the contents of the list:

calc(Type, Temp1ate, History) -> Factor :¡ ternO'
Type =tine I vafue
Temptate = [{Threshold, Factor}]

For example, a cpu load sampler plugin might provide a tem-
plare like [{80, 1}, {90, 2}, {100, 3}], meaning that the
Factor is set to 1 at809o overload, 2 at907o, eTc.

When e.g. sampling mnesia, the only information we can extract
is whether it is overloaded or not - not the degree of load. It is then
better to check the duration of the overload condition, e.g. with a

remplare like [{0,1}, {30,2}, {45,3}, {60,4}]. If the¡e is
currently no overload, we do not even check the template. If there
is overload (Value == true), we check how long it has been true,
and find the lowest corresponding threshold in the template. In this
case, if overload has persisted for 35 seconds, Factor = 2.

These values need to be tuned for the system in question.
(Some administrative functions, such as terminate0 and

code-change0 will probably be added as well, in line with standard
OTP behaviours.)

7.9 Evaluation

It is important to note that, at the time of writing, JOBS has not yet
been used in commercial operation. Promising results from proto-
types have earned it a place in products currently under develop-
ment.

In the prototype tests, we have used JOBS to regulate a sys-

tem that uses a distributed, persistent mnesia database. The system
tends to be disk-bound, and without load regulation, it risks trig-
gering mnesia overload by outrunning the transaction log dumper

(see section 2.'l).lf the load persists, eventually the mnesia trans-
action manager (nnesia-txo) will also fall behind, building up a

very large message queue. As each new applicationlevel request is
handled in a separate process, eventually enough processes will be
backed up waiting for mnesia that the node crashes, either running
out of memory, or running out of ETS tables (each mnesia transac-
tion creates an ETS table for the temporary transaction store).

We regulated the system by adding a counter-based queue and
empirically adjusting the number of allowed concurrent requests.

Just by doing this, we increased the request rate within which we
were able to meet the response time requirements. Our assumption
is that reduced low-level contention is the main reason for this (see

section 2.5).
At some point, however, we still observed mnesia overload and

subsequent eventual node crashes. We addressed this by adding a

mnesia load sampler, and configuring the request queue to reduce
the number of concurrent requests while mnesia overload was ob-
served. This improved the situation, but âs we were testing on dif-
ferent hardware (and virtual instances) with radically different disk
throughput, we observed that the optimal throughput level and nec-

essary reduction seemed to differ between the systems. We then
extended JOBS to allow the samplers to detect perslsling overload,
and correspondingly increase the factor by which the regulators
should reduce throughput in order to cope (see section 7.8).

A unit test exists that exercises a number of diffe¡ent scenarios.
An interesting finding was that when running a sequential loop,
calling an empty function via the JOBS framework (in essence

measuring the overhead of the framework), the maximum sustained
rate on a budget dual-core laptop was 500 requests/s. Using parallel
evaluation instead, starting all requests asynchronously, a batch of
500 parallel jobs finished in 110 ms if the maximum rate was set to
5000 requests/s. This seems to be the highest reachable rate given
the type of hardware, giving an amortized per-request overhead of
the JOBS framework of less than 200 ¡ts, before optimizations. We
believe this to be acceptable for many types of request traffic.

The JOBS framework also incorporates the experience from
load-testing a highly scalable instant-messaging system, where we
encountered the "monster waves" alluded to in sections 2.2 and 4.4.
The cure in that case was to identify jobs that caused large process

heaps (using the systeur-inf oO BIF), and regulating them with
- using JOBS terminology - a counter-based queue, limiting the
number of such jobs that could run conculrently.

8. Conclusion
We have designed a generic load regulation framework based on

experience from several Erlang-based products designed to with-
stand signiûcant levels of overload. The basic principle is one of
classifying and queueing jobs at the input edges of the system, in a
manner similar to that used by the DiffServ mechanism for achiev-
ing quality of service in IP networks.

The idea of performing admission control at the input edges

of the system is mainly inspired by the AXD 301 system and its
derivatives, but it could just as well have been borrowed from the

SEDA framework. JOBS is a more general implementation than the

AXD 301-based load regulation, with a runtime management API
and a plugin approach to queue management and feedback control.

We have found this to be a strategy that suits Erlang very well.
We have tested the framework in a prototype for a commercial
system, and found that the distributed feedback mechanism works.
Thus, it is possible to configure the framework to detect choke
points and reduce the accepted traffic, as well as reduce it even

more if the overload condition persists.
Possible future developments are development of more sampler

plugins, a "training facility" which automatically finds an appro-
priate throughput level, and possibly also a parameterized queue

66

type capable ofperforming load-balancing. Another thought is that
with a queue configured to invoke a certain function, we could have
"producer queues", and essentially an adaptive and scriptable load
generation tool.

The code for JOBS has been released as Open Source (ESL
2010).

Acknowledgments
I wish to thank the anonymous reviewer who brought the work on
SEDA flMelsh et al. 2001) to my attenrion.

References
Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In AFIpS ,67 (Spring): proceedilgs
of the April 1 8-20, 1967, spring joint computer conferri"", pages
483-485, New York, NX USA, 1967. ACM. doi:
http://doi.acm.org I 10.1 145/ I 465492.1 465560.

Joe Armstrong. Programming Erlang: Sofware for a Concurrent World.
Pragmatic Bookshelf, July 2007.

Gregory Bell. Failure to thrive: Qos and the culture of operational
networking. ln RIPQoS '03: proceedings of ttrc ACM SIGCOMM
workshop on Revisíting IP eoS, pages 115-120, New york, Ny USA,
2003. ACM. ISBN l-58113-748-6. doi:
http://doi.acm.org/ 1 0.1 1 45 /9 44592.9 4459 5.

Ericsson. Erlang/otp efficiency guide.
htfp : / / erlang. or gldoclef fi ciency_guide/
users-guide.html, June 20 I 0a.

Ericsson. Erlang/otp overload reference manual.
http://erlang.orgldoc/man/overload.html, June 20 I 0b.

ESL. Jobs github repository. http://github.com/esVjobs, Seprember 2010.
Terry Gray. Why not atm? http://staff.washington.edu/grayl

papers/whynotatm.html, November 2000.

Sverre Haver. Freak wave event at draupnerjacketjanuar 1 1995.
http://folk.uio.no/karsrenlseminarV05ÆIaver2004.pdf, May 2003.

D. Richard Kuhn. Sources of failure in the public switched telephone
network. Computer,30(4):31-36, 1997. ISSN 0018_9162. doi:
http://dx.doi.org/1 0. I 109/2.585 1 5 t.

Frank L. Lewis. Applied Optimal Control and Estimntion. prentice Hall
PTR, Upper Saddle River, NJ, USA, 1992, ISBN 013040361X.

J. H. Nyström, P. W. Trinder, and D. J. King. High-level distriburion for
the rapid production of ¡obust telecoms software: Comparing c++ and
erlang, 2008.

Markus Peuhkuri. Ip quality of service. http:i/wwwnetlab.tkk.fii
þuhurlhtyoÆik-l 10.55l/iwork.ps, May 2010.

Paul H. Taylor, Thomas A.A. Adcock, Alistair G.L. Borthwick,
Daniel A.G. Walker, and Yao yao. The nature of the draupner giant
wave of 1st january 1995 and the associated sea-state, and- ho*-to
estimate directional spreading from an eulerian surface elevation time
history. In 9th International Workshop on Wave Híndcasting and
Forecasting,2006.

Theorem,net. Online introductions to control theory and engineering.
http ://wwwtheorem.neltheorem/background.html, 200 l.

Yaogong Wang. Bassoon: Backpressure-based sip overload control.
http://research.csc.ncsu.edu./netsrv/?q=þ¿sss6¡, April 20 I 0.

Matt Welsh and David Culler. Vi¡tualization conside¡ed harmful: Os
design directions for well-conditioned se¡vices. Hot Tbpics in
Operating Systems, Worlcshop on, 0:01 39, 2001. doi:
http://doi.ieeecompurersociery.org/l 0. 1 I 09/HOTOS .200l.gg00i, 4.

Matt Welsh, Steven D. Gribble, Eric A. Brewer, and David Culle¡. A
design framework for highly concurrent systems, 2000.

Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for
well-conditioned, scalable internet services, SIGO4S Oper Syst. Rev.,
3s(s):230-243, 200 l. ISSN 0 1 63-5980. doi:
http://doi.acm.orgl 10.1 1 45 I 502059.502057.

Ulf Wiger. Four-fold increase in productivity and quality -
industrial-strength functional programming in télecom_class products,
2001.

Lnfyiger: Extended process registry for Erlang. In ERLANG '07: proc. of
the 2007 SIGPLAN workshop on ERLANG Workslrop, pages 1-10, New
York, NY, USA,2007. ACM.

Wikipedia. Poisson process. http://en.wikipedia.org/wiki/poisson_process,
July 2010.

Brian Wilson. Reddit case study. http://wwwski-epic.com/
2008¡eddit-case-study/index.html, May 2008.

67

Implementing a MultÍagent Negotiation protocol in Brlang

Álvaro Ferná,ndezDíaz Clara Benac Earle Lars-Ä,ke Fredlund
Grupo Babel, Facultad de Informática, Universidad politécnica de Madrid

{aferna n dez, cbenac, lfred I u nd } @f i. u pm. es

Abstract
In this paper we present an implementation in Erlang of a multi-
agent negotiation protocol. The protocol is an extension of the
well-known Contract Net Protocol, where concurrency and fault-
tolerance have been addressed. We present some evidence that
show Erlang is a very good choice for implementing this kind of
protocol by identifying a quite high mapping between protocol
specification and Erlang constructs. Moreover, we also elaborate
on the added advantage that it can handle a larger number of agents
than other implementations, with substantially better perfo..anc".

Categories arul Subject Descríptors D.3.3 I7ROGRAMMING
I^LNGUAGEE: Language Constructs and Features

2. The Contract Net Protocol extension
As mentioned in the previous section, the multiagent negotiation
protocol presented in [] is an extension of the Contract Net pro_
tocol (CNP). The goal of the CNp protocol is to enable agents to
negotiate the allocation of tasks among them in a fair way, avoid_
ing the possibility of reaching a deadlock srate. Such a áeadlock
state would prevent agents from performing other tasks they are
committed to accomplish. The agents involved in the negotiation
can be considered as self interested, as they are supposeã to pro-
vide the best possible bids in order to get the task assigned to thèm.
However, it is not important as the relevant outcome of the process
depends only on the overall task allocation and on how effi-ciently
it was performed. The CNP extension includes the addition of new
negotiation phases, which: increase the probability for obtaining a
more efficient allocation of tasks, permit an agent to handle nego-
tiation of several tasks at the same time thus shortening the oveiall
time required to finish the whole process, and support the detec_
tion of failures in agents and a mechanism for negotiation blockage
avoidance.

. The CNP extension protocol defines two roles for the agents
involved in a negotiation process: the Manager, which announces
the task to be accomplished, and the ConÍractors, which send bids
to the manager.

The negotiation process is split into four phases:

1. PreBidding: first of all, the manager agent announces the task
to all potential contractors. Then, the manager waits for bids
from contractors. The contractor whose bid is the highest is pro_
moted and considered as the potential contractor. A contraitor
whose bid is inferior to the highest bid is sent a preReject mes_
sage from the manager. However, a contractor whose first bid
failed can make new bids. The preBidding phase ends once a
time limit has expired, or all the informed contractors have bid
at least once.

2. PreAssignment: in this phase, the manager informs the po-
tential contractor that its bid vvas the highest one by sending
a preAccept message.

