
m

û

tl

l¡

ttl

tt

I

A

À

q
tå

I
I

ttl

tl

tt
¡a

ìÊ¡Êiû¡ü¡Ê¡Ê¡Ê

Conference Proceed i n gs

15'n lnternational Erlang User Confefence

STOCKHOLM, SWEDEN

12'h November 2009

I
-

.,I

t:

I
i
I
t,
l.

I

I
1

'

i

I

I

I

I

I

i
i

I

l

I

t:

1,

I

l

l

l

I

I

I

I

I

)

ER,LANG

SPONSORS

ERICSSON ,
synqpse

moþñle networks
Erlang Training and Consulting Ltd

"'::#l(larna
h"4r:¡hå!* El^ å 'drà:}

Í p^,tp""c,p"s.*s-,",
sus,r,sses

O'REILLY

U'
fÈ,
G
o
Lo
C) a aaSiöland&Thyselius UVI

* re exjv * Söf 1!ì/ä îe # e ra|z?i@&e tðf

I
!

1

i
¡

!.
I
:

15th International Erlang Llser Conference

Conference Programme

I

e:t5_e:4s Nitrogen and Riak By Example
Rusty Klophaus

9:00 - 9:15

9:45 - 10:15

1

3

15

Welcome and introduction
Bjarne Däcker

Hacking Erlang through preprocessing
Jacob Vorreuter

':15
_ ,:45 Discodex: intuitive data indexing

Jared Flatow, Ville Tuulos

1t:45 _ 12:t5
Erlang's Journey to the Clouds
Ulf Wiger

t2:t5 _12:45 Tokyo Cabinet and CouchDB with Mnesia
Rickard Cardell

31

37

45

55

10:45 - I l:15
A Cloud as an Interface
Michael Truog

67

77

79

93

13:45 - 14'.15

14:15 - 14:45

l4:45 - 15:15

15:15 - 15:45

Anonymity in Erlang
Guy V/iener

Opaque Data Types in Erlang
Kostis Sagonas

Improving your test code with Wrangler
Huiqing Li, Simon Thompson

Erlang SMP support - behind the scenes
Patrik Nyblom

t6:t5 _ t6:45
A continuous build system for Erlang
Eric Merritt

t6:45 _ t7.t5
BERT is to Erlang as JSON is to JavaScript (plus a mini Git tutorial!)
Tom Preston-Werner, Scott Chacon

Putting UBF to work (and Getting the outside world to talk to Erlang)
t7:t5't7:45 Joseph Wayne Norton, Scott Lystig Fritchie

l7:45 _ i8:00 Latest news from the Erlang/OTP team at Ericsson
Kenneth Lundin

101

103

tt7

10s

{mnference Ë}roe*ed i nç s

15th lnternational Erlang User Conference

Thursday X 2 N*ven:her ?ü*#
5t*ckl¡* I ¡'vr, Slçed e r'¡

Ejarne Säcíqen
Manager of the CSLab at Ericsson
- the birthplace of Erlang

Weå cmrne ä $'1d Ë r¡trrC Lsct$on

,&bstrae t
Bjarne will open the conference and give a short introduction

9i*çraphy
Bjarne Däcker joined Ericsson in 1966 as programmer and systems analyst. ln 1984 he

set up the Computer Science Lab together with Mike Williams to explore, develop and

introduce new software technologr in Ericsson often in collaboration with university

research. The CSLab pioneered things like Unix, A.1., Lisp, Prolog and workstations in
Ericsson. Erlang was created at the CSLab by an initial team of Joe Armstrong, Mike

Williams and Robert Virding. Bjarne organised the first Erlang User Conference in 1994.
He has had various external committments such as chairman of the steering committee

of the Swedish national research programme in Computer Science 1987-1992 and

member of the Evaluation Committee of European Union's ICT-Prize. The CSLab was

closed in 2002 in the lT crash. Bjarne holds a Technologr Licentiate degree of the Royal

lnstitute of Technologlr in Stockholm and was promoted to an Honorary Doctorate of
Technology at Linköping University in 1993. He is also a member of the Royal Swedish

Academy of the Engineering Sciences.

Page 1

\Melcome and introduction

It is our great pleasure to welcome you to the Fifteenth International Erlang User
Conference (EUC 2009). For ten years the Erlang User Conference has been held in
the Ericsson Conference facilities in Älvsjö Southwest of Stockholm. However last
year, the Erlang User Conference outgrew the lecture hall. With a capacity of 140

delegates, several interested people had to be turned away. Thus this year's Erlang
User Conference is a turning point with the classical Astoria cinema as the venue and
with nearly 250 people attending. Otherwise we keep to the established format of a
combination of papers about fun, exciting new applications and presentations of
technological developments. The applications show how Erlang is rapidly moving
from its initial base in telecommunications to new areas like cloud computing.

Bjarne Däcker

Erlang User Conference 2009 Chairman
Manager 1984-2002 of the Computer Science Laboratory

at Ericsson where Erlang initiated

Page 2

emnfencnc* Froce*di nçs

15th lnternational Erlang User Conference

Thursday 12 N*vember äüü$

Stcckh*åm, Swedsn

Rusty Kå*phnus
Author of Nitrogen Web Framework
Riakcommitter

[Nitrcge&-$ &nd ffi6ak By ilxærrìpfrtr

Åbstract

Nitrogen has gained a quick and active community by providing extensive example-

based documentation. ln this talk, Rusty will continue this example-based approach by

walking through a simple application built on Nitrogen and Riak, highlighting common

patterns and best practices.

ffiimçraphy

Rusty Klophaus is the author of the Nitrogen Web Framework and a Riak code commit-
ter. Rusty typed his first line of Erlang code in early 2008 after trying bnd quickly

discarding) a number of other functional languages. He now ferociously evangelizes the

merits of Erlang to anyone who will listen. Rusty grew up on a farm, earned a degree in

Computer Science from Princeton University, spent a summer in Philadelphia as a
professional musician, co-founded a .NET software consulting company, and has

managed multi-million dollar technology projects. He recently joined Basho Technolo-

gies, a company focused on providing large data storage, access, and analysis solutions
powered by Erlang.

i
!
t;'
I
i

.î'¡.

"æ.

Page 3

¿l

i'

&
F

a.\3
.¡l

a

Nitrogen i
a

Rusty Klophaus
@rklophaus
rttp://www.basho.com

Nitrogen and
Riak by
Example

\&Ieh l-ramework
F*r firlxng

I

Ir k

þbclsho
Erlang User Conference
Stockholm, Sweden
November 12,2009

"50 line code snippets are useful,
but how do you bu¡ld
a real appl¡cation?"

Page 4

Problem lUse Case
.1

"Should I try to use Webex, or just email the slides?"

"The file is 5MB, what if their email server blocks it?"

"Should lsend this as a.pdf, .ppt, .pptx, or Keynote?"

"Slide 3 will have no impact without an explanation."

"l hope they don't read slide 10 out of context.

"ls the audience even pay¡ng attention, or are they reading
ahead?"

Solution: Web Slideshow Tool
. ':.1

li

1

' il ':': '
,. i

"
*r .

. Accepts .ZlP containing images, text, code.
o Accepts .PDF (requires Ghostscript)

,1 ..
:.
li

a Via email, chat, etc.

a When you advance a slide, everybody in the
audience sees the same thing.

Near-lnstant feedback f"ñçrebody disconnects.a

Components

Nitrogen
Web Framework

lnets
HTTP Server

Riak
Persistence Layer

Nitrooen !

b

Web Framework
Enr Erlann

N¡trogen: The Basics

#link { id=nylink, text="Lo gírt" }

wf : wire (myI,ink,
#event { type=c1ick, postback=click})

wf : update (myPanel ,
#span { text="You clicked! "))

N¡trogen: Web 2.0 in Erlang
1ì- . ,,. ;, n: ' r: t 4i' -, ir

" l : ' :"'. .n";.l l',.

"t.' ', i : i. ?''l

. -40 built-in elements, -15 actions, B validators

. One-line Ajax and Comet

. Abstraction layer for JQuery features:
. Effects, Sorting, Drag and Drop

. Create custom elements and actions

'; ' 1 - ."., ;.È ,. -,: . .: .1,

. Streaming File Uploads

. APls for session state, påö?Jstate, cookies, security

II I
I
I

Rlak: The Basics
ffit*r* ffiætm

Obj = riak_object: nelv (Buckêt, Key, Value) t
ok = Client:put(Obj, 3)

W*trr**væ *mt*
t ok, obj) = Client: get (Buckêt, Key , 2l

ffi*fuæ{we &#rut$âA*

Bucket and Key are both binaries
Value can be any term

pase'

R¡ak: lnsp¡red by Dynamo
íj* r-.ntr¡?,:i*t

. Add a machine: Gain capacity, speed, and reliability.

. Remove a machine: blocks of data (partitions) are
moved to rebalance the cluster.

ij:; #, lu ynfuÊæ *. s""*;, ; i i* l: å

. When a machine dies, the other nodes cover for it.
(Hinted handoff.)

. Conflicting edits are either last write wins, or can
bubble up to your application, if desired.

R¡ak: lnsp¡red by Dynamo
War*wz?:âw

. Tune N per bucket (Number of data replicas.)

. Tune R and W per operation. (How many replicas must
respond?)

. Swappable storage engines. Choose one that fits your
data.

Page 9

:i'" -':..,ri-, -i' lr:. -ì ,-,

r' \.'
¡ , -.r.

l

i'": j

:.. j: :

[.,i,, ."]
î: .,i" j

if. ..

I
,
i
i
¡

R¡ak: I

T,,fu*ni Ë? mr'u* u{-"ffi €rzr î3*srtr', d\u a*rps*æaYë*iuV: â \ÇÅ*4\.*4\-Åú ëi"Åþ *ÅWW*t \Gr"Åffi2 AA>,*

. Streaming, multi-stage maps and reduces

. The code runs where the data is stored

Lsrzlq*t ffimtm

. A link is a pointer from one object to another

. HTTP interface to traverse links to get related objects

nnovation

R ak lnnovation
ffi"øæ*tanç ffiy*tæm

. Subscribe to events using a matchspec

Mmåtå-å-an#,,Åffiø

. Erlang, Javascript, Java, Ruby, PHR Python, & HTTP

Page 10

Back to our applicatioJr...

Structure

I web_index.erl

web view.erl

web_img.erl

Page 1 1

web index.erl
hé itr*üsn tcnrepäs

o Template
. Upload and Upload Event
. Flash
. Redirect

Riak ConÇr.ptl
. Connect a Client
o Objects, Buckets, and Keys
o Put

web view.erl
ñitrr,gen Ç*ncept$

o Custom Elements
o Comet
o Session
o Series lD

Wumk C*n**pts
o Get

Page 12

S t¡de list element.erl
-

WÅs\r*ffiffim #r*mffiffiWâw

. Sorting
o Click Events / Actions

S l¡de controls element.erl
-

Nxtr*#wm try***pt$
o KeyPress Events / Actions

Page 13

web_i mg.erl
Nfrtrogen Conrept$

o Content Types
. Path lnfo

Rlak toncepts
. Get an Object

biä{wple urde http :l I qith u b. com/rklopha us/caster

NntrnEwm
htt ni en ro ect.com

@nitrogenproject

Riak @ustinsheehy, @argvO,

@hobbyist, @recursive, @rklophaus

rkl h
Rusåy K&*phaus

@rkloB[p,,.[t

m

C*nfern¡rc* Fruc*ed inEs

15th lnternational Erlang User Conference

Ttrursday n? Nov*r"r:ber ?û**
St*ckhmlm, Sweder"e

jacoh VorreLitrr
Erlang hacker at Electronic Arts

þ{ac$c[ng iln$a ng th rruq,rg þ]

ps"cprscessÊng

Åbstrmct

The preprocessing step in Erlang code compilation is largely undocumented, but very
powerful. The language can be extended to include custom guards, syntax and

constructs. lncluded in the talk are the following:

I Dynamic compilation with the erl_scan, erl_parse, epp and compile modules
I Reverse engineering compiled BEAM code into forms

I Preprocessing vs macros

I The parse_transform compile directive and example usages like:
I adding helper functions into modules that take advantage of record definitions that

aren't available at runtime

I performing data integrity checks by expanding custom guards into additional function
clauses

I Example usages of the custom_guards, dynamic_compile and excavator projects in
production environments at EA.

Ëlcçr*phy

Jacob writes Erlang code for Electronic Arts. His work there has included deploying
scalable ejabberd chat clusters and developing a high-traffic Erlang api used by game

teams to read and write real-time game data. He's written or contributed to many open

source Erlang projects, including dynamic_compile, emongo, erlang_protobuffs, etap,

emysql and the binary protocol memcached client.

Page 15

I
I

t:- .

I
i

: r.
t.
ll{,:,
!... r

]

.
t

¡

I

Things \Morth Trying:
. code injection

. meta programming

o reverse engineering b¡fbe code

o anyLhin€ that makes Ericsson cringe

http ://J æoÞvorteuter.com/hacking-erÌan€l btlp ://éi!thub. cqm/rjæoþVo¡reutel

The Abstract Format
. a tree-like structure representing parsed Erlang code
. comp¡ised of a list of forms

htLp j//Jæobvolrouæncorn/hækinEl.erlÐÉl http://€r¿¡Uò.qom/rlæOt VOtr€uæI

The Abstract Format
. a tree-like structu¡e representing parsed Erlang code
. comprised of a list of forms

\ÂIhat are forms?

http://Jæobvorreutepcom/hâcklnÍl-erl¿ng http://glthub.com/JacobvorÌ euter

Page 16

The Abstract Format
. a tree-1ike structure representing parsed Erlang code
. comprised of a list of forms

Forms are tuples that
represent top-level

constructs like function
declarations and

attributes

htlp://Jæobvorreuierconì/hæking-erlatg hiip://github.con/.IæObvorreuter

The Abstract Format
. a tree-llke structupe representing parsed Erìang code
. comprised of a iist of forms

f intl rrbrl4, I,{ùd!ie,axr{pIe1}
iobìrìbfl te, 2, eif'ort. t{foo, úrir' j,
ifljai:t:e¡,4.fDa,0,iicla!t€.4,iJ,1.1,Ii51fìaq,a,"t1¿ì!o çtôckðo1,r!'J]]l]..i

htip://jæobvo¡reute¡cotryhacking-epìat)€l hitp.//grthrt).com/Jacobvorreu¿er

foo() -> "Hello StrckhoÌn!"

-nlr.iu l r(ex¡anplel)
-expr:rt(ffoo./81).

The Abstract Format
. â tree-like structure representi-llg parsed Erlang code
. comprised of a list of forms

Ilil1r,1.¡1,1,1 ¿1r.....dr.t.'li.
'n1rt,ù1t. ,/.-'or,r I .l li,r: ,rrl I, lÕffn

iiun(tro¡,4,for).ú1,Iiciauer..r,[].[.ì.llç1.1¡6,4,']lùlìo Siocl¡hoìrr'].1].li.l

hüp://læobvorreuæncoùVhækrng-erlÐ€l http://glthub.corì/.1æobvorreutet

foo() -> "Helio stockhotrnJ''

-¡:r, ;rr i :,(exompì.e1)
-:.-,:.,:(lfoo/Øf).

The Abstract Format
. a tree{ike structule lepresenting parsed Erlang code
. comprised of a, list of forms

i iot I r1){ te, i , }oririr . exocplel l
f(ttribf,t!'.¿,e<-c"i,t-{i.:o,è}li, førm
(f un(t :ô¡r,4, foo.0, iicld(ar.4, il, il, Iist.i4e,'1,'ttei lo St.!ckhr]iùl Jl il]_l

hitp://Jæobvorreutencom/hack¡Ìél-erlång http:/g¡thub.com/Jacobvorreuter

foo() ->'"Hello Stackhol¡n!".

-r,t: l¡,ì,r(exøaple1)
-:'.. 1;,.;, r(ffoo/$1).

The Abstract Format
. a tree-like structure representing parsed Erlang code
. comprised of a list of forms

I ío'',,0',,.. .îod,rie.e\dùil .r j
ì rr-',lrrr.. 1 .,,,,,,.¡ , {r,}, .tt l}, lorm

{i!,r,:l',r¡,1.fi,i',tì,iir:iv:;:,'1.:.l,[],f{!r..rt.r,.i, tiil'.¡ 5L.rLtìitl!'ìlil}l

http://.jæotJvorreuæncoqyhæking-erlmg http://€rthub.com/JæobVo¡reubr

fooo -> "fiel'lo 3èoekholm!"

-" ,,r,; i ,.(exqnplel)
--",,r,. 1([fqsl$]).

The Abstract Format
. a ireelike structure representing paxsed Erlang code
. comprÌsed of a list of forms

Taking a step back:

Where do forms come from?

hitp://læobvorreuterÌcom/hacklng'erlang httpr//grthub.com/JacobVo¡reutel

rl

Page 17

The Abstract Format
. a tree-like structure representing parsed Erlang code
. comprised of a list of forms

Forms are generated by grouping
and interpreting tokens scanned
from source code.

hìtp://l æobvorreuter com/hæking- e rlm€ http://€ithub.com/JæoDVomeuæ¡

¡:*
I.

-modute(ezsry1e1)
- qxport(lfBo/Øf) .

LJ

çoào -o
"$*1in Strlrîhùlfi' "

Scanning Source Code
the flrst step in compiling

htip ://Jæobvorreuto¡ qom/hacking-erlang httpi//github. com/<tacobvorreuter

r*Ì
-n¡adú!.e(exnnplel^¡ .

-expórt([ftì0l8]) .
LJ

tokenize strirìgI use ôxpressions to
input

-rîcdúiâ(exnmplel) .

-TIpÕrt(lÍö/01) .

tckenize string
inpuN

r generate a iist oftuples, e&ch represerrtilg
an atomic r"rnit of source code

'¡. t,

erq)ressioris t0r use

Scanning Source Code
the first step in compüing

http:/4æobvorpertencom/hackin€l-erlatì¡l http://grthub con/<Jacobvorreuter

This module contains functions for
tokenizing characters into Erlang
tokens.

erl_scan

bttp://Jæobvorreuæ¡,.com/hæl¡rng-erlang http://github.AOro/JæoÞVolleuþt

þ Codc * " -rudule(ewplelJ. \o-export([fælo]). \¡\rfe() -> \"t¡e Llo gttrkhóla!\

Z> e¡l-sco¡:stri¡g(Cade),

erl scan

http://Jæobvorreuten corn/hach!¡l-erlan¡l http://github.com/Jacobvorreuie!

fooO -> "Hello Stockhol{r!"