3. DefinitiveBidding: once the potential contractor receives a
preAccept message, it computes and sends a definitive bid,
which can be different to its previous bid. If this definitive
bid is lower than the bid of any other contractor, the current po-
tential cont¡actor is demoted and receives a preReject message.
Then the contractor whose bid is now the highest is promoted
to potential contactor and the negotiation protocol returns to
PreAssignmenr phase. On the other hand, if the definitive bid is
higher than the bids from all the other contractors, The poten-
tial contractor is assigned the task and, therefore, a contract is
established.

General Terms Languages, Performance

l. Introduction
Multiagent negotiation is a very active area of research in the Au_
tonomous Agents and Multiagent Systems communities. In a ne_
gotiation, each agent modifies its local plans in order to achieve
an agreement with other agents in the system. Several negotiation
protocols have been proposed, among them, the Contract Net pro_
tocol (CNP) [3] is probably the most popular. CNp is based on the
bidding mechanism of a human market. However, as a task assign_
ment or resource allocation mechanism, CNp cannot optimise sys_
tem performance, especially when scheduling several oiders. Also,
CNP cannot detect failures in the agents participating in a negotia_
tion process. An extension of the CNp to addreìs these two issues
has been proposed in Il].

The concurrent and fault-tolerant aspects of that extension to
CNP, make Erlang an ideal implementation candidate. Indeed we
have implemented the protocol in Erlang, with very encouraging
results so far. In particular, we have been able to work with mucñ
larger systems than those reported in [1], i.e., using 3000 agents
compared to 40, and with much better performance.

The rest.of the paper is organised as follows. In the following
section we describe the extended negotiation protocol. The imple_
mentation of the protocol in Erlang is discussed in Sect. 3, and the
results of some experiments are shown in Sect 4. Finally, the con_
clusions and future work are summarised in Sect. 5.

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted wi¡hout fee provided that còpies are not made oidistributed
lor profit or comercial âdvanrage and that copies bear this notice ald the full citation
on-the nrst page. To copy otherwise, to republish, to post on seruers or to redistribute
to lists, fequires prior specific permission ànd./or a fee-.

Erlang' 1 0, Seprember 30, 201 0, Baltimore, Maryland, USA.
Copyright @ 2010 ACM 978-t-4503-0253-ll10/09. . . $10.00

69

4. DefinitiveAssignment: in this final phase, the manager sends

a definitiveAcc¿pl message to the potential contractor and a

deJìnitive&ejecf message to all other contractors. After that, the
negotiation for the task allocation has finished.

Despite the fact that there are four different phases, managers

are the only agents that know the current phase for a negotiation.
Hence, it is the only agent role that adapts its behaviour to the one

associated to the negotiation phase. The behavior of the different
contractors does not change with respect to the negotiation phase,

as they just keep trying to get tasks assigned by improving their
bids. Note that an agent can be simultaneously involved in several
negotiations. This means that every contractor must define an or-

dering of the tasks it is negotiating.
Finally, in order to provide fault-tolerance to the negotiation

process, the protocol defines an algorithm to end a multi-agent ne-

gotiation in case of a manager failure. In the first phase of this
algorithm, all the contractors involved in the negotiation whose
manager has crashed, namely fellow contractors, send each other
a managerleclsloz message in which they specify the last answer
received from the manager. Once a contractor has received a man-

agerlecision from every fellow contractor, it infers its own deflni-
tive state for the task execution and forwards it again to all other
fellow contractors. The decisions infened by contractor agents are:

1. Ifany othercontractorsends apreAccept,the agentinfers a final
decision of preReject.

2. lf any other contractor sends a definitiveAccept, the agent infers
a final decision of definitiveReject.

3. If all the other contractors send a preReiect, the decision in-
ferred for the task execution is preAccept.

4. If all fellow contractors send a definitiveReject, the agent infers
a definitiveAccept frnal decision.

5. If any other fellow contractor is suspected of failure, and the
contractor has received at least one definitiveReiect message,
the decision inferred is defrnitiveReject.

6. If any other fellow contractor is suspected of failure, and no

other contractor has sent a defnitiveReject, the decision infened
is preReject.

Note the contractors can only infer decisions by themselves
when the manager has crashed. It occurs when this manager agent
has not sent a message it is supposed to for a time that exceedes

certain threshold, implementation dependent. The specification of
this algorithm assumes that all the contractors know about a man-

ager failure and that this failure really happens. Therefore, there is
no need of an external agent deciding whether the manager failed
or not, in order to start the negotiation termination algorithm.

Now that the main features of the protocol have been described,
we will proceed to the details of its implementation in Erlang.

3. Implementing the Contract Net Protocol
extension in Erlang

The implementation of a multi-agent environment performing the
negotiation mechanism previously described seemed to be con-
ceptually straight-forward. Nevertheless, some decisions had to be
taken in order to obtain a fully working implementation of the CNP
extension.

3.1 ProcessOrchestration

The first step was to define the process structure of the system. As
the main goal of the implementation is to test the efficiency and

performance of the negotiation protocol under Erlang, task execu-
tion is abstracted. We assume that each task completes successfully,
and within any time limits specifìed in the contracl". Consequetttly,
the behaviour of each agent is relatively simple. Thus, the process

structure of the system, depicted in Figure 1, has one Erlang pro-
cess for each agent, manager or contractor, and a supervisor process

which monitors the agents. The supervisor process receives a list
containing several sets of tasks to be negotiated, and a set of con-
tractor agents. The supervisor spawns a different manager agent for
each set of tasks, and informs it of the contractors that should be in-
volved in the negotiation. Finally, the supervisor is linked to all the

managers, and the managers are linked to their associated contrac-
tors, to enable the system to be shut down cleanly and efficiently
after a finished negotiation.

m link

m*n links

Figure 1. Process links orchestration for a system of ln managers
ând ¿ contractors

3.2 Information Representation

In order to represent a task, we decided to implement an Erlang
record, named røsft, described in Figure 2. An instance of this
record is generated by every manager for each task it handles and

sent along to all contractors enclosed in an announce message dur-
ing the start of each preBiddin g phase. The information required by
a manager includes the name of the task being currently negotiated,
the process identifier of the potential contractor, the bid of this po-
tential contractor and the list of bids received from each contractor
agent. This is represented by the manager record also shown in Fig-
ure 2. Analogously, every contractor maintains a record named con-
tractor That contains information about the identifier of that agent,

the next time it will be ready to execute new tasks according to its
own schedule, a list of tasks it has committed to perform, a list of
tasks it is currently negotiating and a list of tasks whose manager
has crashed, for which the negotiation termination algorithm must
be executed.

3.3 SimultaneousNegotiation

To complete the implementation of the protocol, that allows a con-
tractor to be involved in several task negotiations, some decisions
had to be taken. One such example was the "currency" used for
computing task bids. As the negotiated tasks were not to be exe-

cuted, but rather abstracted, we decided that a good currency candi-
date was the time an agent estimates that completing a task requires.
Thus a bid ôr is considered to be higher (or bette¡) than another bid
b2,if time(bt) a time(bz), meaning that bid Ô1 promises to com-
plete a task before the bid Öz promises to complete the task.

Managers

Main Process

Contractors

70

-record (task , {
id=0,
startTi.ne = 0,
duration = 0,
endTime = 0,
nanager=void,
naxBid = 0,
lastBid = 0,
contractors= [] ,
st atus ,

info = tl))
-record(contractor,{

id=O, y,

nextFreeTin e=0 , '/,
,/,

tasksExecuted= U ,
nextExe cTíme =0 ,

offeredTasks=[],
blockedTasks = []

Ì).

gent identifier
ine last task !¡ould finish
if assigned to this agent)
tasks already connitted
first available tine sl,ot
after task execution
tasks beiDg negotiated
tasks with failed nanager

% task nane
% start tine for task
% execution ti!ûê for task
7. finish time for task
% manager pid
% max bid received for task
% last bid received
% list of contractors
% protocol status
% {announced , preÀccepted ,
% preRejected, Accepted]

A manager agent similarly negotiates all the tasks it has, and
when all tasks have been successfully assigned among the contrac_
tors, the manager process finishes.

A contractor agents listens and responds to incoming messages
sent by manager agents:

. announce: when this message is received, the contractor adds
this task to its list of offered tasks. The list of tasks is sorted
according to the preference for the contractor to serve a partic_
ular task. As previously indicated, as we are primarily interested
in evaluating the suitability of Erlang for implementing such a
multi-agent system, with regards to performance, we here ab_
stract away from the decision regarding task preference, and
simply order the task list in arrival order. Finally, a contractor
agent computes the time required to finish the task according to
its own schedule, and sends apreBidfo the manager ofthe tãsk.

o preAccept: the contractor computes again the time required to
finish the task, as the calculation may have changed Ìrom its
first prebid, and sends a definitiveBid to the manager.

r preReject: if the bid for the task this message refers cannot
be improved, the preference from the contracior to serve this
this task should be decreased. In order to simulate this, the task
is removed from the list of offered tasks and added to its last
position. It the bid can be improved, a new preBld message is
sent to the manager.

¡ definitiveAccept: the contract is signed, and the contractor
commits itself to complete the task, so the agent removes it from
its list of offered tasks and adds its to its list of executed ones.

¡ definitiveReject: as there is no possibility for the agent to
accomplish the task, it is removed from its list of offered tasks,
which means that the contractor leaves the negotiation.

As it is a simulated environment, we introduced a new message
with the only purpose to let the contractor processes finish when
there are no more tasks to negotiate. Then, when a contractor
receives a finish message from the main process and its list of
offered lasks is empt¡ it terminates. If that list is not empt¡ it
resends the finish message to itself, in order to process it again láter.

3.4 Fault Tolerance

In [1], the means for detecting a failure in an agent is based on
the absence of an expected communication. Concietely an agent is
suspected to be unavailable fo¡ the negotiation when no message
arrives from it during a certain time interval. This behaviour.un be
implemented directly in Erlang by letting receive statements time
out. However, as Erlang provides a better mechanism for error de_
tection, process linking, we decided to use it instead. Nevertheless,
in a large multi-agent systems linking every process to each other
is not efficient as this can generate a huge number of termination
messages to be generated. Because of that, the processes are linked
to each other in a dynamic way that varies with respect to the status
of the negotiations. As depicted in Figure l, every contractor pro_
cess is linked to the managers of the negotiations they are involved
in. Then, as the links are bidirectional, we can treat fáilures by tak-
ing into account the state of the negotiating state, and the type of
process that has failed:

. Contractor failure: the actions to be taken by the manager
depends on the status of the contractor that failed

t Potential Contractor: ifa failure is detected in the potential
contractor, the manager deletes it and its bid from the list of
bids and possible contractors, respectively. Then, it chooses
another potential contractor and continues the negotiation of
the task.

a
+

(
,/,

r,
,/,

,/,

v,

-record (manager , {
task=void, % task being negotiated
l¡inner=void,% pid of poteDtial contractor
maxbid=void,% bíd of the potentía1 contractor
bids=[] % al-1 bids received

Ì).
Figure 2. Erlang records used in the protocol implementation

Next, the behaviour of each agent (manager, contractor) was de_
fined. A_manager agent first receives a sequence of tasks to nego_
tiate and a list of process identifiers that correspond to contractor
agents. Then, it starts negotiating the first task in the sequence, be_
ginning by sending an announce message to all the contractor pro_
cesses. After that it waits for bids from the contractor agents (in
the preBidding phase), until either all of them have answèred or a
timeout expires. At that moment, a potential contractor has been
identified and the manager process sends this process a preAccept
message and enters the definitiveBidding phase.