-r,orl¡: i,:(exarptel).
-e¡l;cr,l ([fao/$-l).

Page 1B

fooo -> "H€i1û stûrkhülill
,,, þrl .,tnn..:,.i¿!({ô¿rì.
ì.Jk ij .ll.

l¡,.r. , I nn¿rìr,1.

íù1^i, t,.¡{ì:rìr' ì ,

I,t?>1. .1 1 .|, .¿.'.
rr,.-i,,t..3øìri i
{ i .ir.

irrr-,l,ro4),

http://Jæobvorreuier.conì/hæking-e¡lùrg http://glthub.com/Jæobvoneuie¡

lsrfin¿.1. h01l' ;1ur..ìùiñl I
!k!1 4t.l.

-: :.1r,ì *(exomp1el) .

-:'::r:r1'(ffco/O]),

1ót{,-. i,¡eû,ìnl.
{'i .li.
í¡t¿r" I,.rrrl::f::,
i ì ,:i,
lû)..'-i ,

{ - ,rr,
ìù¡¡)r ¿,¡.Þ.,/ri
.{ i .¡1.
I i ..rr,

i" ,:;,

l"'.rì,j)'.,r,
iort. ir ,

)'

htt!.//glthub riorn/Jåcobvorreuterhtip://jarobvorreuterun/hacking-eplat€

lst.iôr,1. Èrilr ti-ûr$ìùi,ñl j

- -r,,,lr: :., (exorplel),
-., '., .r(lfoo,¿øl).

fao() -> 'He1lo Shúckhülú!"

,,-, r¿l,r'¡À: i! Prrì{ii ¡t4 l

http://jæobvorreutepcorn/hæking erÌang lìtlp://glthub oom/Jæobvorreute¡

'h.ìì1; jt.)i. {ì¡¡¡ ì

t6'k0n

fooO -> "ll¡:ilo 5!¡rkl¡q¡ìmi"

: - if <ú¡ (1..'<¡rlr¡.)

.lr¡.il - l,
iir:rr, 1 . ,.ai .l r'. ,

i í . r).

-,,,::,.i (excnrplel)
- . , r([fool0]).

i. tlri , ,ì, , w,rr0 | 0; ,

l,.rì.

This module is the basic Erlang
parser which converts tokens into
the abstract form of either forms,
expressions, or terms.

erl_parse

ììtip:/¡æobvorr'euter,.corr/lìtrkmg.eplÐg httpi//grìhub.com/Jæobvopreut€r

r' ."Ì-
'r.

e'r p.ì !d fo¡¡l:.. . :l
lrr¡,¡ l(Jt'lèr'
.'(-:: ,

f"ù1i-

l r'.1ì,
id0r.:i)

I'ri i¿ti¡rt,¡îF Ì.r:rdri. oir¡ripìì!

erl_parse

hLLp://Jæobvorr'eurerlcorrVhacktnB.erl¿t{¡ httpi//github.com/Jacobvopreuiet

I

Page 19

This module provides an interface
to the standard Erlang compiler. It
can generate either a new flle which
contains the object code, or return a
binary which can be loaded dlrectly.

compile

http://grtluþ.cou)/JâoolrVo¡ r'eìrtethttpi//idfl rovorreuær'.oorù,/lìaek[]8-erlarìf

Page 20

..ç,. Fo.ì.ì ', i
{¡rt.:bJtc. l.qoJrk..xWiíl l,
{a1 i.1hu1e,l, extcrl. i{f c¡r,örl}.
{fan.troñ,l,foo,ù.1íc'rf,lle,1,ú,lJ.i{!t.i¡9,3,'lèito 5ro€Lha:."1'ij}l}J

!: lÐk. fþd. 8rûÌ - .mpr'.¿rfo.ms(t<rrns. f:).

,..¡t:,7è.82,49.ö,t,1. ¿r¡(,66,$à.b:,11.b5,1lb,ü.1. 1Ü1.t,8,0,
5i,0.â.0,3,8,rß1, . . .>>l

7> <ôdÈ:ìodd-i,insry(Yôd. [], tiìn)
{îôdu:e,erúnilel}
li> ¡¡r9lÌl:fon().
''neì1o 9tù.\holÞ1"

compile

htip://J æobvorreutet com/hæklng-erlæg http://github.com/Jæobvorr€Ubr

IS THER€ A MOOULE THAT
CAN PERFORM ALL OF
THOSE STEPS FOR ME?I?!?

htlp ://J4 obvorreutencom/hacki!Él-erl4ß hltp ://github.coo/.Iacobvorreuter

dynamic_compile

The dynamic_compile module performs
the actions we've just seen, plus takes care
of macro expansion and inclusion of
external header files.

http :// github. com/clacobVorreuter/dlmamic_compile

http://JæAbvorreuten com/hækúg-e.lÐg http:// g¡thub.com/JæqbvoneuÞr

d¡mamic_compile

9' (odr = ''-rs¿iule(erôr'9ìel).ìr-exFort{[tÕù/0j).\ñlnrqo0 -] \"ftùììo gta(¡hoìoì',
"-a(r¿xì?faxr-pìel).\n-ezr.,rt{[íor¿ô]1.'*\nfrro{) > \"Hellù 5iî.ihr,l<,',". ''
lrtr iùod. 9r n.l - ivnc-ì ;_r.rnn1 i ô. I rúm,cl.1 ¡È{(ods)
{p\cïtl F1 ,.¡:11t,7-q. lJ,4q, e. lr,1 , /ßl ,6É, ti<l, {t9, ¡7. b5, i 16, I l i ,

:â!.0.t,ù,5?,a,{¡,0,5, 3, :0i, i ?il,. . .i,:,}
1L r:ode:ì1rìd,bìúúrr(M'rd, i'1, Bi'!i.
{floduì c, à}d¡rpl r1 }
12] e¡3Er1 ¿1 : ,o¡{) ,

"llsl l(5io.tho1ñ: "

the parse_transform
debate...

h¿ip://JæOòvorreùtencom/h¿cki¡éi- erlÐg Þt¿p//gi!h!þ.eOr/Jæobvorrfl t€r

I:
¿

!

Page 21

NO'f to engage in parse

Programmer;
are strongly advised

transformations

htip:/¡æoÞvorrertcr'..joùViìækhg-€rLal!B h!tp://gÌthub.oom/Jæobvorr€uter

aoyway

¡eah,you can do
everythint w¡tÀ macros

Ittp://jæobvorreuler'.cotrVlìæk!ìg erlanÉ htlp://grlhub com/JaìobVo¡reuter

How do parse_transforms work?

If the option {parse_transform, Module}
is passed to the compiler, a user written
function parse_lransform/2 is called by
the compiler before lhe code is checked
for errors.

hiip://læobvorreuteìÌcom/h¿ckrne'erlaDe htlp://A¡thuÞ.corD/Jacobvorreuier

How do parse_transforms work?

porse_tronsf orm(tornrs, - Soti orrs)
io: fornot(, r.,"1: : ,r' , Il'ornrs]),
l' orìrs .

, ,.(e xamplel).
-i .ir,,

.¡
({ ,,, ., , i;,' ¡ !,": J i.' .

- ,: t([foo/0]).

lìttp://jæobvorpeuter-corn/hækrng-erl¿¡rg http://grtiìub co¡r/Jacobvorreuær

foo() :' "¡i¡l ìc \¡¡¡,<¡.¡11ì-*ri

-r,,. . r' (print_forn_s) .

- : i. ir : ([pcrrse_tnonsfarm/2))

How do parse_transforms work?

lvo{'r"ëI.llÊrt eTir. -ú ebtn :.,rr:, pri.rrt- Íorm:, crl.
jvni ttuttrS erì.:. {) Éir1n pc ehili :'t'¡¿'err¡rnpìeì.e|l
irirnl: i-iutiriBut{r,.i.iiì,:.i' r,'. erar¡rLt1.erL'.iii,

lni t rì þutç, i, rxodul r, ei:r:rnol e1] ,

{cttril:U{'e. ì, erucri, f {ioo. {ìi-l },
{{urrrtj orr, lì. ioo, {¡, r .i': l n*sr,. 1-, I l . I l .

Llstrrrxt,5, "hei io Slûiì{hoirrrl "ij}ji.
i,.,,t,:1.1

http://jæoDvor¡eùteìÌco¡n/hackÌne-erlaug h[iD ://g¡ihub.com/Jacobvorreuler

Page 22

apizza example

f.p\zza{
sire = "10r0e",
toppings = ["onion-r",''pûËp{irs", "olivcs"],
price = "$14.9ç'

Ì
"ncode

pizza

{ t¡:¿¡:¡ i nf :, l"o*i',,r;s ", "fr,:Fpr-,rs ", " o1 i ves "] },
{¡,r''L',c, "$i4. 9!)'}l

t

http://Jæobvorr€uter.com/hæk¡ng-erlÐg http://grihub com/JæobvorrerìÞr

[{::.:n, 'lor'ae"},

apizza example

-reiúr,J(pizao, {size, toppirl€s, l3r1€e})

€ûcodc-.scord(Rôc) -r'
r:*st Rec cf

Pizeq ¡¡iì4,1 is-rocord(Pi¿zo, t..;.2.,) ->
[{rire, Pilzuxpizao.:ize},
{:,r¡:¡ r:,,;, Ptz¡ùtpiuzo.toppìô95},
{¡i l,:r:, Pìzzoåpizzo.F.ice}] ;

exit(,rl |,ric,,:-.rr, x i ii: -:l'i :.)
trri.

http://læobvorreutenco[Vh¿cking-etìang http://grtlìub-cory'Jacobvo¡reut€r'

-¡r,¡', ì e(excrq¡le2),
-.xÞc. t Cfencode_ rec0rd/11)

apizza example

remember, at ru-rltime aJl references
to record instances have been
replaced with indexed tuples.

http://JæobvorreuterÌcom/hæking-erlmg http://gittÌub.com/Jæobvorreuter

apizza example

-6 rr!;, r(e¿ûnple¿) ,

-.;rìJr-ì :..i{p,:rr. ¡ :,ì;:.:i.,',i, ..>¡r,-r r': :,.:. -;r;})
- f ¡ì1,.r: f (f encode- recold,/1]).

-rrr:llri(pìzzo, {size, tlppinqs, price})

eadode-rscor¿l(Rr¡) :.

fll.erl,lonelFieìdrl .. tuple to list(RÈ!),
f r úidl¿üros = expondad-record-fields{Rec}lone)
lrsts : zip(F ieidNafles, f reid:).

http://læobvoueutepcom/hackrng erlang http.//glthub.com/Jacobvotr€uier

-n r;.,: ,.(exonp1 e2) .

-¡,r:;:.111({:{r :r i.aì|:.lr::,,, rriit;Ì.i r1.., <j:})
-.. ì:,-'fi.(fcftcode_record/1 1),

-, ,d(pi¿zo. {\rze, lûtr{,,9s, p.r(e})

encûde-record(Âer) '
[Rr-c¡l¡ilpIf rElds] = tuple-to_lrst{Rcc),
F re ldllone: - expanded-record- f i elds(RecNnme)
'l1sts

: :ip(f iél dll{qes, f i Èl rìs).

1; e¿qntle2:e¡rtçde..rÈr-ârdl{pi¿¿(, "lirqe",
f 'tttiur:",'f'eppefs", "oì'lve:

llsr¿!. l(¡a!ì! l.
i iuopr rrqs, |' orri onr".'ptppe|s',' oì. i vaii" I],
{pficê,'514.9g"jl

hlt!://jæOÞVor¡€utêrco¡n/hæking'erÌ@g http://github.coml.Jæobvo¡r€uÞr

L "$14.99"i)

expand_records.erl

htip://læobvorreutencorvhack¡ng-êrlang htip://glthub.com/Jacobvo¡reuù€r

Page 23

intermission

I
fi
*t
åT

I

ht¡p:/Jæobvorreu¡e¡.com/hæking erlang http://gltlìub.co¡n/.1æObvorreuter

.;

Compiling Custom S¡rntax

rr numbers /
7 L'- 16 + r\p.

http://Jæobvorr€uterlcor¡/hæking'erlauÉ http://giihub.oon¡/Jæobvorreuter

> di ngbuts *-

-i

j)

Compiting Custom S¡rntax

rr numbers I
7 L'- 16 +ç\;-

2> dtngbats:numbersO.
[1 , 2 r 3 r 4,5 ,6 r7 ,8 ,9 ,1Ø rLL r l¿, 13,14, 15, 16]

http://læobvorreuiercom/hackrng-erlang http://github.coÌrì/Jacobvotreuter

* dingbats a.

Compiling Custom S¡mtax

leex - A regular expression based lexica,l analyzer
generator for Erlang, similar to lex or flex.

yecc - AJì LAI,R-l- parser generator for Erlang, similar
to yacc.

http.//jæobvorreuþncom/hæking-erlÐg http¡//github.com/JæobVorreuær

Ieex
The leex module takes a deflnition ûle urith the
extension .xrl as input and generates the source
code for a lexical analyzer as output.

<Header>
Definitions.
<Macro Definitions>
Rules.
<Token Rules>
trlang Gode.
<Erlang Code>

lìttp://JæoÞvorreuten com,/hackìng-erla!€l http.//grthub.oom/J¿cobvorreuter

compiling custom s¡mtax

AcI II

htip://jæobvorteuteicom/hackinS'erlang http.//grthuÞ.corr/Jæobvopreuier

Page 24

example_scanner.xrl

http://jæobvorpeuæncom,/hækhÉ!-e¡lmg htip://g¡tbubrom/JæobVorPeut€r

-:Heíìder>

Deûn¡tion5.
<À4¿rcfo Ilerliltlons>
Rûles.
<'l]oken P,ules>
Er¡¿ng Code.
.:ErlÐg Code,

example_scanner.xrl

h ttp://l æobvorrelter com/hacking- erlar¡¡l http://Ér¿hub.com/Jacobvor¡€uter

Deñnitlons.
A =la-zlïO-ga-zLZ_).
I = to-91+
ws = (t\ooo-\sl l70.

-)

eu¡eß.
.Token !l,uies>
Erlâng Code.
.ErÌaDA Code'

example_scanner.xrl

{token, { module.Tokenline I }.
{ token, { function.Tokenl,ine I }.
I token, {'->'.Tokenl,ine I }

{token, {'[',Tokenl,ine]].

{token, {'l',Tokenl,ine I }.

{ loken, { atom,Tokenl,ine.Ìist_to_atom(TokenChars)) }.
{ token, { l¡teger.Token],i¡e,list_to_rnteger(TokenChæs)) }

{token,{'<r.Tokenlinel }

{token, {' I l',ÎokenÌ,i¡e } ì.
{token, { heilt.Tokenline ì I.
{end_token, { dot,Tokenline ì }.
skìp_token.

\7

http://grthub.com/rjæobVorreuierhitp:/ljæobvon€utencom/hækmg€rldrg

Rules.

\D

Deflnitions.
A = [a z][0 ga-zA'Z_)
I = to'91+ws = (t\ooo'\sl 17o..)

Erla¡g Code.
,,Erl¿ìlrg û)cle-'

\\
{A}
{r}

\+
\e
\< {ws l
{wsì*

example_scanner.xrl

F,ules.

\D

\7
\\
{A}
{r)

\+
\I
\<{ws}
{wsl"

{ token, {module.Tokenllne I }.
{ token, { ñDction.Tokenl,Lne)).
{token,{ L>'.TokenLne} }

I token, {'[',Tokenline]].

{token,{'l',Token],rneì i.

{ token, { atom,Tokenline.list*to_atom(Tokenchæs) ì }.
{ token, { inieger,Tokenf,lne.list_to_Dtege¡(Tokenchars) I }.
{token,{'<r,Token¡i¡el ì
{token,{'l l'.TokenI,lne } }.
{ token, {heæt,Tokenl-Íne } i.
{ end_tokeD, {dot.Tokenline } }.
skip_token.

htlp://-ìæobvoueute¡tcoûVhackrng erlanA lìtip://github.co¡rVJacobvqrreuter

ErlÐg code.

Deflnitions-
A =[a-z][O-9a-zA-z_]*
I =tOsl+
ws = (t\ooo-\sl 170.")

example_scanner.xrl
1> leex : file("src,/exnmpì.e*sconner. x11")
{ck, " srclexr:rnple-scanner . erl "}

http://Jæobvorreuæf com/hækhg-erlmg h¿tp://€ithub.com/cræobvorreuær

The yecc module takes a BNF* grammar
definition as input, and produces the source
code for a parser.