The following messages can be received in that state:

o preBid: if this bid, from an agent a, is higher than the bids from
all the other agents, including the one from the potential con_
tractor,the current potential contractor is demoted, by sending
it a preReject message, and a is promoted to potentiai cont.ac_
tor, consequently receiving a preAccept message.

¡ definitiveBid: There are two cases:

. This bid comes from current potential contractor; a if it is
better than the bids from all other contractors, the task be_
ing negotiated is assigned to d and a contract is signed via
a definitiveAccepf message to a and a definitiveRej¿ü mes_
sage is sent to every other contractor. If there is a contractor
å whose bid is higher that this definitiveBid, a is demoted
while å is promoted, via preReject and preAccept messages
respectively.

. This bid comes from a past potential contracÍor: as Erlang
does not guarantee message ordering from different pro_
cesses, it is possible for a definitíveBid from a potential ¿on_
tractor to arrive to the manager when this process has been
demoted. When this situatiðn happens, dertnitiveBid mes-
sage is processedlike a preBid one.

7l

'Noî potential contractor: the manager erases the bid this
contractor sent, if any, and removes it from the list of possi-

ble contractors.

¡ Manager failure: if a manager fails during a negotiation, all
the contractors linked to it perform the following steps in order
to avoid getting stuck in the negotiation:

. Every contractor generates a link to all the other contrac-
tors whose process identifiers were included in the task an-

nouncement, and sends them the last answer received from
the manager, labe11ed managerdecisio¿. If none was re-

ceived yet, it sends uttknown and infers a definitive rejection
for itself in order to avoid the possibility o1'having several
processes inferring acceptance simultaneously.

¡ A colltractor waits for an answer fiom all the processes that
were successfully linked to it. The rest ale assumed to be

in a tailure state, as it is not possible to create a link to a

process already terminated. If all the other processes send a

mana ger -deci sion belonging to sef {pre Rei ect, definitiveRe-
ject), the contractor infet's a lìnal status of defnitiveAccept
for the task and, thus, it behaves as if a contract had been

signed with the manager for the execution of the task. If it
receives any Lmkno*,tt, preAccepl or defitùtiveAccept mes'
sage or if another contractor involved in the stuck avoid-
ing process fails, cletected through the exìsting link to it, the

contractor infèrs a definÌtíveRejecf for the task, as avoiding
simultaneous acceptance inference is rnore important that

not being able to allocate a task, a procedure that could be

retried.

3.5 Differences from Specification

During the implementation of the protocol, we realised the speci-

fication of tne behaviour of the agents is not complete, as it is not
able to handle some situations that can happen during the execu-

tion of the proiocol. The fìrst of them is a nnnager-decision of
type unknotvn. As ii resembles the absence of an answer from the

manager, this allows the possibility of lcpresenting either a preAc-
cept or prell.ejecf status. This situation is discussed in [1] although
the expected behaviour of a contractor that receives the message

is not specified. Therefore, we decided to treat such an occunence
as an inferred decision of type definitiveRejecr in order to avoid
more than one contractor inferring an ¿ìcceptance status. Another
required decision was how to deal with failures in a contractor,

when it is the potential contractor, as the specified algorithm only
elaborates on what to do when a not-t potential contractor agent fails.
The solution was quite obvious but it yet represents a shortcom-
ing of the protocol specifìcation. In addition, concerning the block-
age avoidance algorithm, we decided to only allow the infelence
of definitiveAccept atld defnitiveReject negotiation status. The rea-

sons for this decision derive from the fact that an inf'elred stattis

of preAccept would provide the same semantics as a deJirtitiveAc-

cept one, while a preRejec¡ inferred status only allows to degrade a

task, which still will remain in the list of offered tasks. Then, as the

inference about the negotiation status for a task, is only computed

once, the task will remain in the list of ofiered tasks of the contrac-
tors indefinitely. This problem can be solved by inferring a defini-
tiveReject status, which removes the task from the list of offered
tasks and provides the expected semantics. Finally, as the speci-
fication does not indicate what to do rvhen a contracÍor-decisiott
message alrives, and we fbund no use fbr it, we sirnply t'emoved

that mechanism from the blockage avoidance mechanism, leading
to the savings of a huge amount of messages with no observable

semantic changes.

4. Experiments
In the previous sections we have shown how the protocol specifica-
tion could be easily implemented in Erlang, with no major changes

necessary, thus greatly simplifying the design and implementation
task. However, our chief motivation for implementing the proto-
col in Erlang was to assess whether the performance of the proto-

col implementation would be improved, with regards to the size of
multi-agent systems that could be handled.

In order to evaluate this, we conducted a series of experiments,
also present in [1], to dete¡mine if the re-implementation in Erlang
provided any performance benefits. The original implementation
was written in Java but the architecture over which the experiments
were mn is unknown to us. It modelled a transportation applica-
tion. Nevertheless, it is still comparable to our implementation as

the protocol is the same, thus involving the same kind of communi-
cation, and the computations are not heavier than the ones our im-
plemented agents perform. Moreover, the original implementation
includes a feature, not imposed by the protocol, that can shorten

the overall process oftask allocation. This feature implies that if a

manager agent tries to allocate identical tasks, the bid from a con-
tractor for certain task is also taken into account for its identical
ones. For instance, assume a scenario where manager M announces

identical tasks úr and fz, and contractor C bids for them with bids

ù and bz, respectively. lf h I bz and C is preRejected for task Úr,

the manager takes br as bid from C fot tz.In our implementation,
agent C has to bid again for fz in order to improve its bid, requiring
more messages to be exchanged, thus increasing overall process.

We decided not to implement that feature as it is implementation
dependend and not derir,ed from the procotol specification.

In order to obtain relevant results, every experiment was re-
peated at least a hundred times. All of them were run under Ubuntu
Linux version 10.04 in a computer with two 2.53 GHz processors.

Our execution time measurements cover the whole negotiation pro-

cess: from the moment the different agents stalt to be created to the

time instant the last agent finishes its execution. As explained in
Sect. 3.1, task execution is just simulated in our implementation by
committing a contract to a contractor which does not allow over-

lapping of its assigned tasks. In fact, tasks are just defined by a

unique identifler and a number representing the time units that task

completion requires. The same simulation is performed in the im-
plementation by the protocol designers.

The experiments are divided in two groups. In the first group

the experiments are run with the same number of agents as in [1],
to compare the two protocol implementations. In the second group
of experiments, a larger number of clients has been considered, for
the Erlang implementation.

4.1 Small Agent Population

Here we present the results of a series of experiments which are

directly comparable to measurements reported in [l], as they do
not measure protocol behavior under failure conditions. Therefore'
our deletion of contractoriøcislore message has no impact in the

comparison of both implementations. We consider the experiments
in this series to measure protocol behaviour in rather small agent

groups. We present the results in tables due to the big difference
between execution times from both implementations.

The first experimental group is composed of4 agents,2 contrac-
tors and 2 managers. The results obtained for the Erlang implemen-
tation, and the original results reported by the protocol designers

As we can see, the execution time required for the negotiation in
our Erlang implementation is four orders of magnitude better than
the timings reported by the designers of the protocol. As the results

72

for such a small population are not very significant, we repeated
the experiments with the maximum number of agents the protocol
designers used to test their implementation. The results obtáined for
a population of40 agents (14 managers and 26 contractors) were:

Number of
Tasks

Aknine et al. Average
Execution Time (mil-
liseconds)

Erlang Average
Execution
Time(milliseconds)

4 1320 0.r22
l0 2530 o.248
20 3460 u.518
30 5050 0.69E
40 9r40 ÍJ.974
50 r4258 l. 13

Thble 1. 2 contractors and 2 managers

Number of
Tasks

Aknine et al. Average
Execution Time (mil-
liseconds)

Erlang Average
Execution
Time(milliseconds)

4 3509 u.798
10 7gUI 2.027
zIJ 10821 4.232
30 76941 7.292

18788 9.905
50 29872 I.zlltr

Table 2. 26 contractors and l4 managers

Number of
Tasks

Aknine et al. Average
Execution Time (mil-
liseconds)

Erlang Average
Execution
Time(milliseconds)

4 3621 0.579
l0 E189 r.374
20 IU9:J4 3.293
30 16991 4.743
40 18933 7.057
50 29978 9.686

Table 3. 1 6 contractors and 24 managers

Then, we repeated the experiment for a variable number of
contractors, while the number of managers remains constant with a
population of 10, as depicted in the table below:

Manager
Agents-l¡-

Erlang Implementation
Average Execution Time(sec)

ffi
20 r.231567
40 1.869366
60 2.515276
EO 3.094301
IUU 3.910985

Table 4. 1000 tasks to 100 contractors

Contractor
Agents-lT0- Execution Time(sec)

200 2.212398
400 6.691916
ó00 12.9I52I3
800 2L.532578
1000 32.297314

Table 5. 100 tasks and 10 managers

Next, we measured the impact on execution time in environ_
ments with a constant number of contractors and managers (100
and 10 respectively), and a variable number oftasks:

Number of
Tasks

Erlang Implementation
Average Execution Time(sec)

I00 0.087581
200 0.t72625
400 0.353451
600 0.525856
800 0.708959
l 000 u.E7353:J
2000 1.75532
5000 4.396946
10000 8.620578

The results again indicate that our Erlang implementation runs
approximately 1000 times faster. We repeated the experiment for
another population of 40 agents, this time with 24 manãgers and 16
contractors. The results obtained were:

'
ì.

Table 6. 100 contractors and 10 managers

Finally, in order to test the performance of the algorithm in an
environment with few tasks to assign, only 10, we run a series of
experiments that involved 10 managers and a sharply increasing
number of contractors:

The results for this scenario are consistent with early ones.
Erlang clearly is an efficient platform for implementing mulii-agent
systems.

4.2 Large Agent Population

To measure the performance of the Erlang implementation of the
protocol on larger, perhaps more realistic, multi-agent systems, we
decided to repeat the previous experiments with much bigger agent
populations. There is no possibility to compare the outcome of
these experiments to previous works, as [1], for instance, contains
no measurements for populations remotely similar in size to ours.
In the following table, we show how the execution time correlates
with an increase in the number of manager agents in a negotiation
of 1000 tasks'among 100 contractor agents:

4,3 Performance under Failure
In the previous sets of experiments, the execution time measured
was taken from executions where there was no failure in the agents
involved in the negotiation. To evaluate the performance of the
protocol implementation in failure scenarios, we designed a set
of experiments where failures were iirtroduced in the agents at
certain points of the negotiation. The flrst experiment set measures
execution time when fhe potential contractors fail as soon as they

73

Contractor
Agents

Erlang Implementation
Average Execution Time(sec)

100 0.009974
200 o.026022

0.80698400
0.158065ó00

800 0.302604
IOUU 0,413268
2000 1.531921
3000 3.467723
3500 4.342805

Table 7. 10 tasks and 10 managers

receive a preAccept message, except for one agent of the population
who will not fail and, thus, will commit all contracts. The results

obtained for with 10 tasks,5 managers and a varying number of
contractofs were:

Erlang lmplementation
Average Execution Time(sec)
0.007226

500 0.070008
1000 0.230252
2000 0.91076
4000 J. f I t,)

5OUU 5.662974

Table 8. l0 tasks and 5 managers under failure

We can observe how the execution time is significantly lower
than earlier measurements, as the number of contractors is con-

stantly decreasing, as the tasks are being assigned, until only one

contractor remains alive. Besides, we wanted to test the implemen-
tation when there are failures in the managers, as this will increase

the number of communications taking place. For instance, in a ne-

gotiation between one manager and r? contractors, with n > 1, the

number of messages sent once the announcement of the task has

been finished, is very close to 1. However, ifthere is a failure in
the manager, this number grows exponentially, as in the better case

there are 2n' messages. The results obtained for the allocation of
5 tasks, where there are 5 managers and 2 of them fail, immedi-
ately before sending a definitiveAccept, undü a variable number of
contractors were:

Contractor
Agents

Erlang Implementation
Average Execution Time(sec)

100 0.0ti9875
500 1.48867
1000 9.858859
2000 67.838057

Thble 9. 5 tasks and 5 managers under failure

These results show the aforementioned exponential growth in
the number of messages exchanged. Nevertheless, they are still
surprising, as the time required for such a significant amount of
computations is relatively small, especially if compared to the

results provided by the protocol designers. Once again, Erlang has

proven itself a very capable platform for this type of process and

communication intensive systems.

5. Conclusion and Future Work
In this paper, we have shown the benefits of using Erlang for
the implementation of a task allocation protocol in a multi-agent
system. One such signiflcant advantage is the fact that mapping the

original protocol specification into an Erlang program took very
little effort, approximately one man month, as the assumptions

made in the protocol matches well with the actor process and

communication model used in Erlang.
We have further shown how the information the different agents

handle can be represented as Erlang records. Moreover, it is sig-

nificant how easily an event-driven system, as multi-agent systems

usually are, can be implemented using Erlang message passing. An-
other useful mechanism Erlang provides is process linking which,
compared to the protocol speciflcation, provides a highJevel fail-
ure notification mechanism. The use of this highJevel mechanism

conributed to enabling the agents to become more "aware of their
environment", in terms of their knowledge about the status of other
agents, which is a very desirable, if not mandatory, feature in col-
laborative multi-agent systems.

Regarding the execution of multi-agent systems, [1] states "We

understand it is dfficult to increase the number of agents and
tasks, because of the computational complexity problem", referring
to experiments that performed a task allocation of 8 tasks which
involved a population of 8 agents. In this document, we have shown

that by using the Erlang/OTP runtime system, which has a superior
implementation of processes management and message passing,

it is possibly to dramatically increase the number both of tasks

allocated, and the number of agents involved in a negotiation.
Because of these two observations, we strongly believe that

Erlang is a very good choice as programming language for the

implementation of multi-agent systems, allowing the generation

of huge agent populations and, thus, increasing relevance of both
empirical experiments and real world applications.

As a future line of work, we intend to formally verify that our
protocol implementation behaves correctly, and moreover, that the

original protocol specification is consistent. Specifically, we plan
to model check our Contract Net Protocol extension implementa-
tion using the McErlang [2] model checker. Having implemented
the protocol we remain suspicious of a number of features of the
protocol, and we are of the opinion that a verification is required to
increase the trust, and the quality, of the original protocol specifi-
cation.

References

[1] S. Aknine, S. Pinson and M.F Shakun. An Extended MultiAgent
Negotiation Protocol. In Int. Journal ofAulonomous Agents and Multi-
Agent Systems. Volume 8, pages 5-45. Kluwer Academic Publishers,

2004.

[2] L. Fredlund and H. Svensson. McErlang: a model checker for a dis-
tributed functional programming language. ln Proceedings of the l2th
ACM SIGPI-{N Internølional conference on functional programming
(ICFP 2007), Oct. 2007.

t3l R.G. Smith and R. Davis. Frameworks for co-operation in distributed
problem solving. In IEEE Transaction on System, Man and Cybernet
ics. Volume 11, number 1, 1981.

74

QuickChecking Refactoring Tools

DánielDrienyovszky Dániel Horpácsi
University of Kent and Eötvös Loránd University

{dd210, dh254}@kent.ac. uk

Simon Thompson

University of Kent
S.J.Thom pson@kent.ac. uk

Abstract
Refactoring is the transformation of program source code in a way
that preserves the behaviour of the program. Many tools exist for
automating a number ofrefactoring steps, but these tools are often
poorly tested. We present an automated testing framework based
on QuickCheck for testing refactoring tools written for the Erlang
programming language.

Categoríes and Subject Descriptors D. Software lD.2 SOFT-
WARE ENGINEERING): D.2.5 Testing and Debugging: Tesring
tools

General Terms Verification

Keywords refactoring, Wrangler, RefactorErl, Erlang, random
program generation, Quickcheck, attribute grammar, yecc, prop_
efty

generated programs. We have chosen euickCheck as our testing
tool and two Erlang refactoring tools, Wrangler and RefactorErl ai
the tools to be tested.

In this paper we descrìbe the difficulties of the testing of refac_
toring tools (Section 2) and we also present our contribution, which
is to make the entire testing process fully automated. The method
is composed of two separate parts.

r First, we have created a QuickCheck-based random generator
for producing Erlang programs which are used as thJinput of
the refactoring transformations. More precisel¡ we havè for_
malised the programming language to be refactored (namel¡
Erlang) with a proper grammar class and then based on this
description we have derived a coresponding euickCheck gen_
erator for the syntactically and semantically correct programs
ofthe language (see Section 3).

¡ Second, we have created a definition of equivalence between
Erlang modules, which leans on the dynamic behaviour of the
programs. Furthermore, we have formalised this equivalence
relation by means of QuickCheck properties (see Seciion 4).

Using these two ideas together, we have built a fully automated
testing framework for Erlang code-to-code transformation tools.
The final sections of the paper comment on the results we have
derived, on related work, ãnd our conclusions, where we note that
the tool we have built here is applicable to all the refactoring tools
for Erlang, and that the approach we outline could equally well be
applied to testing refactoring tools for other languages.

2. Validating refactoring tools
There are many ways ofestablishing program coûectness, includ_
ilg formal proof mechanisms as well as several testing strategies.
While developing software, evidently, we would like to be suie of
our program's correctness. Since formal methods are mostly too
difficult to apply, despite some preliminary work reported in t201,
we focus on testing as a mechanism for validating and improving
the quality of our programs.

2.1 Case-based testing

There are many testing approaches, which aim to check as many
program parts as possible, as assessed in different ways. With test_
ing, basically, we are not able to prove the program,i correctness,
but we can establish that in numerous cases the program does what
we expect from it, and this can give us a degree ofconfidence that
it indeed satisfies its requirements.

Commonly, programmers apply simple use-case based testing
to check fundamental requirements. However, in the case of com_
plex software it is impossible to cover all the most common and
most interesting cases just by test cases written by hand. For in_
stance, in our specific case, there always may be found unusual
instances that are valid source code but that would seldom be writ_

1. Introduction
Refactoring [10, 15] is a process of rewriting program source code
without changing its meaning whilst improving properties such as
maintainability, clarity or performance. Refactorings range from
simple ones, like renaming a variable, to more comþlex oñes, like
generalising a function. Refactoring transformations may affect
large pafts of the code base for a project and in particuiar may
require modifications of more several different modules from â
project. Applying such code-to-code transformations are common
practice among software developers, consequently tool support for
refactoring is widespread in mainstream programming languages.
Refactoring tools/engines help to automate the routinè aspectJ of
certain code transformations. For Erlang there are three refãctoring
tools available: Wrangler [3] from the University of Kent, Refac-
torErl [2] from Eötvös Loránd University and last but not least,
Tidier [6, 18], a completely automatic code cleaning tool from the
National Technical University of Athens.

These tools are hard to test, as they require manually written
test cases aiming to cover every corner case of the language be-
ing refactored. Evidently, by using only such case-based i.rtìíg *.
never can.provide a comprehensive check of the refactoring en_
gines. To inc¡ease confidence in these tools, a more efficienitest-
ing approach has to be applied. We investigate automated testing
of refactoring tools by generating random programs and verifyin!
whether the refactorings preserve the meaning of these randomlyi

Permission to make digitat or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that còpies are not made oidist¡ibuted
for profit or commercial advantage and that copies bear this no¡ice and the full citation
on the first page. To copy otherwise, to republish, to pûst on servers or to redistribute
to lists, requires prior specifrc pemission and,/or a fee.

Erlmg'10, Seprember 30,2010, Baltimore, Maryland, USA.
Copyright @ 2010 ACM 978-1- 4503-0253-1/10/09. . . $10.00

75

ten by human programmers. The latter sort of code should also be

handled conectly by a practical refactoring tool.
Since refactoring tools can mess up or even corrupt our codc

base by accident, they have to be well-tested. They can only be use-

ful accessories of the development process if they can be expected

to perform the transformation steps properly, without making any

mistakes. We apply such tools instead of performing transforma-
tions by hand because the refactoring software should be much

more precise than the human programmer can ever be. An eft-
cient and comprehensive testing method has to be used in order
to achieve a reasonable confidence in the reliability of the tool'

Testing of refactoring tools is difficult due to the complexity
of their input and output: both the input and the output of such

programs are program source code. Such code is a complex data

type, since it embodies not only syntactic well-formedness but also

semantic coffectness too. Furthermore, defining the semantics of
the refactorings, namely, how a transformation has to be performed
on different input data, is not straightforward task either. By us-

ing case-based testing on the transformation steps we can cover the

main features of the functionality with a reasonable labour, how-
ever, more sophisticated approaches are also applicable, such as

property-based testing methods.

2.2 Property-based testing in QuickCheck

Property-based testing makes a generalisation of usual test cases

by eliminating the concrete input from the test case and replacing it
with randomly generated test data. So then, the test cases describe

only the properties (the main points) of the specified case rather

than describing a concrete input-output pair. The properties can

be efficiently checked on large number of randomly generated test

inputs.
Such testing methods may be regarded as a fusion of the formal

proof methods and the traditional test case based testing. When us-

ing property based testing, we do not define specific input-output
pairs that describe the requirements, but we specify in a logical
property the expected behaviour on inputs satisfying the specified

conditions. The expected behaviour is drawn in terms of specifi-
cation properties. During the test, these properties are checked in
a large number of test cases. Usually, the test input is randomly
generated by the framework, based on special data generators. The
data generators describe the structure and the essential properties

of the input data to be used for testing. Also, the distribution of the

random data can also be controlled through the generators.

QuickCheck is a well-designed implementation of the property-
based testing method for functional progrâms, including the Erlang
programming language. QuviQ QuickCheck [1, 4, 5], the com-
mercial QuickCheck implementation for Erlang, is a tool for au-

tomatic testing of Erlang programs against a user-written specifl-
cation. The testing method known as 'QuickChecking' means the

checking of specification properties (that is the expected function-
ality) in a large number of randomly generated cases. QuickCheck
properlies are expressed in standard Erlang code, using the macros

and functions defined in the QuickCheck library.
As we mentioned already, property-based testing involves two

kinds of activity.

o The first is the description of the testing data used as input for
the program being tested. Data generators describe the way that
the test data is generated, as well as the expected probability
distribution of the randomly generated data.

o The other is The specification of the properties expected of the
program. These are typically universally-quantifi ed properties,

and the data produced by the generators are used as the actual

values of the universal variables.

Property-based testing can provide comprehensive testing of sev-

eral kind of software. In this paper we present property-based test-
ing of Erlang refactoring tools, which involves a definition of a data
generator for Erlang module source code as well as a property for
determining whether two modules, namely a module before and

after refaetoring, are equivalent.

3. Randomprogramgeneration
While creating data generators we can use built-in data generators

and in addition, QuickCheck allows the programmers to define
their own data generators to create more complex random values.

Generators for the built-in types are defined by the framework, so

we have to create generators only for our own types by combining
the built-in generators by using generator combinators.

In this paper, the term 'flrst-order generator' means simple data
generators that are not parameterised with any other generators. On
the other hand, the term 'higher-order generator' strands for the so-

called generator combinators, which are generators that may take

one or more generators as their arguments. First-order generators

only take simple Erlang terms as parameters. They are the core of
the generation (since they do not combine other generators but in-
deed create data values). On the other hand, higher-order generators

combine other data generators and may result in arbitrarily complex
data generators.