<Header>
<Non-termina,ls>
<Termina,ls>
<F,oot S¡rmbol>
<End S¡rmbol>
<Erla,rìg Code>

r Backos-Naur Form (BNFì ir â m€.aiynôx lsêd tó exprett conlexGlree gràhñars:rhat ß,â lomãl wa/ to desc.¡be lormal lân8u¿¡es

http://Jæobvorreuter:cotrVhaclljng'erlaûél http://grthub.comøacobvorreuter

yecc

Page 25

h€¿dsl
ê o¡8¡og

pars¡rr

tt!ó modul€
l!yru

exarnple_parse.5rrl

http./áæobvorpeu¿ercoo,/hæking'erìutg http!//g¡!hub.com/.Jæobvorr€uter

<He:ìdef'>

..'l'errrù!âÌs-'

.Iì,oot Syrnbol:

.IÌrÌd Syflbol..
'.¡irì¡ulÍi O{rcle'

Wô oould do
oomethlng llko

tbl6, bì¡t
wh¿üeçer

example_parse.Jrrl

http://jæobvorreuiencorny'hækrng-erlan¡l http/Æitlrub.cOÌû/clæotVo¡reuter

Header "%9o Cop¡æight (C)"
"%7o @Author Jacob Vorreuter"

.r[\lorl iermrrìa]s>
<'l'er{ùirels>
..Root fiJmrtioÌ>
..tiirìd Syrnbol>
..Il¡la.n€ aode>

example_parse.yTl

htip://jæobvorreuler.cotr/hækì!€l-erldÌg http://éÌrthub.cotrr/Jæobvorreuter

..T,loli-lelrlisaìs '

.lfe¡ûun¡.ls
"

H,(x)i Syrnl-ìol'
rl,j¡d fj.tnlooìr
' ErlaÙg Co(ler'

Tsrai.rÌål symÞol8 ¿¡€ }ts¡âl
sl¡r¡SS rorsinltbJ lngu! ofe

brma.¡ é¡€¡Èrû¿¡ a¡¡d oên¡ot be
bæke! dm l¡t¿ Bss¡ler unltc

wltþqut lo8lnd tþair Ur€¡å¡
EsAf¡Jnl

example_parse.JrrI

http://jæobvorpeuteÌÌcom/hackìng erlaûfl http://grthub.corryeracobvorreuter

..Noll-tier[!tuals>

.Te¡Ì¡inâ.ls'
<lLoo¡ Syflìh0li
{Err.1 tj..,'mbol>
.!lrìång (l{)de>

example_parse.JrrI
.¡Jorì ier'ûùl¿ls'

TermÍ¡als a¡om ìnteger heilt module functÍon 'f 'l' '-'' '<-' 'l I'

http.//JæobvorreuÞncorvhækhg erl@g http://éiithub. coEf qtæoÞVor¡eUtel

. il,ooli lìymbol,
, Brrl S.vrn¡rol.'
.Iìlrl¡ilrg (loiÌq]

1Þo8g is¡:¡nln¿¡ 6ymþol3¿¡rg t¡ls
pm¿uets of tbt r€€iuler êxB¡rsst€ns

1a our ¡d¡e¡ anâIyãûr

example_parse.yrl
..Non-l,etfiul0]s>

Termnals atom Ìnteger heæt moduÌe tunction 'l' 'l' L>' I<-' ' | |

http://j æoþvolreuloncom/hæktng'erlaDg http.//€iithub.com/Jacobvorreutor

.:Root S]mhoi>
.llf¡'l S.ylr)tJol,
<lin¿rìg (hcie'

Page 26

$onl8r8$ê¡ sJnoÞolB æ tha rulE€
rltbfÊ Ë€ þnma¡ éfa¡¡mar oonslstlng
of ê aeqæÈeo of tsrlDLrìå¡ 6yrnbo}g or
næì€m&.å,! sJrs¡bols. Nont€rÐlÎå¡

s¡mbol8 ma.y ælf refsæBas io spoclry
reou¡gtoo.

example_parse.Srrl
module tu¡ctlon'['']' '-' ktr'l

I

http://l æobvorpeutercorvhæki[g-orlÐg httpl/glthub-com/ctæobvorr6uter

<Nor-telml¡ålÉ>

Terminels atom

<fìoot SJnîbol>
..cnd filrbol>
.r¡ir'1ang Code>

exampleSarse.¡ml
Nonterrunals element module_declÐation fmction_deqlÐatlon tunctlon-body
comp¡ehenslon.

Ternrìals a¡oru mteger hea,¡t module fuì¿ìtion 't' 'l' ' t k ' 'l l'.
<B,o0t S.y¡nbol>
.:t'iDd S.vrnb0l>
.:nrìa,ng Code>

http://læobvorreutencom/hacki n{l- e¡leû€Í l-rttp ://github. com,/.Jacobvlrleuter

ll€"e !r9 Êr? dæ¡sl¡l tjtrBbol8
Lh¿t rttl bå tl!4hæ dsûûed ñ

êeÂcs¡de&ts oftb€ ¡.oo! syebç¡

example_parse.¡rcI
Nonterminals element module_deslaration fuction_decìilation function-body

hitp ://læobvorreuter.co[Vhækì¡g'erlmg http://gltlrxb.com/Jæobvorreuter

comprehension.

'I'esrtrnÐ16 à1,o[ì irl€ger. heân
.ll,ocit fìJ¡mbol>
{EìrrlsJ¡nbol:-
,:Eriar€ (lodci'

?bo rooi 6qrebo¡ !,s tTú moEt

psrE€ ovE¡I/ lBput strl¡¡ l!tÐ.

tytrtasilc oetegory
tbo pa¡ssr u&i$¡etôly

example_parse.¡rrl
Nontermrnals element module_declâ¡ation function_declar¿.iion ñ¡nolioe_boily
qotrrpl'ehe¡rsron

Terninals atom mtep,e¡ hca¡t modulc fìux,tìon '[' '-]' ' >' '. ' 'l l'.

hitp://J æ obvo¡peuten coûVhackin¡l- erla!€l http.//github.corvJacoìlvorreuter

iIìoot Sly'¡nbol>
.End Symbol'
<Erlarìfl Code>

example_parse.¡rcl
Norlielrrmâls elerûent Dodule-decld'ð,tioù 1lùrction. decla|a¡ion firûcìliorì-,hoclJ,
i:ornproiìensior.
Jt'jrlnrnal¡i {torrì inteêe. hea,rl, modr¡le Îìrnctþü 'l' 'l' '->' '<-' 'l I

F,ootsJmbol element.
element'> module_declæation ì'$1'.
eìemelt -> function_declæation : '$1'.
module_declaration -> module atom I

{ atlribute,li¡e_of('$2'),module,value-of('$2') }.
ñDction_declæation -> ñDction atom L>'function_body :

{fucrion,line_of('$2'),vatue_of('$e'),o,[{clause.Iine_of('$2'),t],U,'$4'}l).
fuDctlon_body -> comp¡ehensroD : ['$l'].
comprehe$ron -> '[' ']' : nil.
comp¡ehension -> '[' integer '<] integer 'l | ' heut 'l' :

{Ìc,line_of('$2'), {væ.line-of('$2'),'4.' },[{ generate.line_of('$2'),
{væ,line_of('$2'),'4.' },
{ca.ll.line-of('$2'), { remote,line-of('$2'), {atom,line_of('$2'),lists },
{ atom,li¡e_of('$2'),seql },['$2','$4']]) I].

http://glthub.com/.]æobvorleut€thtlp,//JæoÞvorreuÞn corvlrækitg'erlmg

.Ilnd Sylrìbol>

.:lÌrlanP: (iocle>

tbo eÊd Ê¡t8bol 18 I (þolÂ,r4tloa of
t¡ìc etìd_gf_l¡rput cymbol Llìat J¡su

rûâ,lrer ls âxF€otôd 1Þ uss.

example_parse.¡rrl
NorÌr,erm]lals elemerìl nodule..de(ttu'atloD tluìctlor._declaratlon fmciion-bocly
0oroprchenslon.
'['(]rminãl.j âtom ilìtsgef hcart m{)rtule fu¡rctio['l']' '.>' '<-' ' I l'
Roots_v¡r1boì elerneDt.
elenent, -> rroduìe-decìaration ì '$ I '-

eler[en¡ -> iu¡ctioltdecle'atiorì : '$l'-
nì(duie_derl¿,r'a,tioD -> n(,duìe atoÌrì :

{ àttribute,Lirie,al'('$:l'.),nìodule.valùe,otf '$:ì') i
nrncT,ioo_declaråtion .> funciion alom ' >'fiÌÌrction-hody :

itunctiorì.Ii¡re-orI'$¿').vôlue_ofi '$2'),O.1 {clausÊ.line*of{'92'),l.l,l ì,'$4'ì I }

ti¡nction_bodv .> rjoDrpre lì$sla,n j | $ l'1.
co¡rlprelìeDsron ->'l 'l' : rù1.

coûìprehcnsion .> '[' inlcger '< ' inteéler 'l l' hcart ']' :

i1c.tìrìe,ol'('$â'), (varlìne,o1i'$:¿').'¿.'Ì,[{gener¿te,li¡e_o('$2').
lva,nlj¡e_orI'¡i2'),'1l' l,
i cd.ll.lùre,o('$e'), {re¡note.lile-of('$2'), {ato¡ì}.line,ol('$2'),1Ìs¿s ì .

http.//J æobvorreuìetcom/hæking-erlatg http ://githUb. Corr/Èr¿coìlvorreuter

<End S',mbol>
.:Edâ[€ C0de>

Page 27

Tbe trlân€ codô se€tlon

Lbeiw3 Md,ùo oa¡¡ Èom
orr gJr¡¡¡boi d€ûl:¡t¡oe3

example_parse.¡rrl
Nonterlnulal6 ele¡n€nÎ, rûorluledeclru.r.tiû¡r Îìustiolr- declâratlotì fu¡ì.ìtio¡t-.bodJ
corûprehensiorì
'Ibrrrunâ]s Èl,orn itrl,egè¡. Ìrearl urodtle îuùotiu1 '{' ' l' '->' '<-' ' 1 I '

F{o()tsvrnbùÌ ele4ent
eiejtrcrÌt ;- [rodule..decìe,¿,tlo!1 :'4i1'.
¿leÍ!Ðni > fu nírNi.JD_dcclar"âtiôr . $.1'.
ûrodule deúlår'a,¡io! -> ntocluìe atc'ìlt :

1 âlt¡ibÌrte,line,of('$â'),mo¡luìe,value_of('.$2') ì
iìfDcliun.decle,¿Î,iù¡ì -> furction atorn >' iiulctiorì_body :

{t¡rclion.lÌ¡e_c,t('$:l').va.Ìu(:,of('$?'),O,I Islar]se.hne-of('$2').t.l,l l.'S4'i.l]
liùrctlorÌ_b{rdy -> conp|ehel$ro¡) : I'$1 1.

ccrmprelÌension ->'1"-l' : ¡il
.x)llìpreileìsroD ->'l' uìteger'<r iltteêer' | |' hezu,t'1 .

{lc.ìiue,oí'$2'), {varline_of('$¿'),'A'},1 {!,eneraÌe.lire o{'$Í¿').
Í vil,.1ùre_oI('S2'), A' J.

{ call.ìire,o{'$2'), lrernote.lírìe,olt'$2'), i âiosr,line_ofl'¡t2'),lists;,

http://jæobvo¡reute¡1com/hæking'erlaD¡l http://gìthuþ.co¡!/Jwobvorreuter

<Erìan€i Code>

Ì!l¡riisvr¡rbct ciD'.

example_parse.Jrrl
NonlerrûiÌÌals elene,Ìt Íì orj ì ¡ le-..(l eclat'¿r,tÌ{)i} fìlì tcì,j n û...d{ajl¡,ratia[l hil]ciiott _ hor.lJ'
colfi!{1lhÈns1oti.
'l'errn¡Ì¿ts sio¡) trlleger he¿ú rJìûlìì l€ [r]¡(ltiolì'l' "''.-''<-'' | |

¡ìoot¡ivmbol eÌdne!l¿.
4lrjrn{rn¡ > úr()rjr ¡le aleoìa.rir.tìi(}rr i' ji; l.

Ù¡crtrenT, .> furr jtiol_dûc¡iìrilti(rrì : g L
Ir$duic de(t¿ratirtrì -, [todule a,k)ût :

1 â.tt¡jbrÌie.lirre_o1('$:ì'),rto.iule.valÌìe_ofa'S2') 1

fui)ctiùn_drxrlal ¿,,tiüû -> tuldriu¡ iì.toÛt ' >' fuDcl;iolÌ bocl.v :

{ luÊctic,n.linei,oIl'$e'),\¡â,luri,ofl'$2'),(), I I cla,ûse. liÌx)-ot(,$t3'). | ì. [ì,'$ 4,Ì I] .

t[llctlolr_bo('iv > corrtprciterrstorì : l'$l']

qornprehensÌorj''f"l niÌ
íìornpreìrel$ron >'l' ilÌregsr"<' iDi,eeer" I l' heârt'1 .

{ Ìc.ìùr6_ofl 'S2'), {r'¿rr.Iile_ol'('$e'),'À'i.I i p-e!!er¿rte.linc,o{'Si¿'),
{ varl jr)e_of('f¡il'),'A },
{ call.]ù!s.. oí'Sj:]'). f rerrìote.ii¡e,of('S2'). { âtour.lire..ofI'$:a,),ìist.j).
{ a iom. J ìn e_otl'$2'),$eq I l. t'fþ¿l'.'$4' I i I I l

http://g¡thub.com/Jæobvorperrte¡

EndsJmbol dot.

.l:Ìrla¡g Codeì-

http:/¡æobvor¡€uteLcorn/hækng erlrìg

example_parse.Jrrl
N()rrféìrûi[ra]seier¡en¡¡¡tr)duìai...d¡]tlår,¿rtionlirl)(f,iorr-.a1e(ìlar¿tlo,lf'ulctio| lloù.
aoûìpre:t(inairon.
l'É)'u1Í1â.ls â.tr)ùl ìlìtege¡, he¿rir ttodule fì,llcl,iorì rl'' " r' L'' | |'
fl(,oisvllÞ01 ¡jl{i!iì01ú
dier¡ìe[1,''- rrrx1 r rl{i_deolat,aiir)û . 1! l'
el{,irììaint. -> ùlr$tion_decì,lr¿ìt¡o¡i $ l'
Ioalule...(iÉrrjiiì¡'¿,tio1t -> rrodìlìÉì illüilì .

I ålÍr'itil dp.line_of('$2'),¡r(nu ie.vatue_o4'$r:') l
lltrctiorì...c1e{lJa,r¿tiori r rìlrJct.ì{,û :l.l,t}:n ' r ittrlilliútt_. budy :

lfrrrì¿tir)û.¡ine_of('l]ìl¿'),value_o{'lill¿'),O,1 lctÐrse.line_of('$:l'l,l l,t j,'$4'ì I i
iurroliun ì)od! -> ¿oItpÌnÌìc,l.rr:tì : l'Íljì'j
ixlrrLFrehc¡r¡iìoìl)'f' I' nll
iarr!.lJr,eììe[s](ììì ' 'L' uìf,{)ge¡ i ' irìtreger 'j l' heari ' l'

Ilc.line-o('$t¿'), {!.Ðriline_ofl'{ì2').'Â'},I igûIer.iìie.line_ofl'l]ì¿').
Ivar.line_o('$i¡'),'-¡!' ì,
{ c¿rll.line-of('$:ì'1, {rerirrt,e.line*of('$:r'). I ¿rro¡¡Ì.line_ofi'$j¿').1i5i,s r

{ato(r.line_of('$i¿'),$fil l,l'lj;¿'.'$4'l I I I }
IriiìdrìvnìiJdì r1rìî,

http://g¡thub-co[ì/Jæobvorleuter

Erlæg code.
value_of(Token) -> eÌement(3. Token).
line_of(Token)'> etement(e.'I'oken).

hti!:/¡æobvorreutelrcoro./hæking'erÌatg

example_parse.JrrI
l-' ys¿c : f i ie("srcz'exonpìe_porser. yr1 ", [])
{ok, "src,/excnrple_parser. er'ì "}

http://læobvorreüter.corn/hackin€-erlang httÞi//gìthub.con/Jacobvorreuter

example_parse.yrl
.1> yircc: file("srclexanpLe-parscr,yrl", [])
{ck, "srclexon¡11e_pors*r. erl " }

jvorreuter$ erlc -o ebin src./*. erl

http://JæoÞvorreùÞtcom/hækiDg-erlmg http.//grthub.com/..)æsbVO¡tÌ qutgr

example_parse.JZTI
1> exrimplc4 : ccntpi I c_and_locd(" srcldi ngbrts ")
{nndu1e, dingbats}

htip://J æobvorreuten con/hackrng'erl¿Dg http://github.com/JacobvorÌeute¡

Page 28

example_parse.¡rr1
l: rx¿¡¡n[r]. e4 : rourp;. It_rirrd_I ouri(' :, rc,/d i nqbuts ")
inrcduÌ e . dr n4bol :,i
i> Lir r¡r¡i:ats : rtun;b¿r'sf),
11, ;r, i, 1 . 5. 6, 7, 3, iì, r0, :11, r t, 13. 14, :1 5, iil

http://j¿(robvoÛeute¡rcom/hækrìg erlang http://gìtlrùb.corn/.1æobVorrer¡rer

compr le,ond-1ood{Pot h)
{,, 8ro},, fìle:reod-f i1e{Frìfh),
Ilrr*nlForur,] '' scon_pnrse([], bÌnory-lo-,li!t{Èlr), 11, [])
iì...,!s1 , [l-crrn:,{:rt].'ì.,rìi:j1,i r',r,;))r',." .r l}tf'c,"fl],
{.,; , {Dd. Brtl} - çç6p¡iq:fonm:(Forurl, []),
code:lood,binory(rjocj, [], ltìn1).

scsn,porse(Lílit, 5t,', 5iorl"Lûc, Aaa) l
, i. ' exonple-sconner: tokens({ônr-, Str, 5tJûrrLú,:) ,.'1

,,.. .'. t,,,. lûl{en6, !ndLo,:}, lefttivrrr{-h{rs} ->

{. r.. Frrrn},.. exornple_porser:Êorse(ioksû5),
scon-porse(ll. LcftcìvÈrihdr5, En¡Lú(, f¡orÌil1År.l)

I i sts : reverse(Ä!.)

example4.erl

nitp://grtÌluD .ìorn/Jarrobvorrerì¡erhttìJ://J¿rcobvorreuierùùn/hacklDE-erl¿¡g

:. : .1, (exanple4).
-' .¡" : (lconpt Le-.an<l-.lood.z.l])

custom syntax in
the wild....

. Lisp Flavored Erlarig

. Prolog Interpreter for Erlang

. Erlâng implementation of the qiango TempÌate Language

Dttp://lacobvorreutercom/hæking'erlanF hitpi/grttrub.('om/Jæobvorleuter

I

;,.

Page 29

Page 30

eonference Froce*d í nçs

15th lnternational Erlang User Conference

TITursdæy 1ä Nnvernh*r ä*ts
5r#c${h0!m. Slveden

fu/tråchaeI Tnnxog
Creator of Cloudi

A Cflroud as än ånterface

åbstrae t
Cloudi is a free Erlang based private cloud for efficient processing in C++ to maximize

hardware utilization with dynamic load balancing. Cloudi relies on external databases

for keeping the work fault-tolerant by preserving the work data. lmplementing work for

the cloud is as simple as declaring the cloud interface. The presentation provides an

introduction to the Cloudi framework.

Bi*çr*phy
Michael received diverse distributed systems experience from Mobile, Online Gaming,

Special EffectilAnimation, and Government industries that led to an appreciation of
Erlang for creating maintainable systems. A focus on real live systems with a pragmatic

view on efficiency directed the creation of the Cloudi framework for free private cloud

computing.

Page 31

It

It,

CloudI
A Cïoud as an Interface

Erlang User Conference, Stockholm, Sweden
November L2,2009

Michael Truog
mjtruog@gmail.com

What is Cloudi?

L. Private Cloud Computing Framework

2. Fault-tolerant Work Processing

3. Dynamic Load Balancing and Scheduling

4. Ordered Work lnpuUOutput

5. Distributed Execution of C/C++ Work

6. The Future

Page 32

A Private Cloud Computing
Framework

. Provides an open-source cloud

BSD License

. An alternative to paying for a black-box
commercial cloud

lnternal processing is secure processing

o Creates a stable distributed processing
environment from any available Linux
machines

Fau lt-tolerant Work Processinq

. Erlang/OTP coordinates all work allocation,
execution, and data output

o Any crash of C/C++ code is handled

- Any signals, including uncatchable signals

. Uses Erlang Port processes subscribing to
the cloud as Erlang C Nodes

Fault-tolerance overhead is currently 0.L72
ms/task locally and 0.347 ms/task remotely
(based on cloudjob_latency test results)

Page 33

:

:

i. 1.

i. ..
i.i*ir¡' t
i'+,;i ' '

i;.:-,'' '::

t.,..
h.. ',:

i r-", rl

|. -:

Þi:.,:r': r,

I
f
î

c

ì:

:

Fault-tolerant Work Processing . r .

Machine A Machine B

o
o
o

Master Cloudi
Node (Erlang VM)

Slave Cloudi
Node (Erlang VM)

Erlang
Port

Control
Functions

Remote
C Node
ASN.l-
Task

Request
and

R

1..N Erlang Port to C/C++
Connected as C Node

L..N Erlang Port to C/C++
Connected as C Node

nse

Local
C Node
ASN.1.
Task

Request
and

Erlang
Port

Control
Functions

Dynam¡c Load Balancing and
Scheduling

. Workers are ideally stateless and form a pool
of workers in the cloud

. Cloudi adjusts the task size based on the task
execution time that is requested

- Convergence is slow to avoid problems with
unstable work processing

. Cloudi verifies that work is loaded

- During work allocation

- After node reconn"?l$?_

Ordered Work I nput/Output

. The Erlang work module enforces an order on
the work task input

. Cloudi maintains the task input order when
collecting output so data is stored in the same
order

. Work processing is paused when excessive
data accumulation occurs

Distributed Execution of CIC++ Work

. One "do_work" function is required in a
dynamic library for the C/C++ work

- Loaded when Cloudi requests it
. Six Erlang functions within the work module

provide work task specification

- The functions define the task size (float value in
range (0..1)) and task data (binary data)

. Any Erlang data module can handle output

- Postg reSQL, MySart¿Jlr"mcached, Tokyo Tyrant

¡

I

The Future

. Replicated Cloudi instances can be used for
failover (needs management application)

- Failover uses separate epmd processes for local
name registration

o More databases will be supported
. More fault-tolerance testing
o Download Cloud¡ @ http.llclaudi.org/

- Version 0.0.8 alpha is now available!

Quest¡ons?

Page 36

e*nfer*nce Froce*dÈnçs

15th lnternational Erlang User Conference

Thursciay 1å hl*v*rs:her 2û*9

5t*cfch#lm,5w*d*n

*ñscodffix:'r'rtlåitive dmta fi mCexãnç

Disco combines the strengths of Erlang and Python to enable rapid development of

massively parallel computational pipelines. Disco implements the MapReduce frame-

work, making it a powerful platform for doing distributed computing on immense datas-

ets. The first step to building a system driven by data, is indexing the data in such a way

that it is accessible in logarithmic or constant time. Such random access is crucial for

building online systems, but also valuable in optimizing many other applications which

rely upon lookups into the data. 'Discodex' builds on top of Disco,abstracting away some

of the most common operations for organizing piles of raw data into distributed,

append-only indices and querying them. By adopting erlang-style immutability of data

structures, itis possible to index and query billions of data items efficiently. Discodex

adopts a similar stratery to Disco in achieving this goal: making the interface so embar-

rassingly simple and intuitive, that development time is never an excuse for not building

an index. ln this talk we discuss the architecture of this awesome, open-source tool (with

Erlang at its heart), and how to use it, We also provide a real-world example of using

Discodex for data insight at Nokia, and the reason we built it in the first place.

VåËËe TuuËos
Erlang hacker at Nokia Research and initiator of the Disco Project

Ville Tuulos is a researcher with Nokia Research in Palo Alto. He has been working with

large data sefs slnce 1999, building solutions for statistical information retrieval. After

several misguided attempts to orchestrate highly distributed systems in C and Python,

he found Erlang in 2006. He is also co-author of the book "Mobile Python - Rapid appli-

cation development on the mobile platform". ln 2007 he started to build Disco, an

Erlang / Python implementation of the Map/Reduce framework for distributed comput-

ing. Disco is now used by Nokia and others for quick prototyping of data-intensive

software, using hundreds of gigabytes of real-world data.

.imned F*at*w
Erlang Hacker at the Nokia Research Center

Jared Flatow is an engineer at the Nokia Research Center in Palo Alto. Prior to joining

the NRC in 2009, Jared was tackling large-data problems in the field of bioinformatics

at the Northwestern University Biomedical Informatics Center in Chicago. Jared was

among the first to apply Map/Reduce to problems in bioinformatics, presenting his work

using Hadoop at the Next-Generation Sequencing Data Analysis conference in 2008.
Jared long-dreamed of rewriting a Map/Reduce framework in Python, but it was not until
discovering Disco that he realized the elegance of combining the strenglhs of both

Erlang and Python towards that end. Since then, Jared has become a contributor to

Disco, and co-architect of the simple and scalable Discodex data- indexing pipeline. His

recent efforts have been aimed at using Discodex to achieve a full-stack massive-scale

data visualization pipeline with his colleagues at the Nokia Research Center.

Page 37

i,

x: ¡ntuitiv'e da,ta ¡ndex¡ng

d*scodex: Ënt¡,¡ltive data inrdexËng
Erläng User eÕnf&rence, Stockhotm, Zotg

Jared Flatow
Vllle ïillll0s

t:-r)i-ìaljl ¡Ja{r¿ Ê!:rifjií:l:r (l{ìr11,!!i.

x: intuit¡ve data ¡nd€xing

state of dfrsca
#åseo $,3 highlights

e Ëas¡ef installatiilil

" New fðir scheduier
. Scales bettrr to teiabyte-scôie dâtasets

Corninç ûn the pipeline

Ëñbâd.l(]d web server {irochirveb} for ev|3 n easièr ¡nstalìatíon
frrha¡r*eel rïanâgernen[ûf jrrt]s ã11d resuit¡ng dêtâ (t:ågglng)
5trÉ¡ifiinç rÊisult$

I0 I netwûrk scnëdilling
adhoc data analys¡s & random data access

¡rì, ?.ii{Ìg ¡:o!.r Re.:ç.iìrih Cèr:ïìi

Page 38

big data
many huge {g¡gå/têrðs€ål€) dätåsets ctn$ist sf lots r¡f individual daèæ reeords

datã ¡:i r::cllecl:ed increíìi*nlialiy, iìnd neve. lJelÕte{j

samDlcs from än (ìxfjrjrimer]l or survoy
e.g. server logs, netflíx trå!ning set, w¡kiped¡a, dna sequerc¡ng

sönï€ operätior:s on big dâtë Ë!r€ rïêre expensive thän êthers

p|ûfierties v-,hich höve glûbãl dependenc:es åre ftore expensive
pr-opcìrtics lrhìch arú coirpletrily iúcai tô ;ndiv¡clo¿il rrccrds ôrc choiìpcr
we can usually precompute ind¡ces to speed up downstream operat¡ons

1.. lilt? itlirl{:¡ l?es,:air¡ ¡ilttì!!ti

¡ntuit¡ve data indexing

wEshl*st far big daËa infrastrå"åcËure
råndorî accegs ¡n arhiljrary dimensions
pÒrsistcnt distr¡butûd storilge
real-time + low-lätency reads

ils-lôzy-¿ìlr-pr)$siiblÛ cväluilt¡crn
het€roqe¡rerus k1'v scale {bytes to q¡qabytes)

cfficieÍ1t mult¡-d¡mensio¡rai qucries/jô¡r:s ??

pure and simple ¡ntârfãce

r+ 2àiljl ilct,? lì!!ìÊ,ii:i:! lìar::,:!r

Page 39

I

j

,

intu¡t¡ve datã indexing

türe data stonage Ëandscape
{ mutõble k-v stsre$

a e,g. dynamû,i bêrkeleydb, loliyù call¡ret, ëtc.

" only suppÖrt s¡nûlë-key ¡oOkilp

bigtable-like ({oluinn=lråsed, sem¡-strxcturcd, distribå¡ted håsh tåble}
ô o.g. ilypcrt¡rblc, hbase, cloudstorr, hstore, ctc.
(h¡ghly coilìplex, d¡ff¡cult to get right
o no rnaturc {opel-sourco} impleffìÈnt3tii}ns

relat¡ðnã¡ dêtãbôse$
a i$tç of ûverhea{i, þ0lJì nìå¡ntenånr::e ånd transã{:tionål

*r¡ñvr$-spëcifie
o e,u. fnreEiiå, de{:s

Õ not iluì:t for scâle/'h¡gh-perforr¡ance
a n0 exle.nal interface

dðcument-bäsêd stGres

" É.ç. couchdb
ô r]ot aeant for hüüe d¿itö

: ::i'i-:ç lcla,ir R:.i.:iìüi {lè,ìr._

x: intuit¡ve dðta indexing

i!, :¡íi9 1l+l'l¡ Ê.e!tiìi:a:î..¿¡i:irr

+
+--ï-

Page 40

dlscodb
low-lcvûl C data structure
rrã9s key -> nluitiset(values)
í¡nmutôblri + pcr$¡stûnt: r,vr:tc itnco to ¿r filcì

Pvlhon,/erlanq \srappêrs: api = d¡clíilnåìy + crìf

€ 2.li::j, lgf ilié.(ù*' r-

dåscodþ fsnmat
designed for lightning fast random-acces

lookup ley idloffset

retrie\e va lues iteator

i.. iíllt :|ùLiì R?i:jr.i.¡ ù¿i:i!* i

header

keys -) int ids
{minimal perfecr håshing}

key id -> [value ids]
{deltâ-€ncôded}

key ids -) keys
value ids -) values

Page 41

x: intu¡tive data indexing

dËsaodb.enl
ets-like lrlang binding to discodb

. icibrnev(), dih¡üdrJ{tdb, Key, Vi¡].}

. ddbilookúp{}db¡ Key}, ddb:guêry(Ðdb, Cûf*ûeryl
t .jdb ¡ süirL-t- i ildl¡ r ì'lêtchSpec)

Lôzy query ovaiuðt¡on with ront¡nuãtionft

í!, :í)$¡ì 1 n 1."..i,.'..ße!èii ri::l ij) iì.le i-.

¡nbuilive datô indexinq

discodmx
* dìstríþutsd digcodlls fo.rn ¡nd¡íes lor dåtã
e d¡$ü{r jobs crcäte ind:rcs/hôrvr.lst qilery fesultÉi
o build//qúery índíces thrôugh RËSTful API
. dôâd slmplc comiñänd line/Python ¡ntrrfôcc$
e ìndex¡ng parãmeterized by parserldemuxêr/balancer functions
. $uppôrt$ qurryÌflç bill¡ôns öf key$ irl reöl-time

.a; 20c9 *iti+.ÍeË?âi',r-|g:iff

Page 42

intr¡itive data indêxing

dËscødex design

d iscod b

d iscod b

httpt / / dis

hftp:// d iscod

> cat d¿rl:êrijet. I discodex index
> discodex get (index> I dj-scodex query <qucry>

a ltlr:lg l.c.gf .1i,ñ.¡.-d¡'1..fti'hr_

discod

disco
master

pyth o n
client

command line

Iiwe deræml

4; ?009iiniiiñ ldJ,i'r¡..i ¿fiaI

intuitive datâ ¡ndexing

Page 43

j

:

!i

i

i..:..

i: .
,

!.
i:
i
ir;;;,'.,

Ì'
!

;

x: llrtuitive data inderìnE

quest¡ons?
a: 20$t ¡¡rkù R€si:aiir f-¿iìirr

Page 44

C*nfer*nc* Frcceedê n gs

15th lnternational Erlang User Conference

Thursdty 1? Navernber ?ûü#

Sr*c$chçårH, Sweden

{.Jüf Wåger
Uber Erlang programmer and CTO

[rEailg's -$mu,xrney tp the Cåcuds

Åbstract

Erlang was invented in the 90s to address rapid development of non-stop scalable

telecoms systems. lnitial requirements included massive concurrency, distribution
transparency, in-service upgrades, plug-and-play expansion and high programmer

productivity. A rapidly growing Open Source community is now using Erlang for scalable

web services, messaging systems and cloud computing services. ln this talk we will look

at how Erlang is breaking out of the clusters of last century and entering today's cloud

computi ng envi ronments.

$ioçraphy

Ulf Wiger became one of the first commercial users of Erlang (certainly the first in North

Americd when he bought a license in 1993. At the time, he was busy designing disaster
response systems in Alaska. ln 1996, he joined Ericsson and became Chief Designer of
the AXD 301 development. At nearly 2 million lines of Erlang code, AXD 301 is the most

complex system ever built in Erlang, and probably the most complex commercial system

built ìn any functional language. ln recent years, Ulf has been involved in several
products based on the AXD 301 architecture, and has been an active member of the
Open Source Erlang community. ln February 2009, Ulf began his new job as CT) of
Erlang Training and Consulting Ltd.

Page 45

t

[rlång Training ånd çoniulting Ltd

Erlang's Journey to the Clouds

Ertang UserConference, Nsv 12th, 2@9

The Ctoud, to us otd-timers

Þ Software as a Service
' Access program and data from anywhere, using any device

Þ Hardware as a Service
. Access computing resources as-needed, without owning a data center

Þ "Resolving the tensions between
the end-user and the data center"
. Power vs Accessibitity
. Powerfut clients vs Ease of deployment

' (Google VP Vic Gundotra @ Çoqclq I Q l{evnqle ?QüE)

.jripyfqlrt -liìüÂ [Ii¿rrg l;ni,:irù àrû tonlttttrt it¿ ew

1

Page 46

'Stovepipe model' on its
way out

The network as a
communications'ctoud'

Broadband ISDN -> Voice
over ATM -> Voice over lP

Today -> Mobile lP (lPv6)

"Conversationat services "

Erlang Problem Statement (paraphrased):
"How can we program tetephony
in THIS environment?"

Fütuþ
Muhlsrriø nðe¿rkslr*t

ûÐ*¿, -l:l

ffi/Y*,
?

w
iþ_, rei

@ tFtrBt ð13wffi{a rdsÕúg

Source: Ericsson Review No 1, 1998

(:rpyïiÌht 2t0ã trlêrg linrrti! rñ¿ tonrtllia8 ì.1d

Bridging the Legacy
tuEts¡flEtuM'@ú Source: Ericsson Review No 3, 2000

-i'
-\

ir-

Virtual voice trunks

Single-Domai
Voice-over-Packet

Cross-domain
Voice-over-Packet

n

C)pyf:{irt 1l)(iâ f:.1¿îìg liÁì¡i¡xÈ)n¿ {arlr1lìiÈ L1¿ w
2

Page 47

AXD 3OI
Sourcê: Ericsson Reúew No 3, 2000

w(ùflyilÌht 2t0li - frl¿rc ïïnin,ir ând t'¡n.irlti4¡ì ¡.1<j

Legacy Phone Switch
PLEX

Switch Emutator and
Voice-over-ATM Contro[ler

Erlang

Extremety complex state machines
Scatabitity and redundancy required
> 99.999% uptime, inctuding maintenance

CÐpyruht 2ù0ó - trl{ng lìåkúî{ âûi Conlul$.S Ltd w
3

Page 48

5o What Next...?

Þ The first big project worked out

Þ Ertang proven ready for the Big Time

Þ Erlang released as Open Source 1998
. No fanfare, no marketing...
. 1-2 messages/day on the mailing tist first year
. < 1000 downloads/month

Þ New initiatives needed...

(rpt:iúhì ¿tl)* {.¡l¡r q'rn,i' rr,_dtô'r1r,l,r.ril(: w

¿t

ldea: A Scatabte Web Server...?

Buitd a 5-nines scatable
web server based on AXD 301
. 256 processor boards on a

non-blocking, redundant
160 Gbps backbone!

Two erlang-related
lnnovation CetI proposats
presented at the same time

The AXD 301 track rejected -
Ericsson doesn't setl
web servers

C!\pyfi{ht'/C0â !d,ilg l¡¡ìrdr{ in¿ [onru{lÌiE lt¿ ew

4
Page 49

ldea: A Scalable Web Serveç...?.

L@ùdD6ù

¡nbuìÂoil Hm CsbMypseaa

Eddie - An Ericsson-sponsored Open Source web server ctuster framework 1999

(rpyiìthl ¿l1äÈi trl¡nq 1rir,r.!r iò¿ ilolfl,lt¡.t ¡.td ary

Scatabte Email - Btuetait MaiI Robustifier

Load-balancing frontend to
standard mail servers

Added
. RobustRess

' ln-serviee scatability
. Service differentiation

.. . transparentty

Reteased 1999
Q ttu,le cota ctusrer

C3 IMAP srândÊrd ctusrer

@ tMAP fr€€ ctust€r

CDpyii4hL 2iCô tri:irg 1r¡iriilq ¡ûa tonsutliì1È iti w
5

Page 50

Offtoad Acceterator

Bl,uetait bought by Alteon
(Atteon bought by Nortet)

Continuing to make
scalability sotutions on
commodity hardware

ISD-SSL released 2401

tsÞ $sL

t

\

\
\

Crpyiltht ¿l)0õ - l:rlnrS Ti¡,4'¡F rnd t¡nrdlinq i.fd w

abberd

Fulty repticated
Mnesia database

First released 2003

CÐpyriÈht ¿Qti¡ - trl¿lng ti¡l.fîg rna {orsu{ti4È iti w
6

Page 51

Emait and lM Gateway

Massively scatabte

>1Zk messages/second

1 50,000 connected users

Bridging different
messaging standards

n tá¿tå3

fÉl}}
âY

tlcq

n#"

% w
wE

Cùpydtiht 20û{ - Írl¡r8 lïnifl4ã âod tinrulti4tt ¡.1d 6ry

Þ Offering a cost-effective way to buitd...
. Massivety scatable
. Extremely robust
. Eminentty maintainabte

...back-end services (using an odd-looking syntax)

Þ But organizations developing such systems
are by nature conservativet

Þ Pert ("duct tape"), Ruby and Python (OO scripting)
offered something more immediately useful to
i ndividuat programmers

Cùpyr¡qht10tM .[rl4frg lrál.dr{ ¡ßi Con$ttlilÈ Ltd e,w

7
Page 52

What Changed?