Despite the fact that QuickCheck generators provide a powerful
toolkit for defining test data, in the case of larger programs oper-
atìng on complex input, writing generators by hand is tedious and
results in complicated source code, containing substantial 'boiler
plate', that is hard to maintain, \ilith a more general notation. that
is, with a metalanguage more powerful than the QuickCheck gen-

erators, we can reduce the complexity of the description and the

amount of the wasted coding time. In this approach QuickCheck
generators are a low-level formalism and our meta-notation is a

high-level formalism that eases the description of the test data.

Attribute grammars

A formal grammar is a set of rules, which describes a formal
language [8], for example, the syntax of a programming language.

Usually programming language syntax is formalised with EBNF
(Extended Backus-Naur Form) [7], which is a meta-syntax notation
used to express context-free grammars (CFG). However, also to
describe the static semantics of a language - such as the binding
structure of variables and other identifiers - a more expressive
formalism is needed.

Attribute grammars (AG) ll2,l6l are generalisations of context-
free grammars, where the grammar rules are extended with seman-

tic computation rules to calculate associated values or attributes.
With attribute grammars both the syntax and the semantics are

representable together. The attributes are divided into two groups:

synthesised attributes and inherited attributes. The former are com-
puted from constants and attributes attached to the children, the

latter depend only on constants and the parents or siblings.
Synthesised attributes are used to calculate and store results like

the value of an expression, whereas inherited attributes are used to
carry the context of a node, such as an environment of variable
bindings in scope at that point. In some approaches, synthesised
attrìbutes are used to pass semantic information up the parse tree,

while inherited attributes help pass semantic information down and

across it.
There are important subclasses of attribute grammars, which

have some restrictions on the form of the attribute computa-

tion rules [13]. S-Attributed grammars involve synthesised at-

tributes only, L-Attributed grammars allow attribute inheritance
with the restriction that dependencies from a child to the child
itself or to the child's right are not allowed. Formally, given a

76

rule A ---+ XtXz . . . Xn in the L-Attributed grammar, each inher-
ited attribute of Xi (1 < j < n) depends only on am¡ibutes of
Xt, Xz, . . . , X j-, and on inherited attributes of .4. Furthermore,
synthesised attributes of Xi may depend on its own inherited at-
tributes. Synthesised attributes of -4 depend on inherited attributes
of,4 and on any attributes of the right hand side symbols. This def-
inition of L-attribution effectively means that there are no cycles
in the attribute calculation, and that calculation can conclude in a
single pass.

Grammars and testing

Test data may be defined by means of formal grammars. This kind
oftesting is usually called grammar-based testingflgl. In this con-
cept, a test datum is a word of the language defining the domain of
the tested function and this language can be given by means of for-
mal grammars. We have created a grammar-based meta-notation
for QuickCheck data generators and in our experìence, data de-
scribed in our notation usually is about 5 times more compact than
writing the same data with standard QuickCheck generators. For
example, in the case of a simple language (anbncn), compiling
some 10 lines of description results in about 55 lines of Erlang
code containing the QuickCheck generators.

In QuickCheck for Erlang there is already a module with similar
capabilities: eqc_granmar [1] is a library module of the euvie
QuickCheck distribution. This tool is able to create euickCheck
generators from a yecc-liker grammar description, but in contrast
to our \'r'ork, it does not support attributes, EBNF notations and
many other features that are covered in detail in Dániel Horpácsi,s
master's thesis [111.

The most significant difference from already available generator
generators is that in our work the data generators are generated not
from context-free grammars, but from L-attributed grammars. The
latter formal grammar class is much more expressive than the for-
mer one. The notation of the eqc_granìmar is based on context_
free grammars and cannot be used to describe context-dependent
data. Since the Erlang language is in the latter group, a more ex-
pressive metalanguage is needed. The Erlang syntax and static se-
mantics can be conveniently described by using L-Attributed gram-
mars, so we decided to design a QuickCheck generator generator
for such grammars.

3.1 Generatormetalanguage

A grammar-based generator generator takes a proper grammar de-
scription and produces data generators according to the grammar
rules, or in other words, to the grammar nonterminals. Then, the
generator belonging to the root symbol generates strings of the lan_
guage described by the grammar. We have to create a metalanguage
that can denote L-attributed grammars and can be efficiently coñt-
piled into data generators.

As already noted, the notation aims to express L-Attributed
grammars, which are able to describe inheritance in the grammar.
For those who are familiar with the usual attribute grammar nota-
tion, we present a very simple attribute grammar in both the usual
and the new notation to illustrate the difference. The example de_
scribes the û,nbncn language, which is one of the simpleit non_
contexGfree languages. Figure 1 shows it in usual notation and Fig-
ure 2 shows it in our EBNF-like notation.

The main structure of the both descriptions are similar. The
grammar is written as a group of rules and inside the rules there
may be alternatives. The main difference lies in the place where
the attribute computations are written. In the usual notation the
semantic rules are separated from the common grammar rules. In

(abcseq) ;;: (aSeq) (bseq) (cSeq)
lnSlze((bSeq)) - Slz¿((aSeq))
lzSze((cSeq)) - Jlz¿((aSeq))

(aSeq) ::: a
Sze((aSeq)) e 1

I (aSeq)z a
Size((aSeq)) * Sø¿((aSeq)z) + I

(bSeq) ::: b
Conditíon: InSøe(bSeq) = I
(bSeq)z b
InSize((bSeq) z) * InSize((bSeq)) - 1

Condition: årSize(cSeq) = I
(cSeq)z c
InSize((cSeq) z) * InSize((cSeq)) - 1

I
(cSeq) :c

Figure 1. anbncn grammar in usual AG notation

abc_seq -> a_seq
-> b_seq [@size = ,$1,.size]

c_seq [@size = ,g1,.size]

"li ;:¡..:','Ì:ti > ;t :: i-ÉÌ..:;.i,rr * .i.i
!::r:j j iT...."n*i.i ,:l .'.' iíJ.:,:,.;ì;:r,r , 'í.:' .:,:r.;.::.r - .ì i

a_seq -> {a} :: lGsize = length(,51,)1.

,;i'' .l;....":*i; -:. íllit.,:i: s.;.;::*..;."1......i. j jl
i:l i i' .:¡i.,:i ì t::,:.:i.::.:: .. ,iì, .::::i:..., _ : ¡ i:
b_seq -> {'$0, . size, b} .

c_seq -> {'$0, . size, c} .

Figure 2. anbncn grammar in our notation

contrast, in our notation the attribute computation rules are written
on the spot, just after the entity to which the attributes belong.

This kind of formalism fits well with the constraints of L_
Attributed grammars, where, due to the restrictions of the inher_
itance, attribute computations may refer only to their left. In our
notation, the attribute computation section can refer only to sym_
bols being on its left. This approach is similar to the iequential
programming style, in which a statement may only refer ãlready
declared variables.

Due to the fact that attribute computations are written just af_
ter the symbol that they affect, the nonterminals do not have to be
indexed on the right hand side, since the position of the attribute
computation rule determines on which symbol it is defined. Syn_
thesised attributes are given separately at the end ofthe rule.

In line 7 (Figure 2) in comparison with the usual formalism
y.e can see a useful simplification, that is, one can use repetition
(lists) instead of primitive recursion, which will be shorìer and
easier to understand. In yecc (and therefore in eqc_grammar) rule
alternatives and repetition are not supported, so with ôur formalism
it is easier to express grammars, because it is closer to EBNF rather
than to BNF.

Moreover, as can be seen jn line 9, in order to make the notation
express conditions based on attribute values, we added support for
guards in rule alternatives. ln line 2 and line 3 the setting of the
inherited attributes is shown, and then in tine I I and, line 13 it can
be seen how the attributes can be accessed. To ease the attribute
computation, one can use any kind of Erlang expression to compute
the attribute value. As should be evident, the notation is concisJand
is similar to the usual AG formalisms.Yecc is an LALR- 1 parser generator for Erlang, similar to yacc.

77

Special grammar rules: embedded rules

Generating the right hand side belonging to a grammar rule theoret-
ically is a single atomic step. That is, every value belonging to the

symbols on the rule's righrhand side are generated simultaneously.
While generating, for example, an Erlang function clause, appar-

ently the generation of the clause pattems and of the clause body
may not be simultaneous, since the body may well depend on the
patterns, or formal parameters, in the function head. In such cases

the right hand side values of the grammar rule may not be generated

together in a single round. To denote this, we use a special anow
symbol in the grammar description, which separates the different
parts of the rule. In other words, productions may be regarded as

sequences of separately generated right hand side element groups,

where the groups are separated by -> symbols. After every such
(possibly empty) group one can write any Erlang code and can ma-

nipulate the cuffent attributes.
Consider a simple definition of Erlang clauses, in which a clause

consists of a formal parameter list (patterns) and a body (expres-

sions). Obviously, the formal parameters and the body of a clause

are semantically interdependent, since the variables bound in the

patterns might be used inside the clause body. Therefore, the gen-

eration of the expressions is embedded into the generation of the

patterns. In other words, the two generation steps are performed in
sequence. After generating the proper pattem and expression lists, a
subtree is synthesised that accords to the function clause, like this:.

function-clause -> {- N, PaLtern}

;Ì i;.T;"1!î::::i1 {,, ,ç2,)

The embedded rules are compiled into applications of the bind
builçin QuickCheck generator combinator. By using this combi-
nator, we get a monadic-style execution of the value generators (in
Haskell QuickCheck this feature is implemented with monads).

Special grammar rules: recursive rules

As explained, earlier, formal grammars mainly consist of grammar
rules. Basically, a grammar rule has a nonterminal on its left hand

side and a list of either terminals or nonterminals on its right
hand side. The rule defines the meaning, the way of production
of the nonterminal being on the left. If that symbol also appears

on the right, the rule is said to be recursive. Recursion might be

indirect as well, that is, the rule's right contains a nonterminal
whose definition refers to the cuffent rule. Some of the recursive
rules can be eliminated by using repetition, the others have to be

handled or modified properly in order to avoid infinite recursions.

Repetítíon By applying EBNF-style repetition, many primitive
recursive rules can be eliminated from grammar descriptions. Usu-
ally, when generating lists of entities, in BNF one has to create a
primitive recursive rule, which has both a 'productive' and a 'base'

altemative. Consider the following example which may generate

lists of expressions. You can see that the recursion can be elimi-
nated by using repetition.

The recursive description:

exprs -> expr exprs
I expr

And the same rule by using repetition:

exprs -> {expr}

According to the actual context, one can use repetition in two
different ways depending on the way of handling the attributes.

Also, lists of entities may be generated with a given (fixed) size or
else a randomly generated size. The generation of repeated parts is

basically implemented by using QuickCheck's lisr and vector gen-

erator combinators, the former for variable sized lists and the latter
for lists with a given size (the size parameter can be either a vari-
able name, a constant or a macro/function call). However, if the

generation of the list elements may be interdependent, that is, cer-

tain list elements may depend semantically upon each other, then

the generation gets more difficult. In the latter case, special aux-

iliary generator combinators are included into the resulting source

code, which help the generation of dependent lists.
While independent list elements are generated simultaneously

and all elements inherit the same attribute list from their parent (in
other words, every list element is generated over the same attribute
list and cannot affect each other), in dependent list generation,

elements are generated one after the other and each one inherits the

attributes from the previous one. That is, the generated attributes
flow through the list and the currently generated elements can affect
the following siblings. The method and the notation is quite similar
to rule embedding. In this case, we would say that all sublists are

embedded. Dependent repetition symbols and embedded rules can

be seen in the following example.

module -> {attribute} {- ?M, function}.
function -> {?N, clause}.
clause -> {- pattern} {- expr}.

Controlling recursíon While using a grammar description for
parser generation, the altematives are equivalent in the respect of
applicability, since the input string determines which alternatives

have to be used for reduction. During a random generation, in the

case of rules built up from many alternatives the framework should

somehow choose one of them. In our solution, the generator ran-

domly makes a choice among the altematives and the selected one

is going to be used for generating the current subtree. Obviously, if
the alternatives are equivalent, the mentioned choice is totally ran-

dom, all the alternatives have the same chance to be chosen. How-
ever, in some cases it is expected to make a kind of priority order
among the rule alternatives in order to conffol the structure and the
properties of the randomly generated data.

In a rule, all rule alternatives may be associated with a frequency
(or weight), based on which they will be chosen. Obviously, by
adjusting the probability of the different alternatives the generated

data structure accordingly changes. An alternative's weight can

mean its relevance as well as the complexity of the subtree that may
be generated by its application. In the case of primitive recursive

rules (for example, generating list data structures) the weight of the

rule altematives may affect the size of the generated data.

Theoretically, recursive generation should terminate by a proper

setting of probabilities. However, in practice, structurally recursive

generation processes may not terminate, instead, infinitely enlarge

the generated structure. To avoid infinitely recursive application
chains, a recursion depth limit was ìnjected into the generation

process. The current depth of the recursion is registered during the

rule applications, more precisely, a counter registers the number of
the available recursive calls before hitting the limit. The counter
is decreased every time when a recursive call is performed. If
the limit is hit (in other words, the counter becomes zero), then

only simple (usually non-recursive) altematives can be applied.

Thus, the generation terminates on the curent subtree. This integer

expression generator shows this in action:

intexpr(0) -> int : : erl-syntax:integer('51').

intexpr(N) ->
intexpr (0)

I inLexpr (decr (N)) infixop intexpr (decr (N))

: : erf-syntax: infix-exPr ('$1' ,

erl-syntax:operator (' ç2' \,'S3') .

78

The 'simple' rule alternatives could be found by analysing the re-
cursiveness of the right hand side, but in our metalanguage the pro-
grammer has to mark the non-¡ecursive, simple cases. In our for-
malism the rules are written in a function-like format and in partic-
ular they can have arguments. The mentioned counter registering
the depth of the recursion is manually decreased and passed to thé
(directly or indirectly) recursive symbols. This solution gives the
programmer full control over the recursive generation.

3.2 An Erlang grammar definition
The generator generator framework is applicable to produce any
kind of data that can be described using formal grammars. In our
case, we have used the framework to generate Erlang programs.
Consequently, we have created a grammar definition of the Èrlang
language, more precisely, a definition of the sequential program-
ming language elements.

First of all, we had to decide, at what abstraction level to gener-
ate programs, since source code can have many kinds of represen-
tation, such as the well-known textual representation, token itream,
or abstract syntax tree (AST). This decision will in turn determine
the further difficulties of the description, because different repre-
sentations may introduce different problems during the generaiion
process.

We decided to use the latter representation, namely Erlang Syn-
tax Trees. Such trees can easily be represented and handledusing
the Erlang Syntax Tools library, which is included in the standarã
Erlang distribution and includes modules declaring useful types and
functions helping in construction and pretty-printing sucÍr syntax
trees. With the functions of the erl__syntax module it is sim_
ple to create ASTs in a bottom-up strategy. By using the Syntax
Tools application we only have to focus on the generation óf ab_
stract syntax trees instead of the textual program code. Compiling
the grammar description we can get a qìlctCtrect generator thai
can produce random, compilable Erlang source code. In the back_
ground, the generation method creates an Erlang syntax tree which
is then pretty-printed.

Using the curent language definition we can generate any num-
ber

^of
modules containing random function definitions that may re-

fer functions from another generated modules. Functions may iraue
randomly one or more function clauses, which do not shadow each
other and have randomly generated pattems. The function bodies
may contain many kinds ofErlang expressions, including IO state_
ments, case expressions and match expressions as well. Moreover,
generated code may invoke library functions. Match expressions
can bind variables, and other expressions may refer those variables
(but cannot re-bind them) afterwards.

Every generated language element is well-typed, since types are
managed by storing related informations in attributes. The types
used during the generation are randomly generated as well.

Finally, many properties of the generated code can be parame-
terised, such as the number of the generated functions, the dìfficulty
of the generated expressions and the maximum level of nested casê
expressions. By adjusting the grammar and the parameters we can
make the generated code quite similar to real-world programs.

3.3 Transformation

We have implemented a compiler (a generator generator) for our
grammar definition, which produces a single Erlang module con_
taining functions returning QuickCheck generators for each pro-
duction rule preserving its meaning. The compiler uses the stanãard
E:lang scanner (with some extensions) and a yecc-generated parser.
After scanning and parsing the grammar definition, firstly it ôhecks
some constraints on the grammar (for example, every declared non_
terminal is defined as a rule, the are no symbol duplications, every
right hand side symbol is defined in the file), thèn generates thê

-module (prop)

-export (lprop/0])

-include-lib (" eqclinclude/eqc. hrl ") .

prop () ->
tes t : prop_beh_egv (rename_mod,

fun gen_rename_mod_args / 1)

gen_rename_mod_args (Filename) ->
?LET (Atom, test : gen_at.om () ,

lFiLename, Atom, il, gl) .

Figure 3. Example of rename module property

output Erlang module: if the input file is abc . eyrl, then the out_
put file will be abc . er1, which is constructed of the generator
func^tions belonging to the grammar rules, the attached Erlang code
cut from the grammar definition file (without any changes) and fur_
ther essential function and macro definitions being for the notation
features.

The generated output file is checked whether it compiles or
not (using the Erlang compiler strong validation). If the module
is compilable, with the erl_tidy module (included in Erlang
Syntax Tools) it is tidied (unused functions are removed from thé
code, some syntax constructs are rewritten in a more readable form)
and then compiled again, for reasons of optimisation.

Despite the fact that in the generated Erlang module every func_
tion can be called from the outside (that is, they all are exported),
only the function belonging to the root symbol can be used without
any parameters (the others require parameters carrying information
about the attributes). The return value of this function is a valid
QuickCheck generator and passing this generator to euickCheck
results in the expected random data.

4. Properties
If a refactoring was performed correctly, the behaviour of the

program should not have changed: it should return the same output
for the same input, throw the same exceptions, send the same
messages in the same order. We say that the original and refactored
versions are behaviourally equivalent.

To test behavioural equivalency we follow these steps: generate
random programs, perform the refactoring, pick a function, gen_
erate random arguments guided by type information, evaluate the
function and then compare the result of the two versions.

Since Erlang programs contain many functions, and a refactor_
ing may only modify a single function we could pick an irrelevant
function to test and miss an error. This is natu¡al, and the solution
is to run many tests to minimize the chance that we miss the erro-
neous function. A similar thing happens with arguments when the
function has multiple clauses, which is fairly typìcal.

To minimize the chance of missing an error, we have to run
a large number of test, so test execution speed matters. The two
slowest phases are program generation and the refactoring itself. By
running the later phases more than once after every refaótoring wä
can reduce the chance of missing errors without having to exeiute
the slower steps repeatedly as many times.

Erlang is a dynamically typed language, which means that we
can supply any term as argument to a function, and at the worst
case we get a runtime exception. Arguabty this doesn,t help with
catching real bugs. The dialyzer tool I I 7] can infer type information
for functions from a codebase. This makes it possible to generate
proper arguments for the function under test, so that we can avoid
programs under test failing for reasons ofdata being ill_typed.

79

In Erlang VO uses message passing under the hood, hidden from
the user. The messages are in a certain format and are sent to an I/O
device, which is a separate process. The format of the messages

is well documented, and any process that can handle them can be

used as an I/O device. The testing framework uses an VO device
which behaves like a ram file that is initially empty. This I/O device
additionally keeps track of the messages received.

To test behavioural equivalency we evaluate both the old and the
new version of a function, and compare the outputs and VO traces.

This can be done concurrently, saving us time. This is particularly
true when the functions are non terminating due to the random

nature of them. In this case we halt the evaluation after a given
time. Concurrent execution means we only have to wait for this
timeout only once, halving the time needed to test.

4.1 Example property

In order to define a behavioural equivalence property for a refac-

toring, the user has to call tesL:prop-beh-eqv/2 with the

appropriate arguments. The first argument is an atom, which is the
name of the function in the wrangler module thatimplements the

refactoring. The second parameter is a callback function, that given
a filepath should return suitable arguffrents for the refactoring func-
tion. In the simplest case the callback returns a list containing the

a¡guments. Ifthe testing should be restricted to a specific function,
the return value should be a three-tuple with the function name and

arity for the said function and the argument list for the refactoring
function.

There is another version of Lest:prop-beh-egv, which
takes an additional third argument. This is a callback funcl"itln Lhat

receives the result of the previous callback function and returns a

boolean indicating whether to proceed with the test or not.
The simplest property is for the rename module refactoring, the

whole code is given in Figure 3.

5. Results
We have designed and implemented a notation for L-Attributed
grammars and created a compiler for it. So far we have formalised
a subset of the Erlang language with it and got promising results.

Moreover, by using random generation we have implemented
the testing of four refactoring steps provided by Wrangler: rename
variable, rename function, generalise function and tuple function
arguments. We have found two bugs, one in rename variable re-
garding inconectly handling patterns in function parameters, and
one in generalise function regarding incorrectly transforming the
function leading to compiler errors. Both of these errors are flxed
in the latest release of Wrangler.

6. Related work
[9] is a similar study done for refactoring engines integrated in
IDEs for mainstream languages. The program generator descrjbed
is specific to the language they use and it can be parametrized by
code fragments, so it would be difficult to adapt to other domains.
They test the results of refactorings in a different way too: they
test hand written structural properties as opposed to behavioural
equivalence, and do this by testing the results of two different
refactoring engines against each other, rather than testing the old
and new code directly.

[14] describes previous work using QuickCheck for testing
Wrangler. They did not use random program generation, refac-
toring a static codebase instead, and the only property formulated
is successful compilation of the refactored program.

7. Conclusions and future work
We have demonstrated that automated, property-based random test-
ing of refactoring tools is able to discover new bugs, and therefore
it is a useful addition to the testing processes of tool developers.

How to check behavioural equivalence of arbitrary message

passing programs, or refactorings which have wider ranging effects
is still an open question.

Our main contribution is random program generation and be-
havioural equivalence testing, which together give much wider cov-
erage, scalability and maintainability to the testing of refactoring
engines.

References
[1] Quviq QuickCheck, June 2010. http://www.quviq.com/.

[2] RefactorErl, June 20 I 0. htf p://plc.inf .elte.hu/erlan g/.

[3] Wrangler, June 20 1 0. http://www.cs.kent.ac.uk/projects/forse/.

[4] T. Arts and J. Hughes. Erlang/QuickCheck. ln In Ninth International
Erlang/OTP User Conference, November 2003.

[5] T. Arts et al. Testing Telecoms Software with Quviq QuickCheck. In
ACM SIGPLAN workshop on Erlang. ACM Press, 2006.

[6] T. Avgerinos and K. F. Sagonas. Cleaning up erlang code is a dirty job

but somebody's gotta do il. In Erlang Workshop, pages 1-10, 2009.

t7l J. W. Backus et al. Revised report on the algorithmic language

ALGOL 60. 1997.

[8] N. Chomsky. Three models for the description of lan-
guage. lnformation Theory, IRE Transactiotts on, 1956. doi:
10. 1 109/TIT. 1956. 1056813.