Þ Web services matured - started requiring scatabitity
and serious uptime

Þ Web 2.0 - opened up for a new class of (conversationat)
web services

Þ Multicore - forced everyone to start thinking about
concurrency

Þ Virtualization - brought distributed systems devetopment
to the masses

Crpyii{hl ¿ü0{i trl¡ng 1ïnir'¡{)ôd {:oniriri.t:.ld ery

Þ Yaws - fast dynamic-content web server

Þ MochiWeb - dynamic-content weh server with JSON

Þ ErtyWeb - Web development framework

Þ Ertang Web - XHTML-based Web framework

Þ Nitrogen - Erlang-styte JQuery

Þ WebMachine - RESTfut Web services

Þ Chicago Boss - Django-styte Web framework, but asynchronous

C¡pir¡Èht:tüô . frl¡rrg'li¡iilirq rûi larlrlflr¡ Lla 6w

I
Page 53

for the Ctoud

Þ Scalaris - Distributed Hash Tables

Þ CouchDB - RESTfut Document Store

Þ Dynomite - Dynamo-tike Distributed Key-Value Store

Þ Riak - Decentratized Key-Value Store w/map-reduce

Þ Disco - Map-Reduce framework

Þ Ctient versions for non-Erlang storage engines
. MongoDB, TokyoCabinet, MySQL, BDB, ...

Cùlyr!'¡hl ?t{ì¡} fil¿nq lï¡it'.!¡ âùd {-oni!4tiii} i.id w

Þ Erlang was born and bred
for Cloud infrastructure

Þ Connectivity, scalabitity,
messaging are becoming
mainstream concepts

Þ Ctoud computing brings
Distributed Programming to
the masses

Rcqu6ts pcr monlh to ww.êdûg.o¡g

3üXrm

25ûU,

2mn

15(Im

Írnm

s{xlm

o

å Fã Ë äååË s$Ë õË 55 Ë ãEåË SË å äåå

Þ New exciting components
appear every month

eryt1¡rpyrieht 2ll0l trl¿lng liålrdîq ¡il¿ torrlttlilg Lt¿

I
Page 54

C*nfera nce FroceadË ngs

15th lnternational Erlang User Conference

?hursdny Iä Nq*ven:her 2ü*$

$t**kh*lm, S¡¡ved*n

Råckard {ag'de$ï

Tmå<y* Cabinet affid Coc.achDB wãËh

f\lTs: es åa

Ahstract

Couch DB and Tokyo Cabinet are two very interesting database managers. CouchDB is

famous for its robustness, its simple document storage model, and its RESTful interface,

and also for the fact that it is written in Erlang. TokyoCabinet, on the other hand, is

written in C, is blazingly fast, and an interface to Mnesia already exists (tcerl via mnesi-

aex). ln this talk I will discuss how I used Mnesia as a frontend to these database manag-

ers and the problems I encountered while integrating it with a legacy Erlang system

based on Mnesia. I will also present the results of some transaction benchmarks, and

discuss some interesting features of CouchDB and Tokyo0abinet.

ffiicçnaphy

Rickard is doing a Master's thesis at Kreditor, where he evaluates two different database

managers, Tokyo Cabinet and CouchDB, for possible use as a backend for Mnesia. He

got his first experience with Erlang during a course in Distributed Sysfems at Uppsala

University.

Page 55

¡r--lll.

.: .\":,

I '' ,"
i' ,,
t:r

' l::'"l

Ir/3t2009

Tokyo Cabinet and CouchDB
with Mnesia
by Rickard Cardell

Tokyo Cabinet

- Key-value store
- space efficient
- several storage types:

Hash, B+tree and more
- several API:s: Perl, Java, Ruby, LUA, Erlang
- apps for distributing: Tokyo Tyrant
- used by large community

1

Page 56

tr/3/2009

Tokyo Cabinet cont.

- disk resident - both in RAM and on disk
- need syncfl for resident storage
- no repair of broken tables
- mmapQ - memory mapped file

Pad of file
mapped to

RAM

Fil¡ ln
RAM

Fils an diek

:

i..
4.
t'

Ì

å

[. ,r.

CouchDB -basic features

- made in Erlang!
- HTTP Restful interface
- replication
- non-sql
- views for queries
- documents for storage
- no type constraints in database
- MVCC -MultiVersionOoncurrencyOontrol

- revisions
- no locks or transactions
- conflict resolution on application level

- non destructive updates
- much more..

2
Page 57

llt3t2009

Mnesia's shortcomings

- infamous 2GB table limit of DETS

- ETS is RAM hungry

- repair broken table takes time

Prerequisites

- a large system highly integrated with Mnesia
- had to integrate my solution to the system

- replacing Mnesia is a big effort
- all data stored in tables as Erlang terms
- need to replace lots of mnesia:select to X:select
- table definitions as records - untyped
- complex relations between tables

- How to solve this?
- Use a totally different DBMS

or
- Replace ETS and DETS in Mnesia

3

Page 58

11 t3t2009

My solution

- make backends of Tokyo Cabinet and CouchDB
- less code changes to the system
- transparent to the user
- will make use of Mnesia locks and transactions

- already an extension to Mnesia: MnesiaEX

t,..!,"
iln*. * -,al
}',,1:' '-,::i'.

[ir.: ;r
;.
l: . ,t:r .. :
;, :1-- l.:l
i: :f ..:.'l
if;" i,:,.1
t. ìi-i¡;--,ì
i,'-,iiì, lì_'

lrr.:
i ,-: tr.'

'

¿.. ...:'
¡ t :.'

iù ..
I

4

MnesiaEx - Mnesia extension

- ability to apply arbitrary storage to Mnesia
- almost transparent to the user
- adds a new storage type external_copies

- works together with current storage types
- ACID issues
- Tokyo Cabinet has already API:Tcerl

Page 59

tt/3t2009

Tokyo Cabinet with MnesiaEX -Tcerl

- API for Tokyo Cabinet B+tree:Icerl
- written by Paul Mineiro
- used in production

- interface to Mnesia via linked-in-driver
- speed over uptime

- good support for mnesia's functions
- select, match_object, read, write, next, previous ...

- ordered_set
- store the records as binaries
- sync or async writes
- need clean exit

CouchDB with Mnes¡aEX - Cdberl

- implemented Mnesiaex behaviour for CouchDB
- named it Cdberl

- Multi Version Concurrency Control means
no locks/transactions
- ignored MVCC

- can't use replication
- can't use revisions

- using the HTTP interface
- Erlang terms to JSON
- cache revisions for faster updates

- improvements to do: use bulk documents

5

Page 60

Cdberl - impedance mismatch

- map/reduce want JSON, not binaries

- no direct translation from Erlang terms to JSON
- non trivial problem
- example: Biglnt

Cdberl - quer¡es

- a query needs a precomputed view

- mnesia:match_object -> create a view and then invoke
- not very dynamic
- long time to generate views

1U3/2009

I

Page 61

6

Il13t2009

Representing Erlang terms in JSON

,xample:
| >tojson({person, 1 }).
{obj:{tuple:[person, 1]J]"

:rlang

f'o*
¡tom,

'asdf
þtring,

þ"asdf"
ist (str¡ng),

'"otp"
þnay,

Þ[111
,116,112]

nteger
,1234

Þ32-bit lnteger/float

ltzs+
uple,

'{1,2,3,4}
þbject with array,

Þ {tuple, t1,2,3,41}

Stress testing

- TPC-B, a standard DBMS benchmark / stress test
- measures transactions per second
- updates to four tables per transaction

- 3 reads, 3 writes, 1 update
- serial transactions

- Account table, 100000 records/rows
- Teller table, 10 records/rows
- Branch table, 1 record/row
- History table, 0 records/rows from start

7

Page 62

11 /3t2009

¡l

TPC-B -result

Result:

- ram_copres:
- disc_copies:
- Tcerl (large cache)
- Tcerl (small cache)

5000tps
420Otps
200Otps
1200tps

- disc_only_copies
- Cdberl:

20Otps
30 tps

¡Stress test -result cont.

Disk space of database files

Account table, 100000 records. Actual disk size:

Cdberl (CouchDB):
disc_copies:
disc_only_copies:
Tcerl (TokyoCabinet):
ram_copies:

111M8 / 30M8.
21MB
15MB

4MB
nla

*
before and after compaction

8

Page 63

tr/3/2009

My conclusion

- CouchDB
- robust storage
- easy to create powerful views
- easy to communicate with
- easy to replicate
- growing user base
- no load time on startup
- designed for parallell use

- takes time to generate a view on large table
- no real dynamic queries
- a bit slow write performance
- quite large files until compaction
- doesn't integrate well with Mnesiaex

My conclusion cont.

Tokyo Cabinet

- integrates quite good with Mnesia
- although experienced memory leaks and crashes

- good read and write performance
- simple API
- very small database files
- no startup time on load

- little documentation
- only one developer
- must be synced to disk

9

Page 64

Questions?

tU3t2009

.:. -

So

- Mnesiaex is a fine interface
- very easy to apply other database manager

- Tokyo Cabinet and Tcerl need more investigation in regard to
durability issues.
- CouchDB, can be a part of the system, but probably not the
general solution for Klarna

Page 65
10

Appendix - misc info
Cdberl source code and information is located at GitHub: htto://oithub.com/RCardell/cdberl
The TPC-B benchmark that I've used can also be found there.

All tests ran for between lsminutes to 4hours, -20 times per storage types until stable result was found. The
tables was checked for consistency afterwards.
Test setup:

Erlang/OTP R1285 w. H¡PE (default setup was fastest)
Mnesiaex 4.4.7.6 http://code.oooqle.com/o/mnesiaex/
CouchDB 0.90

Tokyo Cabinet 1.4.21
- bucket number: 2-5 times n records
- size of leaf nodê cache

small cache setup: smallest possible = 1

large cache setup: best result with n = -5000x

Tcerl 1.3.1 h htto://code.oooole.com/p/tcerl/
Tcerldrv 1.3.19

Ubuntu 9.04 64bit
1x4 Cores
8 GB RAM
2 SATA Disks Raid 0

Rickard.Cardell@gmail.com

tlt3t2009

Page 66
11

Confær*nc* Froce*elI ngs

15th lnternational Erlang User Conference

Tårursday 12 lrlovenrber äûü9

Stocåch*!m, Swed*n

ArrorËytrßffty fin Eråa*g

Generally speaking, servers and clients in Erlang are implemented as named functions

in named modules. Similarly, processes communicate via messages that have a

statically-known structure, and specifically, with static tags, that serve as the \names" of

the messages. This exposes a great deal of information about an Erlang application:

The names of the modules, the name of the entry-point functions within the module, the

\names" of the messages between the server and the client, etc. ln this work, we show

how higher-order functions, and some well-studied techniques from functional program-

ming, can be used to obtain anonymity of servers and messages.

Grxy 1¡Vimnen

Guy Wiener is a Ph.D. student at Ben-Gurion University, studying software engineering

and program m i ng languages.

Mayer GmEdberg

Mayer Goldberg did his PhD research in programming languages under the direction

of Daniel P Friedman of lndiana University, and Olivier Danvy of the University

of Aarhus. Mayer is currently a senior lecturer of computer science at

Ben-Gurion University, Beer Sheva, lsrael.

Page 67

¿

I

i
I

Anonymity in Erlang

Mayer Goldberg & Guy Wiener

Abstract
Generally speaking, servets and clients in Erlang are implemented as named functions in named modules.
Similarly, processes communicate via messages that have a statically-known structure, and specificalÌy,
with static tags, that serve as the "names" of the messages. This exposes a great deal of infbrmation
about an Erlang application: The names of the modules, the name of the entry-point functions within
the module, the ttnames" of the messages between the server and the client, etc.

In this work, we show how higher-order functions, and some well-studied techniques from functional
programming, can be used to obtain anonymity of servers and messages.

1 Introduction
The basic looping construct in Erlang is the tail-recursive function call. Erlang compiles these into code that
is as efficient as r¡hile-loops in other programming languages.

Servers in Erlang are typically written using recursive functions 12, Chapter 8.2] and 13, Example 4-1].
The server is implemented a,s a function that receives a message, and as long as the server cont'inues afher
receiving the message, the server will be re-invoked by calling the respective function taii-recursively.

Invoking a function on an Erlang node involves calling one ofthe spawn functions with the node (optional),
the module name, the function name, and the list of its arguments. It is also possible to cail spawn by passing
it a closure as an argument. Any global name that is evaluated by this function must be defined on the node
on which the spawned process will be running. If the name is undefined a run-tlme error will occur.

The fact that the server is recursive exposes several things about the underlying architecture:

¡ The name of the module in which the server appears needs to be known to the client.

o The client must also know the name of the server function and its arity.

o There must be, on the server, a mounted file system. If the module file is located on that file system,
then the Erlang system must have read privileges to it. If the module flle is located only on the client,
the Erlang system must have write privileges to it

There are situations in which these constraints are undesirable. Ðrlang is currently available for many
platforms, including thin clients and mobile devices. Forcing the client and the server to share f,les in
advance prevents users from taking advantage of available Erlang nodes on resource-restricted piatforms.
Even if accessing the file system is permitted, it places a constraint on general-purpose servers. Instead of
having the client hold the software that it wants to send to the general-purpose server, it forces the client to
first update the server and only then run the new software on the server. Exposing the structure ofthe server
module is also not always desired, since that makes the server writer more focused on the public functions
of the module, rather then on the message protocol.

2 Replacing recursion with self-application
Any recursive call can be replaced by a cail to a function reference that is passed as an argument. Consider
the following example of the factorial function, given in the ubiquitous C programming language:

Pagb 68

Recursive version:
int fact(1nt n) {

return (n == 0) ?

1..
n * fact(n - 1);)

Used as:

int n-fact = fact(n);

Self-applicaiive version:
int fact (void *f, int n) {

reutrn (n == 0) ?

1:
n x ((int (*)(void x, int))f)(f, n - 1);)

Used as:

int n-fact = fact(&fact, n);
Notice that the self-applicative version computes the factorial function only when the function is applied

to itself, along with an integer argument. If we were to code the self-applicative version of factorial in Erlang,
we wouìd get:

fact(F, 0) -> 1;
fact(F, N) -> N i (F(F, N - 1)).

which can be invoked as follows:

fact(fun fact/2, ñ).

Note that the self-applicative function fact is not recursive. It can be written entirely using anonymous
frrnctions:

Fact =
fun (N) ->

(fun (F) -> F(F, N) end)
(fun (F, N) ->

case N of
0 -> 1;

-->NxF(F,N-1)
end

end)
end.

and this is how it can be invoked:

> Fact (5) .

120
> Fact (7) .

5040

Writing such functions can be simplified by slightly changing the interface of such functions, and ab-
stracting out a general-purpose "recursion-maker", known in the functional programming community as a

"fixed-point combinator" 14, Page 178]:

Y1 =
fun (F) ->
(fun (X) _> X(X) end)
(fun (M) ->

F (fun (Arg) _>

(M(M)) (Arg) end)
end)

end.

And here is how Y1 could be used:

Pagb 69

To define factorial:
Factorial =
Y1 (fun (Fact) ->

fun (N) ->
case N of

0 -> 1;
_->N*Fact(N-1)

end
end

end).

To define Fibonacci:
Fibonacci =
Yl (fun (Fib) ->

fun (N) ->
case N of

0 -> 0;
1 -> 1;
_ -> Fib(N - 1)

Fib(N - 2)
end

end
end).

+

We can now use our functions as follows:

>Factorial(5). l>Fibotr.""i(10).
t2o I ss
> Factorial (7) . I r Fibor,.""i (20) .so4o I ozos

In languages that support variadic functions (functions that take any number of arguments), for ex-
ample, Scheme, Python, etc., it is possible to extend Y1 so that it can be used to define any number of
mutually-recursive functions, each taking any number of arguments 16, 7]. Because Erlang lacks support for
defining variadic functions, we shail not pursue this direction here, but rather encode our functions using
self-application directly.

3 Anonymous servers

As we have seen, it is possible to rewrite recursive functions, so that the recursive call is replaced bv
self-application. This allows recursive functions to be written anonymously, that is without using a globallv-
defined name for the function. Since a server in Erlang is a specific kind of recursive function, this same
rewriting strategy can be used to create anonymous Erlang servers.

Here is a toy server for returning successive Fibonacci numbers:

FibonacciServer =
(fun (X) -> (X(X))(0,1) end)
(fua (M) ->

fun (N1, N2) ->
fun O ->
receive
{fib, Pid} ->

Pid ! tfib, N1),
((M(M))(N2, N1+N2))O ;

restart -> ((M(M))(0, 1))O ;

done -) ok
end

end
end

end).

The server answers 3 messages:

o {f ib, P¿d,},to have the next number in the Fibonacci sequence sent to the process ID Pi,d

o restart, to restart the Fibonacci server.

. done, to stop the Fibonacci server.

Pagb 70

This is the entire code for the server. Any client can pass this code onto any server in its cluster, via the
spawn command. Here is how it can be used:

(one@erlang,edu)26> P = spar¡n('two@erlang.edu', FibonacciServer) .

<5574.42.O>
(one@erlang.edu)27> P ! {flb, selfO}.
{fib, <0. 54. 0>}
(one@erlang.edu)28> P ! {fib, selfO}.
{fib,<0.54.0>}
(one@erlang.edu)29> P | {fib, selfO}.
{fib, <0. 54. 0>}
(one@ertang.edu)30> P ! {fib, self O}.
{f1b, <0 . 54. 0>}
(one@erlang.edu)31> P ! {fib, selfO}.
{fib,<0.54.0>}
(one@erlang. edu)32> flushO .

She11 got {fib,0}
She1l got {fib,1}
She11 got {fib,1}
She11 got {fib,2}
Shell got {fib,3}
ok
(one@erlang.edu)33> P ! restart,
xestart
(one@erlang.edu)34> P ! {fib, selfO}.
{fib, <0. 54. 0>}
(one@erlang.edu)35> P ! {fib, selfO}.
{fib, <0. 54. 0>}
(one@erlang.edu)36> P ! {fib, selfO}.
{fib,<0.54.0>}
(one@erlang.edu)37> P ! {fib, selfO}.
{fib, <0. 54. 0>}
(one@erlang.edu)38> P ! {fib, setfO}.
{fib, <0. 54. 0>}
(one@erlang.edu)39> P ! {fib, selfO}.
{fib, <0. 54. 0>}
(one@erlang.edu)40> P ! done.
done
(one@er1ang. edu)41> f lushO .