[9] B. Daniel et al. Automâted testing of refaotoring ettgittes. h
ESEC/FSE, pages 185-194, New York, NY, USA,2007. ACM Press.

ISBN 978-1-59593-81 1 -4.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley Profes-

sional, July 1999. ISBN 0-201-48567-2.

[1] D. Horpácsi. Testing refactoring tools by generating random Erlang
modules. Master's thesis, ELIE, Budapest, Hungary, 2010.

t12l D. E. Knuth. Semantics of context-free languages. Theory of Comput-

ing Systems, 1968. doi: 10.1007/8F016925 I 1.

t13l P. M. Lewis et al. Attributed translations (Extended Abstract). In
sToc'73. ACM, 1973.

t14l H. Li and S. Thompson. Testing Erlang Refactorings with

QuickCheck. In1Fl, pages 19-36, Berlin, Heidelberg, 2007. Springer-
Verlag. ISBN 97 8-3 -5 40 -8537 2 -5.

t15l W. F. Opdyke. Refactoring object-oriented frameworks. Technical
report, 1997.

[16] J. Paakki. Attribute grammar paradigms-a highJevel methodology
in language implementation. ACM Comput. Sum., 1995. ISSN 0360-
0300.

t17l K. F. Sagonas. Experience from Developing the Dialyzer: A Static
Analysis Tool Detecting Defects in Erlang Applications. InWorkshop
on the Evaluation of Sojïware Defect Detection Tools (Bugs'05),2005'

[18] K. F. Sagonas and T. Avgerinos. Automatic refactoring of erlang
programs. In PPDP, pages 73-24,2009.

t19l L. P. Sobotkiewicz. A New Tool for Grammar-based Test Case Gen-

eration. Technical report, University ofVictoria, 2008. MSc thesis'

[20] N. Sultana and S. Thompson. Mechanical Verification of Refactorings.
ln ACM SIGPI,AN Workshop on Partial Evaluation and Program Ma'
nipulation. ACM Press, 2008.

80

usÍng Erlang to rmplement a Autonomous Buitd
and Distribution system for software projects

Tino Breddin

Erlang Solutions Ltd
tino@erla ng-solu tions. com

¡

Abstract
The uptake ofOpen-Source Software (OSS) has led to new business
models as well as software development practices. O,S,S projects are
constrained by their limited resources both in time and minpower.
In order to be successful such projects have to leverage tóols to
automate as many tasks as possible while providing usable results.
One such set of tools used in software developmeni are continuous
build systems, which help teams to build and test their software
whenever a change is published without manual interaction. The
available systems have proven to be essential for any kind software
project but are lacking real innovation

. This paper presents how Erlang, especially its distributed oper_
ation, fault-tolerance and lightweight procesies, has been utilized
to develop a next-generation continuous build system. This system
executes many long-running tasks in parallel for any given cirange
of the monito¡ed software project, providing developers not onìy
with the latest state of the project but also offèrs customizable sofi_
ware packaging and patch distribution.

CatgS:ríes and Subject Descrìptors D.2.5 lsofnuare Engineer_
lngl: Testing and Debugging-Testing Tools; D.2.4[Sojïwáre En_
gine erin gl: SoftwareÆrogram Verifi cation

Generøl Tþrms Verifi cation, Measurement, Reliability

Keywords ci, continuousintegration, erlang, oþ, testing, buildsys-
tem

Continuous Buílil Systems The landscape of continuous build
systems has improved to a point where OSS systems such as Hud_
son [1] and CruiseControl [2] deliver great advantages to their
users. Their flexible plugin architectures have led to ihe addition
of many new features based on external plugins. Nevertheless the
core concepts of these systems are targeted towards projects with
well defined specifications, making them somewhat inadóquate for
many more general-purpose software projects.

2. Background
A continuous build system implements Continuous Integration (CI)
concepts to be used in software projects. Therefor seciion 2.1 ex_
plains the basics of this methodology. Further section 2.2 outlines
the definition of Distributed Version Control Systems (Distributed
VCSs) and their usefulness for agile software development. Be_
cause the system presented in this paper has been implernented us_
ing Erlang/OTP, section 2.3 provides a short description of its most
important features. Finally the provided backgrounã is summarized
in section 2.4.

2.1 Continuouslntegration

The concept Continuous Integration was first defined by Beck [3]
as part of a set of Extreme programming (Xp) best practices.
Building and testing a software product every time a devèlopment
task is completed was considered ContinuouJ Integration. geit t¡l
arguments that this regular cycle would instantly show whether nèw
changes break the software and could be addressed much earlier
than in t¡aditional development models such as the Waterfall Model
presented by Royce [4]. This simple concept has evolved from
a suggested XP practice to a software development methodology,
as Duvall et al. [5] argument, which is based on the set of cõie
practices outlined next.

Buìld Automatíon Building complex software often involves
many steps. For the convenience of software developers it should
be.possible to perform this procedure using a singìe command.
This ensures that the software is build often since it doesn't require
much manual work by a developer.

Build Fast The time which is required to build software tends to
increase with the complexity of the software. This jeopardizes the
usefulness ofbuilds during development since one,would have to
wait too long to get feedback. Thus builds should be kept fast, if
necessary the software should be split up into components which
can be build and rested individually.

Vßíble Progress All information regarding the state of the sofr
ware should be visible to all parties involved in its development.
As a result all team members can make informed decisioni when
faced with bugs, tasks or a broken build.

I

1. Introduction
Softw¿re projects, especially Open-Source Software projects, need
to thrive for good software quality to satisfy both customers and
users. Unfortunately any addìtional effort spend on testing might
delay the project or increase its costs. Therefor tools, such as cõn_
tinuous build systems, provide ways to automate repetitive tasks,
and. thus help to improve software quality tremendouily. But many
projects don't have very specific definitions of their'target plai_
forms and distribution formats. Open-Source Software often re_
quires as many well supported platforms as possible to attract new
users, which in retum requires many different distribution formats.
This requirement cycle pushes any project,s cost and available re_
sourcesr to the 1imit, leaving much potential unused.

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that càpies tre not made or distributed
for profir or comercial advantage and ttrat copies bear this notice and the full citation
on-the first page. To copy otheruise, to republish, to post on seruers or to redistribute
to lists, requires prior specific permission ãnd/or a fee.

\lng'10, September 30,2010, Baltimore, Maryland, USA.
copyright @ 2010 ACM 978-l-+so¡-ozs:-t¡tolÓ9... s10.00

8t

Commífs trigger BuìIds The software should be build in its en-

tirety every time a change was applied. This should be done auto-

matically without manual interaction, finally providing team mem-

bers with the results of these builds instead.

Cloned Proiluction Environment In order to utilize automated

builds and tests further, these should be performed in an envi-
ronment which resembles the target environment closely. The bet-

te¡ this environment is cloned the more confident one can be that
platform-specific bugs were addressed during development.

2.2 Distributed Version Control

Special purpose systems for controlling source code were first in-
t¡oduced by Rochkind [6] and Glasser [7]. Later Tichy [8] de-
fined the stages and culprits involved in working on such systems.

The ûrst widely used OS.S Source Code Management (SCM) sys-

tem called Revision Control System (RCS), which was introduced
by Tichy [9], was an important milestone because it nourished the

development of many different approaches in the area of SCM as

summarized by Royce [4]. Systems based on those early concepts

are categorized as Centralized Version Control Systems (Central-

ized VCSs) because oftheir reliance on a central source code repos-

itory.
A change to this limitation has been provided by Distributed

VCSs. Their definition of a repository allows every developer to
have a full copy of a repository, empowering users to share changes

freely. This flexibility makes it possible for teams to adapt their
development workflow to their needs without being limited to a

certain setup.

G¡r As a popular example of this kind of Version Control System
(VCS), Git combines flexibility and exceptional speed of execu-

tion. Operationslike branchittg and merging aren't only performed
fast on a local repository, they also allow users to separate their de-

velopment efforts into different channels for bugs, new features or
releases.

2.3 Erlang/OTP

The Erlang/OTP project is comprised of the development of the
programming language Erlang and a set of well supported ap-

plications referred to as Open Tþlecom Platform (OTP). The lan-
guage itself was developed at the Ericsson CSLab in the 1980s and

was made available as Open-Source Software in 1998 as outlined
by Däcker [1 0]. The language features of Erlang allow easier devel-

opment of concurrent applications, which is why it is also referred
to as a concurrent .functional language. Furthermore OIP adds

functionality which provides a strong foundation for distributed and

fault-tolerant systems. The features which are most important for
this work are outlined next.

Virtual Møchìne Erlang source code is compiled to byte-code
which can be executed by the BEAM Virtual Machine (VM). This
allows pure Erlang applications to be highly portable to other
platforms which are supported by the VM. Furthermore The VM
provides efficient SMP support which improves the performance
of highly concurent applications.

Lightweíght Processes Processes are fundamental language con-

structs. A single process has a very small memory footprint as well
as fast creation and destruction performance. The Erlang VM can

manage millions of processes while only being memory-bound.
Moreover the VM schedules the execution of processes in parallel
which makes writing parallel code much easier.

Message Passing Sending data between processes is realized by
Message Passing and is the only way to share data, because no

shared memory is provided for that purpose. This furthe¡ improves

Erlang's support for writing parallel applications since communi-
cation channels must be clearly defined.

Dístributed Erlang Erlang nodes can be connected and execute

applications location-transparently. A single running Erlang VM is
refened to as a node. This location transparency makes running
applications on many systems trivial. Moreover the execution of
arbitrary Erlang code on other systems can be used to implement
loosely coupled disributed systems.

2.4 Summary

Continuous Integration is a modern software development method-
ology which emphasizes sharing of information as a key require-
ment for any software project. Its agile concept is further supported

by the growing popularity of Distributed Version Control Systems

which allow development processes to by designed to fit a particu-
lar project rather than having to use a pre-defined setup. Continuous
build systems usually provide support for such systems without uti-
lizing their new concepts.

Erlang/OTP is a mahrre foundation for building concurrent ap-

plications which also require scalability and fault-tolerance. The
language is based on functional concepts which allow users to im-
plement parallel architectures more easily.

3. System Design
Based on the motivation outlined in section I the core requirements
are gathered in section 3.1. Further section 3.2 describes the top-
level architecture and its impact on non-functional requirements
of the system. The following section 3.3 details the fundamental
support for using multiple platforms for building and testing. Pack-

age Generation, another core feature, is explained in detail in sec-

tion 3.4. Finally section 3.5 concludes the system designby giving
a concise summary.

3.1 Requirements

Both CI and Distributed VCS as fundamental technologies already

suggest a range of requirements for a continuous build system.

What follows is a list of these and additional requirements which
should be mandatory for any modern continuous build system.

Project Reposìfory Monitoring As part of a project which is
setup within a continuous build system, the respective source code

repository should be monitored automatically. This allows the con-

tinuous build system to notice when the latest version within the

repository changes.

Buíld Latest Version Furthermore the continuous build system

should build and test the latest version of the source code, once

it changed. The delay between the time when the change was

published and the start of the build should be as small as possible.

Make Results Publicly Avøílable Continuous Integration stresses

the fact that any information about the state of the source code

should be shared within a team. Thus the results of builds of a

project need to be presented in a publicly readable form, once

available. That includes that results from ongoing builds should be

already presented.

Build. in Target Envíronments The motivation for this work,
which was presented in section 1, states that builds need to be run
on many systems to improve software quality rather than having
to identify a single production setup. This requirement especially
holds true for OSS projects. Therefor a continuous build system

needs to be able to build the source code on as many platforms as

possible, which are distinct from the one it is running on.

82

Buíld Topíc Branches Globally shared repositories aren't the first
destination of changes within optimized development workflows,
which rely on the use Distributed VC,Ss, anymore. Teams might
decide to only submit verified changes to their central repository,
while changes which still need to be verified are kept in the devei_
opers repositories, some other shared repository or within a code
review system. Either way, part of the verification should be the
building and testing of changes as soon as developers have fin_
ished working on these. A continuous build system should build
such changes whether they live in a repository as topic branches,
are kept as patches in a code review system or send aì an email to
a mailing list. The same benefits of building the latest version of
some source code apply to building potential changes to the latest
version, which is the next step of Continuous Integration.

Automatíc Package Generation Any software needs to be dis_
tributed in a pre-defined format, which can be project-specific or
follow-a operating system package specification. Èittrei way the
task of creating such packages is repetitive and should be asiisted
by a.continuous build system such that it generates packages based
on given package specifications and the definition oftriggér events.

Shøre Resulfs An important part of the system integration is that
results of builds for any change are shared with other systems
within the build environment. This allows the setup of sophisiicated
processes which propagate the data to the correct communication
channels. Thus a continuous build system should provide the foun_
dation for sharing results with other communicatiòn channels.

3.2 Architecture

Swarm utilizes a component based dcsign to achieve better rc_
sults for its non-functional requirements. Each component is self
contained as much as possible, which improves the ability to swap
components which provide the same functionality for whatever rea_
sons. Further the development of a single component doesn,t im_
pact other components, thus improving its overall stability. More_
over extemal components can be easily employed if they provide
the required interfaces for other components.

Figure I depicts the main system components and their commu_
nication channels within the system. All information of the system
state and builds is presented to users using a web-frontend by the
OAM subsystem. Access to external servers is managed by the-plat_
form Management whichis explained in more detaii in sèction 3.3.
The coordination of all work done within Swarm is performed by
The Job Processor, which therefor provides the core logic ofthe sys_
tem. All other system components utilize the Data Storage subsys_
tem for all persistent data access. In addition the use ofa underlying
DisÍributed VCS is masked by aVCS Inte{ac¿ which provides iupl
port for various such systems.

. The overall system is self-contained with very few dependen_
cie^s which very, much improves its maintainability. No thiid_party
software is used except the Version Control System which isiseã
t9 kgen source code locally. This also allows the system to be easily
deployed and setup within minutes since only Swarm needs to be
configured.

3.3 Multi-Platformsupport
Swarm allows projects to build and test changes on many platforms
at a time, which will help to improve software quality ìn the long
ru¡. These systems can be provided differently. Dedicated ,".uerl
which can be either virtual or physical machines, are the default
options for platforms which can be added to Swarm. Using such
servers one can support rather exotic combinations of hardware,
operating systems and software. The bulk of supported platforms
ca¡ be added through the use ofcomputing clouãi thougñ. Swarm
allows the utilization of Amazon EC2 or ihe Alt-compatible Eu_

Figure 1. Top-level architecture for Swarm.

calyptus for creation of virh¡al machine instances. These instances
will further be used to build and test individual changes. Thus one
can easily create a range of virtual machine images, which repre_
sent.combinations of operating systems and software, and regis_
ter these with Swarm. Going forward these images will be uied
as

-we11.
Using computing clouds for supporting platforms pro_

vides the same advantages as these do for data prõcèssing of lãrge
d¿ta sets already. Because builds only need to be performed whõn
changes to the source code have been published, the continuous
build system wouldn't utilize dedicated servers in between such
changes, But when huilds are triggered, many platforms can be
used to run those simultaneously.

3.4 Package Generation

Software is generally distributed in packaged form instead of sim_
ply providing a snapshot of the source code. There is no standard
format, instead most operating systems have their own package for_
mat which is used by some sort of package management tool-. pop_
ular examples are Debian's deb package fotmat [ll] and Red Hat's
rpm format [12]. Because packages allow users to install software
much more easily than using the source code directly, having many
such packages available presents a great opportuniiy for sõftware
projects to reach a wider audience. Therefor Swarm aìsembles such
packages automatically when new changes have been published, so
that users are provided with up-to-date packages whenever possi_
ble. The requirement for package generation ls a package spectrt_
cation deñning how the package is supposed to look likeìnd whên
it should be build. Furthermore its location is specified, which can
be used to access generated packages.

3.5 Summary

Swarm utilizes a component-based architecture to achieve a high
degree of flexibility while keeping rhe required maintainability ãf_
fort to a minimum. Its novel support for using multiple platfórms
to build and test on allows software projects to exteìd their sup_
ported range of platforms easily. Furthermore packages for theie
platforms can be automatically generated based on a given specifi_
cation, without requiringany manual interaction.

4. Workflows
Because a continuous build system is usually tightly integrated in
a development process, many usage scenarios are imaginãble and
valid regarding their use in a production environment. To illustrate
how the core components interact ìnternally two workflows are
further described in more detail. Section 4.1 explains how new

;-":I i
1, ,l

i

I

OAM

Plqtform

Job Proce¡¡or

Extemol

Seryen

Doto Storogc VCS lnterfqce

Filesyrtem

83

P.oiecl Workôr VCS lnl€rfocô Job Monogor Job Worker Job Runner

build

Figure 2. Activity diagram showing the workflow when the latest

version changed.

changes trigger builds while section 4.2 details how results are

gathered from various builds.

4.1 Latest Version Changed

The standard event in any continuous build system is triggered
when the latest version of a monitored repository changes. Upon
such a change the system needs to start builds on all platforms a
project wants to support. Figure 2 shows how the system receives

a new change and propagates that infolmation to the Job Manager,
which coorclinates all builds. This lulg-rutlting process is the co-

ordinator for all builds and manages the processes which are asso-

ciated with individual builds. Any build requires a separate process

which allows fhe Job Manager to implement fail-over for broken
builds more easily. Once the manager has siarted all builds it will
enter an idle state during which it will only ensure that builds are

running.

4-Z ResultConsolidation

Once builds are running, their respective results, which is most

commonly stdio output, need to be stored for later inspection. This
data is transfe¡ed from remote servers to Swarm as outlined in
figure 3. A1l data is stored persistently even while builds are still
running. This ensures that users can inspect the intermediate results

of running builds. Once builds have finished the Job Manager needs

to clean up its state to reflect the terminated processes and change

the persistent build data accordingly.

5. Evaluation
The system still needs to be deployed in a production environment
which fully exercises the corc build execution, the user facing
web-frontend and further system integration. Nevertheless its usage

of Erlang/OTP can aiready be reflected upon which is done in
section 5.1. Subsequently a set of scalability tests and their results

are explained in section 5.2.

5.1 Using Erlang/OTP

Swarm's support for multiple platforms makes use of Distributed
Erlang to execute builds and tests on remote systems. Because

Erlang handles al1 communication transparently the integration of
remote nodes was easily setup. Further the integration of those

nodes into the main system supervision tree allows Swarm to react

to node failures immediately without having to fallback on using
polling mechanisns.

The Job Processor subsystem coordinates all builds and tests

which are executed at any given time. This not only requires the

Doto Storog€ Job Monoger Job Worksr Job Runner Job Runnor

Figure 3. The workflow for result consolidation outlined in a ac-

tivity diagram.

execution of such jobs in parallel, but also the handling of all com-
munication with remote nodes to gather log data and state changes.

Because Messa ge Passing and Processes are tightly integrated into
the Erlang programming language, developing a working coordina-
tion system was possible without using other third-party libraries.
The separation between communication channels and process state

supports the fault{olerant design of the core coordination system.

5.2 Scalability

The system is not meant to run on more than a single server,

because uninterrupted availability is not required due to the nature

of continuous build systems. Nevertheless a project should be able

to make use of many platforms without incurring delays for the

execution of builds. Because the communication effort which is

performed for each running build is kept to a minimum using
message caching on both ends, Swarm can be expected to perform
well as long as Distributed Erlang performs as required. Further
the computation-intensive work is performed on the build target

machines which actually build the software.
The system was tested using a setup of two dedicated servers

and eight Amazon EC2 images. Thus every change to the moni-
tored source code triggered a total of ten builds to be executed in
parallel. This didn't add any delay to the build execution other than
the time required for transferring the source code to the build tar-

get, which depends on the size of the project and available network
bandwidth. In further tests changes were applied in short intervals
to trigger more builds in parallel. The system could sustain a total of
30 parallel builds without much CPU utilization. It should be noted

that builds on dedicated servers are executed sequentially, because

Swarm only mns one build at a time on any available server.

6. Conclusion
Continuous build systems have become a essential part ofthe devel-

opment process of many softwa¡e projects. The system presented

here takes a different approach for some core concepts of such sys-

tems. By supporting multiple platforms for running builds and cre-

ating new software packages on-the-fly it enables projects to im-
prove theìr support and thus increase their user reach, The system

is designed to be easily dropped into established development pro-

cesses without much effort required for an initial setup.
Although tests have shown that the system performs according

to the author's expectations, it still needs to be deployed for a active

software project to evaluate its proposed advantages and potential

shortcomings. Nevertheless it shows that a novel approach to well-

84

established systems such as continuous build systems can improve
software quality tremendously.

References
nl Open Source. Hudson - A extensible continuous integration server.

http ://trudson-ci.org/

[2] Open Source. Cruisecontrol - A continuous build system.
http://cruisecontrol. sourceforge.nel

l:ll {9n1 Beck. Exteme programming explained: embrace change.
Addìson-Wesley Longman Publishing Co., Inc., Boston, MA, ùSA,
2000.

t4l W. W. Royce. Managing the development of large software systems:
concepts and techniques. ln ICSE '87: proceedings of thà gttt
int e rnat io nal c o nfe renc e on S oftvvare En ginee rin g, pagei :ZA_f S a,
Los Alamitos, CA, USA, 1987. IEEE Computer Societiy press.

[5] Paul Duvall, Steve Matyas, and Andrew Glover. Continuous
integ,ration: improving software qualiry and reducing risft. Addison_
Wesley Professi onal, 2007 .

[6] M.J. Rochkind. The source code control system. ln IEEE Transactions
o-n Sofiware Engineering, SE-I(4), pages 364_370. IEEE Compurer
Society Press, 1975.

[7] Alan L. Glasser. The evolution of a source code control system.
S I G S O FT S oftw. En g. N o t e s, 3 (5): IZ2_t 25, 197 B.

[8] Walter F. Tichy. Design, implementation, and evaluation of a revision
control system. ln ICSE '82: proceedings of the 6th intemational
gonference on Sofrware engineerir?g:, pages SS_OZ, I-os Alamitos, CA,
USA, 1982. IEEE Compurer Society Þrèss.

[9] Walter F. Tichy. Rcs-a system for version control. Softw. pract.
Exp e n, 7 5(7) :,637 -65 4, 1995.

[10] Bjarne Däcker. Concunent functional programming for telecommu_

1,r:1!i9ns: A case study of technology intrõduction.-Master,s thesis,
KTH Royal Instirute ofTechnology Stockholm, 2000.

[11] Open Source. Deb - The Debian software package format.
http ://www.debian.org

[12] Open Source. RPM - The RpM package manager and file format.
http://rpm.org

85

Author Index

Benac Earle, Clara 23,69

Bozó, István 45

Breddin, Tino 81

Drienyovszþ, Dániel

Fernández D iaz, ixlv ar o

Fredlund, Lars-,4ke 23,69

Fritchie, Scott Lystig..

Horpácsi, Daniel

Kitlei, Róbert .

Kozsik, Tamás

Marron, Assaf

Svensson, Hans

Tejfel, Máté

Tóth, Melinda

Vy'eiss, Gera

Wiger, Ulf T 57

75

69

JJ

75

45

45

l3

23

45

45

13

86