SheII got {fib,0}
Shetl got {fib,1}
Shell got {fib,1}
She11 got {fib,2}
She11 got {fib,3}
She11 got {fib,5}
ok

Notice that we do not know anything about the node on which the server is running other than its address:
No paths, module names, function names, etc.

4 Anonymous messages

Now that we have anonymous functions, we move on to anonymous messages. Messages typically have a
static structure to them, they are usually ordered tuples the first tuple of which is an atom that serves as a
tag that identifies the type of message.

:

:

I

I

:r
:

I

Pagþ71

For many purposes it is desirable that message tags be privately shared between a client and a server,
and not accessible otherwise. This is quite easily achieved as an extension to our anonymous server. For
private tags in the following examples, we chose 2O-digit long pseudo-randomly generated large integers. In
a realistic application, we might use larger integers, or might prefer pseudo-randomly generated atoms of
great length.

In the foilowing example, we modified the Fibonacci server, to define a server-client pair in which the
ciient asks for the next Fibonacci number using a message that is tagged via a secret tag, generated at
run-time, and shared only between this specific server and ciient. The code could be used to create any
number of such server-ciient pairs, each pair sharing its own secret pseudo-random tag. \Me left out the
definition for the pseudo-random number generator Random/O, which just calls random:uniform,/O several
times, and creates an integer of the right length.

ServerAndClient
fun O ->
(fun (Mfib) ->

{(fun (X) -> (x(x)) (0, 1) end)
(fun (M) ->

fun (N1, N2) ->
fun O _>

receive
{Mfib, Pid} ->

Pi.d ! {f Íb, N1},
((M(M))(N2, n1+N2))O ;

restart -> ((M(M)) (0, 1)) o ;

done -) ok
end

end
end

end),
(fun (Pid) -> Pid ! {Mfib, selfo}, ok end)}

end)
(Ra¡domO)

end.

The following interaction shows how to define a server-client pair, how to spawn the server, how the client
communicates with it, and what messages are received in response.

6) {Server, Cl1ent} = ServerAndClientO.
{#Fun<er1-eval . 20. 117942762>, #Fun(erl-eva1 . 6. 35866844>}
7> Pid = spawn(Server).

39.0>
Client (Pid)

Client(Pid).

14> Client (Pid) .

ok
15> flushO.
She11 got {fib,0}
She1l got {fib,1}
Shell got {fib,1}
She11 got {fib,2}
Shel1 got {fib,3}
Shel1 got {fib,5}

<0

8>

ok
9>

ok

Pagb72

She11 got {fib,B}
ok

The value of Mflb is a 2O-digit integer, and is unique to the client-server pair. We could just have easiÌy

have picked a 40-digit, or 100-digit integer, rendering impractical any attempt to anive at the tag, either by
guessing, or by systematically trying every integer.

In fact, tve can make the tag even more secure, by having the client and server re-seiect a new tag every

so often. An unauthorized client that might try to connect to the server by trying out numbers sequentially
would be abÌe to conclude nothing from past failures.

Here is a function for creating server-client pairs that re-select the tag after each use. Each call to
ServerClientAndlnitialTag would return a new triple of server, client, and an initial tag by which both
the server and the client are synchronized:

ServerClientAndlnitlalTag =

fun O ->
(fun (Mfib) ->

{(fun (X) -> (x(x)) (0, 1, Mfib) end)
(fun (M) ->

fun (N1, N2, MfibMsg) ->
fun O ->
receive
{MfibMsg, Pid} ->

(fun (.Ner¡MfibMsg) ->
Pid ! {fib, N1, NewMfibMsg},
((M(M)) (N2, N1+N2, NewMfibMsg)) o

end)
(RandomO) ;

resrart -> ((M(M)) (0, 1)) o ;

de¡¡s _) ok
end

end
end

end) ,
(fun (Pid, Msg) -> Pid ! {Msg, selfO}, ok end),
Mf ib)

end)
(RandomO)

end.

The following interaction shows how to define a server-client pair, what is the value of the flrst tag, how to
spawn the server, how the client communicates with it, and what messages are received in response, and

how the vaÌues of subsequent tags change according to the value of the responses from the server.

5) {Server, Client, InitialTag} = ServerClientAndlnitialTagO.
{#Fun<erl-eva1 . 20 . I77 I 42162>, #Fun(er1-e v al . 72 . 35291 978>,

684685090982776576}.
6> Pid = spawn(Server).
<0.38.0>
7> Client (Pid, 684685090982776576) .

ok
8> flushO.
Shel1 got {f ib, 0, 923053287 !782784512}
ok
9> Client (Pid, 923053287tt827845t2) .

ok
10> flushO.

ì

I
I

..
I

Pa$ 73

Shel1 got {f ib, 1,31133272937 !207 t0656}
ok
11> Client (Pid, 311332729371207t06b6) .

ok
12> flushO.
She11 got {fíb, 1,59651150244340162560}
ok
13> Clíent(Pid, 59651150244340162560),
ok
14> flushO.
Shell got {fib,2,558257958151565475e4}
ok
15> Clíent(Pid, 55825795815156547584) .

ok
16> flushO.
Shell got {f ib,3,5621245264344t508352}
ok
17> C1ient (Píd, 562t245264344I508352) .

ok
18> flushO.
Shell got {f ib,5,57882298363287674880}
ok

As can be seen, each message sent to the server has its ovr'n message tag that is synchronized between the
server and the client. Each message sent from the server to the client contains, in addition to the fib tag
and the next value in the Fibonacci sequence, the message tag to be used by the client in the subsequent
request.

Any realistic cÌient would need, of course, to receive the messages sent back by the server, and especially
in this last example, where the client would be unable to communicate with the server unless it obtained
the name of the subsequent message tag. For brevity, however, we presented only the simplest server-client
pairs that use anonymous messages to communicate.

5 Discussion

Self-application has its origins in the À-calculus and combinatory logic, where it is central to defining re-
cursive functions. Functional programming languages, and especiaily those that are dynamicallv-tvped, can
use self-application in place of recursion. Exercises related to self-application and recursion are common
in functional programming courses. For example, Structure and, Interpretøti,on of Computer Programs 17,
Section 4.l.7,Page 393], and The Li,ttle LISPeT lb, Chapter 9, page 121].

In Erlang, self-appiication is more than just a programming exercise. While recursive functions cannot be
passed between nodes, it is possible to pass functions that use self-appiication in place of recursion. We have
thus been able to pass complete lalbeit, smail] servers among nodes. This has been done without requiring
any access to the flle system on the server host.

Once we have an entire server as a higher-order, non-recursive function that can be passed between nodes,
it is straightforward to abstract over the message tags, and create server-client pairs that have their own,
private message tags. For some added privacy, we can even have the message tags change between message
calls.

In the servers we demonstrated, the message tags are seÌected pseudo-randomly during run-time. This is
significant, because at no point does the source code contain the message tags. The message tags are private
even if the source code is available.

Ifthe pseudo-random number generator in these exampÌes is replaced by a true, hardware-based, random
number generator, a formidable ievel of privacy should be achieved.

Pagê74

References

f1] Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and, Interpretation of Computer
Programs. The MIT Press, McGraw-Hill Book Company, Second edition, 1996.

[2] Joe Armstrong. Progrømm'ing Erlang: Software for a Concurrent World. Pragmatic Bookshelf, 2007.

[3] F]ancesco Cesarini and Simon Thompson. Erlang Progrømmi,ng. O'Reilly, June 2009.

[4] Haskell B. Curr¡ Robert Feys, and William Craig. Combi,natory Logic, vofume I. North-Holland Pub-
lishing Company, 1958.

f5] Daniel P. Friedman and Matthias Felleisen. The Li,ttle LISPer. Science Research Associates, Inc, 1986.

[6] Mayer Goldberg. A Variadic Extension of Curry's Fixed-Point Combinator. In Olin Shivers, editor,
Proceeil,ings of the 2002 ACM SIGPLAN Worlcshop on Scheme and, Functi,onal Programm'ing, pages

69-78, October 2002.

f7] Christian Queinnec. LISP In Small Pi,eces. Cambridge University Press, 1996.

PagÞ 75

Page 76

Cenfelcnce FroceedÊ nç s

15th lnternational Erlang User Conference

K*stås Sægonas
HiPE compilerwriter and tool developer

*paqL¡e ûaËa Types in Erlamg

TFrursday 1ã N*vernher 3ü#S

$t*c$qholm, Sweder'¡

åbstrae t
Many languages provide mechanisms for programmers to declare abstract data types

(ADTs), hide the details of their implementation, and allow manipulation of these ADTs

only by controlled interfaces. This information hiding strategy allows the implementation

of the ADT module to be changed without disturbing the client programs, ln Erlang

programs structural information about ADTs is exposed by pattern matching and type

inspecting built-ins, making it very hard to guarantee that changes in the ADT's imple-

mentation will not have devastating effects on client's code. We have recently extended

Erlang with the ability to declare opaque terms (i,e,, terms whose structure should not

be inspected outside their defining module) and detect violations of their opaqueness

using Dialyzer. ln this talk we will present this addition to the language and its capabili-

ties, and will show interesting examples of code that (erroneously) depended on imple-

mentation details of commonly used library modules (ETS tables, gb-sets, gb-trees, etc.)

ffiímge"aphy

Kostis Sagonas is an academic who has been involved in the development of the Erlang

language and its implementation since 1999. At Uppsala University, he has led the

development team of the H|PE native code compiler. Together with his students he has

contributed directly to various changes and additions to the Erlang language (e.g.,

bit-level pattern matching and bit-stream comprehensions, type and spec declarations,

etù its libraries and runtime system support for concurrency. A hacker at heart, he has

created widely used software development tools for Erlang, like dialyzer which by now

has located literally thousands of bugs and software defects in Erlang programs. At

NTUA in Athens, he has turned his obsession for clean designs and programs into yet

another slick software tool for Erlang, called tidier, whose details are going to be

unveiled for the first time at the Erlang Factory.

Page77

¿t

I

t

Page 78

C*nfer*nce Frocecd å nçs

15th lnternational Erlang User Conference

T[r*rsd*y 1ã Nevernber 2tû9
Sr*ckh*ln:, Sw*d*n

ãnæprrw¡ng y*q..¡fl Ëest crde w¡th Wrar":gñer

ln this talk we show the 'similar code' detection facilities of Wrangler, combined with its

portfolio of refactorings, allowtest code to be shrunk dramatically, underthe guidance

of the test engineer. The talk is illustrated with examples from Open Source and

commercial Erlang development projects.

t-åuiqång Lå

lnventor of Wrangler

Huiqing Li got her PhD at Kent University in September 2006 and works as a post doc

in the EU project ProTest to further develop the refactoring tool Wrangler.

5ã¡æon Thmmpsffiffi
Creator of Wrangler and co-author of Erlang Programming

Simon Thompson is Professor of Logic and Computation in the Computing Laboratory of
the University of Kent, where he has taught computing at undergraduate and postgradu-

ate levels for the past twenty five years, and where he has been department head for the

Iast six. His research work has centred on functional programming: program verification,

type systems, and most recently development of software tools for functional program-

ming languages. His team has built the HaRe tool for refactoring Haskell programs, and

is currently developing Wrangler to do the same for Erlang. His research has been funded

by various agencies including EPSRC and the European Framework programme. His

training is as a mathematician: he has an MA in Mathematics from Cambridge and a

D.Phil. in mathematical logic from Oxford. He has written four books in his field of
interest; Type Theory and Functional Programming published in 1991; Miranda: The

Craft of Functional Programming (1995), Haskell: The Craft of Functional Programming
(2nd ed. 1999) and Erlang Programming (with Francesco Cesarini, 2009). Apart from

the last, which is published by O'Reilly, these are all published by Addison Wesley.

:4

*ffi
$ff

Page 79

Improving your test code with Wrangler

Huiqing Li1, Adam Lindberg2, Andreas Schumachers and Simon Thompsonl

1 School of Computing, University of Kent, UK
{H. Li,S. J. Thonpson}@kent. ac.uk

2 Erlang Training and Consulting Ltd.
ada¡. lindberg@erlang-consulting. con
3 Eri"r"o.r SW Research, Ericsson AB
andreas . schu.nacher@ericsson. con

Abstract. In this paper we show how the 'similar code' detection facil-
ities of Wrangler, combined with its portfolio of refactorings, allow test
code to be shrunk dramatically, under the guidance of the test engineer.
This is illustrated by a sequence of refactorings of a test suite taken from
an Erlang project at Ericsson AB.

Key words: ErÌang, similar code, refactorìng, testing, clone detection,
generalisation, strategies

1 Introduction

Wrangler 11,2] is a tool that supports interactive refactoring of Erlang pro-
grams4. It is integrated with Emacs and now also with Eciipse. Wrangler itself
is implemented in Erlang. Wrangler supports a variety of refactorings, a,s well
as a set of "code smell" inspection functionalities, and facilities to detect and
eliminate code clones. In this paper we explore a case study of test code provided
by Ericsson SW Researchs

\Mhy is test code particularly prone to clone proliferation? One reason is
that many people touch the code: a first few tests are written, and then others
author more tests. The quickest way to write these is to copy, paste and modify
an existing test, even if this is not the best way to structure the code, it can be
done with a minimal understanding of the code.This observation applies equally
well to long-standing projects, particulr,riy with a large element of legacy code.

What comes out very clearly from thc case study is the fact that refactoring
or cÌone detection cannot be completely automated. In a preliminary experiment
by one of the Wrangler developers (Thompson) the code was reduced by some
20% using a "slash and burn" approach, simply eliminating clones one by one.
The result of this was - unsurprisingly - completely unreadable. It is only with
the coilaboration of project engineers, Lindberg and Schumacher, that we were

a We acknowledge the support of the 7th Framework Programme of the European
Commission for the ProTest[3] project to which the work reported here contributes.

5 We rr" gra.teful to Ericsson SW Research for permission to include portions of the
code in this paper.

Page 80

2 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

able to identify which clone candidates should be removed, how they could be

named and parameterised and so forth. Moreover it requires domain insight to
decide on which clones might not be removed. These questions are discussed at
length here.

The remainder of the paper is organised as follows. Section 2 describes the
Wrangler refactoring too1, and in particular the support that it provides for clone
detection and removal. Section 3 describes the case study itself, and Section 4

highlights some lessons coming from the case study (cross-referenced with the
stages ofthe case study). We then describe future work and conclude the paper.

2 Clone detection and removal with Wrangler

Duplicated code, or the existence of code clones, is one of the well-known bad

code smells when refactoring and software maintenance is concerned. 'Dupìi-
cated code', in general, refers to a program fragment that is identical or similar
to another, though the exact meaning of 'similar' might vary slightly between

different application contexts.
While some code clones might have a sound reason for their existence [4]'

most clones are considered harmful to the quality of software, as code duplication
increases the probability ofbug propagâ,tion, the size ofboth the source code and

the executabÌe, compile time, and more importantÌy the maintenance cost [5,6].
The most obvious reason for code duplication is the reuse of existing code

(by copg, paste and modnfy for example), iogic or design. Duplicated code in-
troduced for this reason often indicates program design problems such as the
lack of encapsuiation or abstraction. This kind of design problem can be cor-
rected by refactoring out the existing clones in a later stage 17,8,9], it could

also be avoided by first refactoring the existing code to make it more reusable,
then reuse it without duplicating the code l8]. In the last decade, substantial
research effort has been put ìnto the detection and removaÌ of clones from soft-
ware systems; however, few such tools are available for functional programs, and
there is a particular iack of tools that are integrated with existing programming
environments.

'Wrangler Wrangler [1,2] is a tool built in the School of Computing at The
University of Kent, with support from the European Commission. Wrangler
supports interactive refactoring of Erlang programs. It is integrated with Emacs

and now also with Eclipse. \ffrangler itself is implemented in ErÌang. Wrangler
supports a variety of refactorings, as well as a set of "code smell" inspection
functionalities, and facilities to detect and eliminate code clones.

Wrangler provides a'similar' code detection approach based on the notion of
anti,-uni,fi,cati,on [10,11] to detecting code clones in Erlang programs, as well as a

mechanism for automatic clone elimination under the user's control. The anti-
un'ifier of two terms denotes their least-general con'Ln't'on abstract'ion, therefore

captures the common syntactical structure of the two terms.

¡

I

Page 81

Improving your test code with Wrangler 3

In general, we say two expression/expression sequences, A and B, are s'im'ilar
if there exists a 'non-trivial' ìeast-general common abstraction, C, and two sets
of substitutions d1 and o2 which take C to A and B respectiveÌy. By 'non-trivial'
we mean mainly that the size of the least-general common abstraction should
satisfy some threshold, but certainly other condltions could be added.

This clone detection approach is able, for example, to spot that the two
expressions ((X+3) +4) and (4+ (5- (3,kX))) are similar as they are both instances
of the expression (Y+Z), and so both instances of the function

add(Y,Z) -> Y+2.

Our approach uses the Abstract Syntax Tree (AST) annotated with static
semantic information as the internal representation of Erlang programs. Scalabil-
ity, one of the major challenges faced by AST-based clone detection approaches,
is achieved by a two-phase cione detection technique. More detaiÌs of the process
can be found in [12].

'Wrangler clone detection Wrangler provides facilities for finding both iden-
tical and similar code. Two pieces of code are said to be i,d,enti,cal if they are the
same when the vaiues of literais and the names of variables are ignored, while the
binding structures are the same. The Wrangler definition of s,imi,lari,ty is given
above. For both identical and similar code, two operations are possible:

Detection This operation will identify all code clones (up to identity or simi-
larity) in a module or across a project. For each clone the common general-
isation for the clone is generated in the report) and can be cut and pasted
into the module prior to clone elimination.

Search This operation allows the identification of all the code that is identicaÌ
or similar to a particular selection, so ls directed rather than speculative.

Examples of both will be seen in the case study.

3 The Case Study

The case study examined part of an Erlang implementation of the SIP (Ses-
sion Initiation Protocol) 113]. As a part of SIP message processing it is possi-
ble to transform messages by applying rewriting rules to messages. This SIP
message manipulation (SMM) is tested by a test suite contalned in the file
snn-SUITE.er1, which is our subject here.

The size of the sequence of versions of the files - in lines of code - is indicated
in Figure 1, which shows that the code has been reduced by about 25% through
these transformations. As we discuss at the end of this section there is stilÌ
considerable scope for clone detection and elimination, and this might well reduce
the code by a further few hundred Ìines of code.

Page 82

4 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

Version LOC
1 2658
2 2342
3 2231
4 2217
5 2216

Version LOC
6 2278
7 2203
8 2201
I 2183

Version LOC
10 2149
11 2731
12 2097
13 2042

Fig. 1: The size of the refactored files

The sequence of transformations

In this section we give an overview of the particular steps taken in refactoring
the SMM test code.

Step 1 We begin by generating a report on similar code in the module. 31 clones

are detected, with the most common on being cloned 15 times. The generalisation

suggested in the report is

new-funO ->
setResult = ?SMM_IMp0RT_FILE_BASIC(?SMM_RULESET_FILE_1, ûo),
?TRJAL(ok, SetResult),
%% Anount0fRuleSets should correspond to the a.mount of rule sets in File
Anount 0f RuIeSet s = ?SMM-RULESET-FILE- 1-COUNT,

?014-CHECK(Anount0fRuleSets, ?MP-BS, ets, info, [sbgRuleSetTable, size]),
?0M-CHECK(Amount0fRuleSets, ?SGC-BS, ets, info, [snnRuleSet, size]),
AnountOfRuIeSets .

which shows that the code is literally repeated, sixteen times. This function defin-
tion can be cut and pasted into the test file, and all the clones folded against it.
Of course, it needs to be renamed: we choose to call it inport-ru1e-set-fi1e-1
since the role of this function is to import rule sets which determine the actions
taken by the SMM processor, and this import is a part of the common setup in
a number of different test cases. The function can be renamed when it is first
introduced, or after folding against it, using lhe Rename Funct'ion refactoring.

Step 2 Looking again at similar code detection we find a twelve line code block
that is repeated six times. This code creates two SMM filters, and returns a

tuple containing names and keys for the two fiiters. This is a common pattern,
under which the extracted clone returns a tuple of values, which are assigned to
a tuple of variables on function invocation, thus:

{FilterKeyl, FilterNanel, FilterState, FilterKey2, FilterNane2}
= create-filter-12o

Page 83

Improving your test code with Wrangler 5

We have named the function create_f il-ter-12; this reflects a general policy
of not trying to anticipate general names for functions when they are intro-
duced. Rather, we choose the most specific name, generalising it or indeed the
functionaÌity itself - at a later stage if necessary, using Wrangler.

Step 3 At this step a 21 line clone is detected:

ner^¡-funO ->
{Fi1terKey1, FilterNamel, FilterState, FilterKey2, FilterNa¡e2}

= create_filter_12O,
?0M-CHECK ([#smmFilter{key=Fi1terKey1,

f ilterNane=Fi lterNane 1,
f ilterstate=FilterState,
module=undefined]l ,

?SGC_BS, ets, lookup, [snnFilter, FilterKeyl]),
?0M-CHECK (l#smnFilter{key=FilterKey2,

f ilterNane=Fi1terName2,
f il-terstate=Fi1t erstate ,
module=undeflned]l ,

?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
?.M-cHEcK (t-"*:;:;;ii::i*::i;ii:ï*:ii'

sbgFilterState=FilterState]1,
?MP_BS, ets, lookup, [sbgFilterTable, FilterKeylJ),

?'M-cHEcK (*"*:;å;ïi::i*::i;li:ï:i:r'
sbgFi.lterState=FilterStateÌ1,

?MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
{FilterNane2, FilterKey2, FilterKeyl, FilterNamel, FilterState}

Inspecting this shows up a smaller clone, encapsulated in the suggested function

new-fun(Filterstate, FilterKey2, FilterNane2) ->
?0M-CHECK ([#sbgFi J-terTable{key=Fi1terKey2,

sbgFilt erName=FilterName2,
sbgFilt erState=Filterstate]1,

?MP-BS, ets, lookìtp, lsbgFilterTab]e, FilterKey2l).

which we choose to replace first: as a general principle we found it more useful
to replace clones bottom up. The clone was replaced by the function

check_filter_exists_in_sbgFilterTabte(F1lterKey, FilterName,Filterstate) ->
?0M-CHECK (l#sbgFilterTable{¡sy=pilterKey,

sbgFi It erNane=Fi 1t erName,
sbgFilterState=FilterStateÌ1,

?MP_BS, ets, lookup, lsbgFilterTable, FilterKeyJ).

Page 84

6 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

\rr'here ås well as renaming the function and variable names, the order of the
variables is changed. This can be done simply by editing the list of arguments,
because before foiding against the function there are no calls to it, since it is

newly introduced.

Steps 4-5 Introduce two variants of check-f ilter-exists-in-sbgFilterTable

- In the first the check is for the frlter occurring only once in the table, so that
a call to ets: tab2list replaces the earlier cali to ets: lookup.

- In the second the call is to a different table, sbgFilterTable being replaced
by smroFilter.

Arguably these three alternatives could have been abstracted into a common
generalisation, but it was felt by the engineers that each of the three functions
each encapsulated a meaningfui activity, whereas a generalisation would have had
an unwieldy number of parameters as welÌ as being harder to name appropriately.

Step 6 Erlang provides two mechanisms for finding out whether the code for a
module M is loaded:

erlang:module-loaded(M) -> true I false
code:id-loaded(M) -> {fi1e, Loaded} | false

Use of the former is deprecated outside the code server, but both are used in
this file. We want to remoue the deprecated calls, aÌl of which are symbolic calls
in contexts like:

?OM-CHECK(faIse, ?SGC-BS, erlang, nodule-1oaded, lFilterAto¡o1l)

So what we do is to define a new function, in which we abstract over module
name, the type of blade and the expected result of the call to erla¡g : nodule-loaded

code-is-loaded(ModuleNane, BS, Result) ->
?OM-CHECK(Resu1t, BS, erlang, nodule-loaded, [ModuleNarne]).

We then fold against this definition to remove all calls to erlang : module-loaded,
expect for that in the definition of code-i.s-loaded itself. We can then write a
di,fferent definition of this function, which implements the same functionality
using the other primitive:

code-is-loaded(BS, ModuleName, false) -)
?OM-CHECK(false, BS, code, is-loaded, [ModuleNa:ne]).

code-is-loaded(BS, ModuleName, true) -)
?OM-CHECK ({f ile, atom-to-] ist (ModuleNa.me) }, BS,

code, is-loaded, lModuleNanel) .

At this point it is possible to stop, having introduced the code-is-loaded func-
tion. Alternativel¡ in order to keep the code as close as possibie to its previous
version, 'v¡,/e can i,nli,ne this function definition. In the next step we will see another
reason for doing this inllning.

Page 85

Improving your test code with Wra,ngler 7

Step 7 We note that as well as finding symbolic calls to code: is_loaded within
the 0M-CHECK macro calÌ, it is also called within CH_CHECK. We are unable to
replace a macro call by a variabÌe, and so we write by hand - a generalisation
in which the macro caÌl is determined by an atom parameter

code_is_loaded(BS, om, ModuleName, false) -)
?OM_CHECK(false, BS, code, is_loaded, lModuleName]) ;

code-is_loaded(BS, on, ModuleName, true) -)
?0M-CHECK ({f i1e, aton_to_11 sr (ModuleNaroe) },

BS, code, is_1oaded, [ModuleNa_ne]);
code-is-Ioaded(BS, ch, ModuleName, false) ->

?CH-CHECK(fa1se, BS, code, is_loaded, [ModuleNane]) ;
code-is-loaded(BS, ch, ModuleName, true) ->

?CH-CHECK ({f ile, aton_to_list (ModuleName) },
BS, code, is_1oaded, [ModuleNa.ne]).

It is here that inlining of the cod.e-is-loaded function in step 6 is valuable: it
allows us to deal wíth premature generalisati,on, under which we find that we
want further to generalise a function without layering a number of intermedi-
ate calls: we inline the earlier generalisations and then build the more general
function in a single step.

Steps 8,9 In this step a ten line clone was identified found, but rather than
replacing that - which combines a number of operations - it was decided to look
at sub-clones, and this indicated code used 22 ttmes in the module, extracted as

check_add_rule_set_to_f i lter (FilterKey, FilterName, RuleSetName,
FilterRuleSetPosition, Result) ->

AddResult =
?SMM_ADD_RULE_SET_T0_FILTER(FilterKey, FilterName,

RuleSetNa¡e, FilterRuleSetPosition),
?TRIAL(Result, AddResu1t) .

This gives the ninth version of the code, and two simllar sub-clones are extracted
thus:

check-ruleset_name_in_f ilter(FilterName, RuteSetName) ->
{ok, Ru1eSetKey} = ?SMM-NAME-T0-KEY(sbgRuleSetTable, RuleSetName),
check_ruleset_key_in_f ilter(RuIeSetKey, [[FilterNane] I),
RuleSetKey.

check_ruleset_key_in_f ilter(RuleSetKey, Result) ->
?0M-CHECK (Result ,

?MP_BS, ets, match, [sbgIsnFilterRuleSetUsageTable,
{,_r, {RuleSetKey, r_t},,_t, r$1r}]).

which gives the tenth version of the code.

Page 86

8 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

Step 10 Clone detection now gives this clone candidate:

new-fun(Fi.lterName, NewVar-1) -)
FilterKey = ?SMM-CREATE-FILTER-CHECK(FllterNarne),
%%Add rulests to filter
RuleSetNa¡eA = "a",
RuleSetNameB = "b",
RulesetNameC = "c",
RuleSetNarneD = "d",
... 16 lines which handle the rules sets are elided . ..
%%Reroove rulesets
NewVar_1,
{RuleSetNa¡eA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}

The main body of the function sets up f'our ruie sets and adds them to a filter,
but the function identified contains extraneous functionality at the start and
end:

- the filter key is created as the first action: FilterKey = . . ., and

- (in at least one of the clones) the rulesets are removed thus: NewVar-1 .

Instead, the body is extracted thus:

add_f our-rulesets-to-f ilter(FilterName, FilterKey) ->
RuleSetNameA = "4",
RuleSetNameB = tt6tt,

RuleSetNaneC = "c",
RuleSetNaneD = "d",
. . . 16 lines r"rhich ha¡d1e the rules sets are eli.ded . . .
{RuleSetNa-meA, RuleSetNameB, RuleSetNameC, RuleSetNameD}'

in which the final action doesn't need to be passed in as a parameter, and the
FilterKey becomes a parameter rather than a component of the result.

Step 11- In a similar way to the previous step, a lengthy clone is identifred,
but in the abstraction the first line is omitted, making it an abstraction without
pâ,rameters: setup-rule set s-and-f ilters.

Step 12 This final step consists of a sequence of stages concerned with refac-
toring the form of data representation in dealing with

- sets of attributes, which are transformed into named lists, such as

Attributes-1=[Linehl1, Coh:mnhl1, TypeAton, FailingRuleSetlrll, ResasonWl],

- other sets of attributes are represented by O-ary functions:

ruleset-error-attributes O -> [?sbgRuleSetErrorlineNumber,

:

t

)

,

Page 87

Improving your test code with Wrangler g

Finally, we can replace an explicit zipping together of lists by the uses of function
Lists:.zip/2, and this gives us a much better structured function:

import_warning_ru1e_set (nain) ->
%% Since the rule set file contains errors, no rule sets will be imported

AttributeNanes = lline-number, column, type, faili.ng-rule_set, error_reason],
Keyl = 1,
?ACTION("Do SNMP Get operations on the"

rrsbgRuleSetErrorTable with key p.-o", lKeylJ) ,
GetResultl = ?SMM_SMF_GET(rule_set_error, [{key, Xeyl}], AttributeNames),
Line!ü1 = 4,
ColumnWl = ?SMM_RULE_SET_hIARN_1_C0L,
TypeAtom = warning,
TypeMibVal = ?SMM_REP0RT_TYPE(TypeAtom),
FailingRuleSet!{l = " ",
Resas onlrr1 = ?SMM_RULE_SET_I,IARN_ 1 _REP0RT (Linel,l1),
Attributes-1 = [Linehl1, Co1umnlJl, TypeAtoro, FailingRuleSetlll, Resasonlnil],
?TRIAL(lists:zip(AttributeNâmes, Attributes_1), GetResultl),
. .. 40 lines elided . . .

an incidentaÌ benefit of the inspection was to reveal that the lines

TypeAton = warning,
TypeMibVal = ?SMM_REP0RT_TYPE(TypeAtom),

were repeated, doubtless a cut-and-paste error, which went undetected because
the pattern matches succeeded at the second occurrence.

Continuing the case study: further clone detection

The work reported here produced a sequence of twelve revisions of the code, but
it is possible to make further revisions. In this section we look at a selection
of reports from similar and identical code search, and comment on some of the
potential clones identified.

similar code The similar code detection facility with the defauit parameter
values reports 16 further clones, each duplicating code once. The total number
of duplicated lines here is 193, and so a reduction of some 145 lines could be
made by replacing each clone into a function definition plus two function calls.

Looking for similar code with the similarity parameter reduced to 0.b rather
than the default of 0.8 reports 47 ciones, almost three times as many. Of these,
eight dupiicate the code twice (that is, there arc three instances of the code
clone) and some of these provide potential clients for replacement. However, not
aÌl of them a,ppear to be good candidates for replacement. Take the example of

Page 88

10 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

/Users,/simonthompson/Dor"rnloads/ smn-SUITE13 . erl : 1755 . 4- 176 1 . 50 :

This code has been cloned twice:
/Users/ simonthompson/Downloads/smm-SUITE13. erl : I77 2 . 4- 177 8 . 5O :

,/Users/ sinonthonpson,/Downloads/snm-SUITE13. er1 : 1789 . 4- 1 795 . 50 :

The cloned expression/function after generalisation:

new-fun(FilterAtom1, Filter.Atom2, NewVar-1, NewVar-2, NewVar-3) ->
NewVar-1,
code-is-loaded(?SCC-BS, om, FilterAto¡o1, NewVar-2),
code-is-loaded(?MP-BS, on, FilterAtoml, false),
code-is-loaded(?SGC-BS, on, FilterAtom2, Ner"rVar-3),
code-j.s-loaded(?MP-BS, on, FilterAtom2, false).

This code has three parameters, and the first is an arbitrary expression, NewVar-1,

evâ,luated first in the function body. A more appropriate candidate is given by
omitting this expression, and giving the generalisation

ner¡-fun(FilterAtom1, FilterAtom2, NewVar-l, NewVar-2) -)
code-is-loaded(?SGC-BS, on, FilterAtoml, Nel¡Var-1),
code-is-loaded(?MP-BS, om, FilterAtorol, false),
code-is-Ioaded(?SGC-BS, on, FilterAtom2, NewVar-2),
code-is-Ioaded(?MP-BS, om, FilterAton2, false).

This particular generâ,lisation has a simiiarity score of more than 0.8, but does

not appear in the default report because it involves only 4 expressions, and the
default cut-off is a sequence of at least 5.

Identical code The standard report to detect identicaÌ code reports 87; the
number is larger here because the default threshold for reporting here is to consist
of at least 20 tokens rather than 5 expressions or more. However, a number of
ouer-general'isat'íons result from this report; for example, the function

ner¡-fun(ModuleNanel, NewVar-1, NewVar-2, NewVar-3, Ner.rVar-4) ->
code-is-loaded(?SGC-BS, NewVar-1, ModuleNamel, NewVar-2),
code-is-loaded(?SGC-BS, NewVar-3, ModuleNamel, NewVar-4).

is reported as occurring 23 times. Arguably, generalising to replace these two
expressions will not result in code that is more readable than it is already: it
clearly states that it checks for two pieces of code being loaded.

Carrying on There are clearly some more clones that might be detected, but as

the work progresses the effort involved in identifying and replacing code clones

becomes more than the value of transforming the code in this wa¡ and so the
engineers performing the refactoring will need to decide when it is time to put
the work aside.

Page 89

Improving your test code with Wrangler 11

4 Lessons learned

This section highlights the lessons learned during the activity reported in the
previous section, cross-referring to the steps of that process when appropriate.

Inlining is a useful refactoring There is a clear use case for function ,inli,ni,ng

or unfoldi,ng when performing a series of refactorings based on clone eiimination
fStep 7]. The scenario is one of premt,ture gener0,li,s0,ti,or¿ thus:

- identify common code, and generâ,lise this, introducing a function for this
generalisation;

- subsequently identify that there is a further generaiisation of the original
code, which could benefit from being generalised;

* the problem is that some ofthe original code disappeared in the first stage of
generalisation, and so it needs to be inlined in order to generalise it further.

Of course, it would be possible to keep the intermediate generalisation as well
as the final one, but in general that makes for less readable code, requiring the
reader to understand two function definitions and interfaces rather than one.

Inlining is also useful to support a limited form of API migration [Step 6].

Bottom-up is better than top-down We looked at ways in which clones
might be removed, and two approaches seem appropriate: bottom-up and top-
down. In the latter case we wouid remove the largest clones first, while in the
other approach we would look for small clones first, particularly those which are
the most common. We decided to use the bottom-up approach for two reasons

lSteps 3, 8, 9].

- Using this it is much easier to identify pieces of functionality which can easiÌy
be named because they have an identifiable purpose.

- it is also likely that these will not have a huge number of parameters, and
in general we look for code which is not over-general.

Finally, there is the argument that - to a large extent, at least, it should not
matter about the order in which clone removal takes place, since a large clone
wili remain after small clones are removed. and u,ice uersa.

Clone removal cannot be fully automâted What we have achieved in this
example is clearìy sem,i-automated: we have the Wrangler support for identifying
candidates for clones but they may well need further analysis and insight from
uses to identify what should be done. For example,

- Is there a spurious last action which belongs to the next part of the code,
but which just happens to follow the clone when it is used? If so, it should
not be included in the cione lSteps 10,111. This can also apply to actions at
the start of the identified code segment.

Page 90

12 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

- Another reiated reason for thls might be that this last operation adds another
component to the return tuple of an extracted function; we should aim to
keep these small.

- We might find that we identify behaviour of interest which occurs close to
an identified clone; then use similar expression search to explore further.

- An identified clone may contain two pieces of separate functionality which
are used together in many cases, but not in all cases of interest. Because of
the thresholding of cione parâmeters it might be that we only see the larger
clone because the smaller one is below the threshold chosen for the similar
code report fSteps 3, 8, 9].

Self-documenting code Is it always useful to name values, as in

BlahMeaning = ... blah-êxp ... r

FooMeaning = .. . foo-exP .. . ,

Result = f (BlahMeaning, FooMeaning),

rather than

Result = f(... blah-exp ... , ... foo-exp ...)
as the former case is sef docurnent'ing in a way that the latter is not. On the
other hand, is it the responsibility of the client of an API, here for the function
f , to document this API at its calling points? If it is to be documented at a
calling point it can be done by choice of variable names, or by suitably placed
comments.

Naming values How should constants best be named in Erlang code. Three
options are possible: namely definition by

- a macro definition
- a function of arity 0

- a local variable

The code at hand does the first and last: the second was added during the
refactoring process.

Another option presents itself: instead of worrying about what is contained
in a set of variables, should a record be ured instead? This has some advantages,
but records have drawbacks in Erlang. Names are not first class, so cannot be
passed as parameters or values, which is something that can be used in practice,
such as passing a Ìist of field names to the zip/2 function [Step 13].

Improvements to 'Wrangler The case study aiso brought to light a number of
improvements that might be made to Wrangler. Inlining was the most important,
and is now included in the latest reÌease of the system.

It was also suggested that a number of options could be added to the Cod,e

Inspector'. this highlights "bad smeils" and other notable code features, such as:

t

Page 91

Improving your test code with Wrangler 13

variâ,bles used only once, variables not used, and rebinding of variables (that it,
bound variables occurring in a pattern match).

Finally, the question was raised about how much refactoring sequences used
on one module could be reused in refactoring another. This question of memo!
sation or scripting merits further work.

5 Conclusions and F\rture Work

As we have reported, the exercise here was only possible as a collaboration
between the developers of Wrangler and engineers engaged in developing and
testing the target system. Together it was possible substantially to re-engineer
the test code to make it more compact and more structured. As well as illustrat-
ing the way in which Wrangler can be used, rve were able to provide guidelines
on refactoring test code in Erlang which can also be applied to systems written
in other languages and paradigms.

Wrangier is under active deveiopment as a part of the ProTest project, and
the insights gained here will feed into its further development.

References

1. Li, H., Thompson, S., Lövei, L., Horváth, Z.,Kozsik, T., Víg,4., Nagy, T.: Refac-
toring Erlang Programs. In: EUC'06, Stockholm, Sweden (November 2006)

2. Li,H., Thompson, S., Orosz, G., T"oth, M.: Refactoring with Wrangler, updated.
In: ACM SiGPLAN Erlang Workshop 2008, Victoria, British CoÌumbia, Canada

3. ProTest: Property based testing. bttp://www.protest-project.eul
4. Kapser, C., Godfrey, M.W.: "Clones Considered Harmful', Considered Ha,rmful.

In: Proc. Working Conf. Reverse Engineering (WCRE). (2006)
5. Roy, C.H., Cordy, R.: A Survey on Software Clone Detection Research. Technical

report, School of Computing, Queen's University at Kingston, Ontario, Candada
6. Monden, 4., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Software Qual-

ity Analysis by Code Clones in Industrial Legacy Software. In: METRICS ,02,

Washington, DC, USA (2002)
7. Baiazinska, M., Merlo, E., Dagenais, M., Lague, 8., Kontogiannis, K.: Partial Re-

design of Java Software Systems Based on Clone Analysis. In: Working Conference
on Reverse Engineering. (1999) 326-336

8. M. Fowler: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1ggg)

9. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: ARIES: Refactoring Support
Environment Based on Code Clone Analvsis. In: IASTED Conf. on Software En-
gineering and Applications. (2004) 222 229

10. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5 (1970)
153-163

11. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence 5 (1970) 135-151

L2. Ll, H., Thompson, S.: Similar Code Detection and Elimination for Erlang pro-
grams. In: PADL1O. (2010) to appear.

13. SIP: Session Initiation Protocol. http: //too1s . ietf . orglht¡ol/rfc3261

Page 92

eonference Froce*d i nçs

15th lnternational Erlang User Conference

Thursdny 12 N*vemher äüü9

Stockholrn, Swederu

P*trãk Nyhãorxr
Erlang virtual machine developer

firËang 5MP sripport - behånd tfle scerues

Abstract

This talk will tell you the story about how Erlang got multicore support and will give you

all the gory details about utilizing multicore processors in a conventional programming

language. l'll tell you what we've done at OTP so that you, as an Erlang programmer, can

sit back and enjoy the fact that you don't have to bother with such things!

ffiimgnaphy

Patrik Nyblom works in the OTP project developing the Erlang virtual machine and has

done so for the past ten years.

Page 93

Erlang Multicore support

Behind the scenes

eRrcsson f

ËnËanç Vþd'T {ffiHAM} w$:en ws såanåed

' Virtual register machine which scheduled light weight
processes

- One single process scheduler and one queue per priority
level

- Preemptive multitasking based solel¡'on "reductions"

- Switching between liO operations and process scheduling
. l/O drivers and "built in functions" (native functions) had

exclusive access to the data structures
- Network code
- ETS tables

- Process inspection etc

- Code management

2 eÞbyemùriB€rúah{n[@btgÞri6ùon N&2a ¡iffif

Page 94

F*rf*ct pr##å-ærr1 f*r us*r:ü n'ïLë*t*c*n*

* A lot of small units of execution
* The parallel mindset has created applications just

waiting to be spread over several physical cores

Single c$rs klulti erlre,

¡å4

¡¡ffit&prryrm mllÙcú há h'ohry @nor.mi@!o.

¿t

i
¡

ù'i
I ',: ,;

i .,:,'

t:. -,
I r'ì:ücs.¡vensimn $t#p$

¡ Multiple schedulers

Parallel l/O

Parallel memory allocation

Multiple run-queues and generally less global locking

eptqt múrlr¡eûá hrghvpdhrdÞræùon ¡0m3-24 ¡ffit

Page 95

ftÆ u f tt B$* s*þ"red* ä*n*

ïools
- Locking order and lock-checker

- Ordinary test cases

- Benchmarks(synthetic)

Techniques

- Own thread library (Uppsala University)
- Lock tables

- Custom lock implementation for processes

- Lots of conventional mutexes

Result
- One scheduler per logical core

lnsights
- You will have to make memory/speed tradeoffs

- Lock order enforcement is very helpful

epq'4 dúrÙ@rrå h'ohù pddr.rámr€ron ms3-2a Èruffi t

Fær*î**$ ålt

Tools
* More simple benchmarks

- Customer systems

- lntuition (or - the problem was obvious. . .)

Techniques
- More fine granular locking

- Lock¡ng on different levels depending on l/O driver ¡mplementation

- Scheduling of operations other than process execution

Result
- Real applications parallel...

- Customer drivers possible to make parallel

lnsight
- Doing th¡ngs at the right time can vastly reduce complexity

&doy4mulcmturhìohryW.I€rãFriøùq Ms.2a r¡ffi¡l

Page 96

*

ü

fu'krlt*p$* aIF*catnr*

Tools
- Even more benchmarks
- vTune (lntel)

- Thread profiler (lntel)

Techniques
- Each scheduler has it's own instance of memory allocators
- The "malloc" implementation was already our own

- Locks are still needed as one scheduler might free another
schedulers memory

Result
- Greatly improved performance for CPU intense applications

lnsight
- Not only execution has to be distributed over cores

¡

I

epby'qmurbdoF.ñEhry,,ã*r€Þreto¡ æ0Ð3.24 ¡¡lc¡flÍ

i
i

f*4 r,: *{i ple r{.{ å"T-E L$e E-ãffi s ffi r-}d Se n*rffi [Íy $ess

Etchru* ãockinE

Tools
- Custom lock counting implemented
- More massive multicore CPU's to test on (Tilera, Nehalem)

- More customer code from more projects

ïechniques
- Distributing data over the schedulers
- Load balancing at certain po¡nts

- More fine granular locking (ETS Meta- and shared tables)
- Reimplementation of distribution marshaling to remove need for

sequential encodeldecode

Results
- Far better performance on massive multicore systems
- Nehalem performance great, but core2 slill problematic

lnsight
- No global lock will ever fail to create a bottleneck

s

a

de@23 rlK J

Page 97

txæmpÍe *f perfnrrÌlãrlrs gaâr: wl
r.l,lultip** ruffi-Eqr*ues ãr"¡ Til*Pr*ffi4

&ployr&ñúrùcørù.hDhry@HaøEùon tu9{B-28 ¡n¡Mi'

t*mparimg "tl*vert*wn" X*rffi [53"Í #
åo

,'üaig:$t#wfi" Xecr: XSS70

"l

I

FÆemæ¡r/,CPtJ ßnterpreces* a€ra*rnt¡nie¿tiffi

t0 &ployemùrü@dahEhtrcrkìrmr@tion mo¡&23 ¡ffit

Page 98

epby'4 nu[rcæ tu. hEhv @bl áÞùæron11 æM&23 ¡M

Ënsüçhts

* No global lock ever goes unpunished

' Data as well as execution has to be distributed over cores
- Malloc and friends will be a bottleneck

' You will have to make memory/speed tradeoffs
. New architectures will give you both new challenges and

performance boosts
- Revise and rewrite as processors evolve

. Doing things (in the code) at the right time can reduce
complexity as well as increase performance

* Take the time to use third party tools and to write your own.
. Work incrementally

i¡ - '
. :; ÌÌir.Í'.r..'

-*"*o$w wn'vr å.,$üd

* Lock checker (implemented in VM) and strict locking
order

. vTune and thread profiler

' oProfile

' Lock counter (implemented in VM)

' Acumem (www.a*umem.**m)
. Valgrind
* Benchmarks

- Customers

- Open Source
* Percept (Erlang application parallelism measurement

tool)

12 epbyenurbæb6h&nt@brå#Éton dús.2s r.ffif

Page 99

Wh*t rxqlw?

' Non uniform memory access
- Schedulers private memory near core

- Distribute processes smarter, taking memory access into
account

" Delayed deallocation to avoid allocator lock conflicts
- Especially important for Core systems

* Developing our libraries
* More measuring, benchmarking, customer tests...

tudÕy4 ñúr!@ordê hohry padrora4l€ton æos¡e2a ¡ffi¡ t

ERTCSSON ,

TAKING YOU FORWARD

Page 100

tcnference Fro*eedi ngs

15th lnternational Erlang User Conference

Thursdey X? N*ve¡ttber ä$¡{}S

St*ckhcl¡"n, $wed*n

ürãc &rlerrått
Erlang author and Erlware Committer

A contånuGLås bq.¡ãËd system f*r FnËarug

Abstraet

Eric will talk about how to use a new continuous build system for Erlang. He will also

provide an intro into working with the continuous build system to automatically detect

changes in source, build, test and publish OTP applications and releases. This will allow
you to start getting the benefits of easy and straightforward continuous build in your

Erlang projects.

Eicgraphy

Eric Menitt is a Software Engineer who specializes in concurrent languages and distrib-
uted systems. For the last eight years he has been coding Erlang and has also been

heavily involved in the Erlang community. Currently, Eric is a core developer for the

Erlware family of open source products and is the primary developer for the Sinan build
system. Eric has been involved in both professional and)pen Source development for
the last ten years. He started his career developing applications in C and Java on IBM
Mainframe and Midrange hardware. He also provided training and consulting in object-

oriented principles and concepts. However, his interest in languages, concurrency and

distributed systems quickly drove him to more interesting and challenging work at
companies like Amazon.com. Currently Eric brings his expertise to PEAK6 lnvestments,

LP, a successful proprietary trading firm in Chicago.

Page 101

i

Page 102

C*r"rfer*nce Fr**e*d Ê n gs

15th lnternational Erlang User Conference

Thursday 12 Novemh*r 2t*$
$t*cåchE¡lm, Swed*n

mtRT $s fro trüanS äs .i$Gil..$ ßs tc .iäv&5an$pt
{plus a rffifrr-:i C*t tr,ctoniaflë}

We'll start off with a mini Git tutorial to help conceptualize the problems we had at

GitHub that were addressed in the crafting of BERT and BERT-RPC. lf you're unfamiliar
with Git, this may open your eyes to the power, flexibility, and speed of this distributed
version control system. Your language is great at dealing with distributed systems,

shouldn't your SCM be just as adept? BERT (Binary ERlang Term) is a new serialization

format based on Erlang's external term format. lt supports rich data types such as atoms,

heterogenous lists, tuples, binary data, booleans, dictionaries, and more, Just as JSON

acts as an excellent inter-process data format for web-based technologies, BERT acts as

an efficient inter-process data format for low-latency server technologies. Built on top of

BERT is BERT-RPC, a simple, dynamic RPC protocol providing both synchronous and

asynchronous requests, caching directives, streaming, and even callbacks. Tom created

these technologies to help us scale GitHub. Tom needed a fast, robust way for one

process to make low-latency calls to another. Tom looked at Thrift and Protocol Buffers,

but those solutions were too complex and not flexible enough to hang with Ruby. ïom
also wrote Ernie, an Erlang/Ruby hybrid BERT-RPC server that makes it dead simple to
write your RPC functions in Ruby (or other languages). Together, all these technologies
power GitHub's new federated architecture and allow us to independently and horizon-

tally scale both frontend and backend layers.

T*m Frest*n*Wern*r
Cofounder of GitHub ond Erlectricity maintainer

As cofounder of GitHub, the world's largest and most active Git hosting website, Tom

Preston-Wernerpossesses inside knowledge of the Git ecosystem and how it is changing

the way in which code collaboration is done. Tom is respot:sible for both low-level system

architecture scaling and user interface design/usability. He's currently obsessed with

finding ways to marry the productivity of Ruby with the high concurrency prowess of
Erlang.

Seott Chacryn
Git evangelist and Ruby developer

Scott Chacon is a Git evangelist and Ruby developer employed at Logical Awesome

working on GitHub. He is the author of the Git lnternals PDF book by Peepcode as well

as the maintainer of http://git-scm.com and the Git Community Book. Scott has

presented at RailsConf, RubyConf, Google, and a number of local groups in addition to

teaching corporate training on Git across the country.

Page 103

i

!

i
t

¡

Page 104

Csnferenee Flrcce*d å ngs

15th lnternational Erlang User Conference

Thursdæy lä N*ven'lber 2Süü

St*ckhe:åm, $weejen

Ft*tt$ng UStr to wmr$c {*nC GstrtrrnE ffae
ovfsfCe r#Grfd fm *æfft fo ffrdçn?S)

Many protocols have formal specifications: ASN.1, ONC-RPC, CORBA, AMQP, Thrift,

Protocol Buffers, zillions more.... We believe there are at least three reasons why indus-

try uses such specifications. However, most industrial uses take advantage of the first
mostly and only occasionally the second: #1 Specify bits "on the wire" in a way all parties

agree. #2 API documentation: how the protocol's API works. We have found that there's

a very important third reason: #3 Protocol meta-datar input for other tools (development,

testing, etc.). My company is one of several that is collectively building a custom

Webmail systemforalargecarrier inAsia. (Theinitial deploymentwill beusedbywell
over 1 million customers.) We definitely take advantage of reasons #1 and #2 to facili-

tate the multi-way project planning with several development groups and the

carrier/customer. Their value in communicating both with developers and with project

managers is quite large.

We would like to share with other Erlang developers our experiences of using and

enhancing UBF for reason #3. Much of this work is slowly making its way into the wider

world, using an MIT license and distributed via GitHub
(httpr//gith u b,com/norton/u bf/tree/master).

J*smph Wayne [\$onton
Erlang Enthusiast

Joe Norton is a technical manager, system architect, developer, and Erlang enthusiast

working in the mobile industry.

Scctt LystiE FrãtchE*
Gemi ni Mobi le Tech nol ogies

Scott Lystig Fritchie met his first UNIX system in 1986 and has almost never met one

since that he didn't like. A career detour as a UNIX systems administ rator got him

neck-deep in messaging systems, e-mail and Usenet News. He rediscovered full-time
programming while at Sendmail, lnc., where a colleague introduced him to Erlang in

2000. His world hasn't been the same since then. Now at Gemini Mobile Technologies,

lnc., he's back in the messaging world. He's finishing a distributed key-value database

with strong consistency semantics, micro transactions, and on-the-fly resizing, all in

Erlang. ln addition to hacking Erlang code and occasionally the Erlang virtual machine,

he's had papers published by USENIX, the Erlang User Conference, and the ACM.

Page 105

T
#

é

w

Pu,tttn,g UBF to Worlc
(and, Getti,ng the Outs'ide World to Tatk to Ertang)

Joseph Wayne Norton / Scott Lystig Fritchie
norton@geminimobile.com / fritchie@geminimobile.com

Gemini Mobile Technologies, lnc

November L2, 2009

ERI¡,Nc UsnR Cor.¡¡'pneucn 2009, Srocxnor,u

A Qui,ck Suruey
Ur¿'iuersal Bi,nary Forrn at

Who has heard of UBF ...
. inside the Erlang community?

o outside the Erlang community?

Who has tinkered with UBF ...

o at home?

o at work?

Who has deployed UBF ...
. as part of a commercial service?

. as part of a commercial product?

2ER¡,¡¡.¡c UspR CowrsRnwce 2009, Srocxsolrr.l

Page 106

Introdu,ct'ion
Protocols and Spec'ificat'ians

Many protocols have formal specifications

o ASN.1, ONC-RPC, Corba, AMQP, Thrift, Protocol BufFers,

zillion more...

Why does industry use such specifications?

o Specify bits "on the wire" in a way all parties agree

o API documentation: how the protocol's API works

ERLANG UsoR Cou¡'pRENCE 2009, Srocrr¡oln¡ J

Introduct'ion
cont'inued.

We have found that there are very important other reasons

o System design and architecture: input for humans

. Protocol meta-data: input for tools

UBF has proved to be very handy in helping us with the above

items

4ERLANG UspR CoNrnREncr 2009, STocxr¡oltr

Page 107

::

I

:,.
!:
J,i
ljr "-

r:.. r. '

t -.. .ì

.

:
I

l

Wltat 'is UBF?
'in a nutshell

. UBF(A) is a protocol above a stream transport (..g.
TCP llP), for encoding structured data roughly equivalent to
well-formed XM L.

. UBF(B) is a programming langauge for describing types in
UBF(A) and protocols between clients and servers. UBF(B) is
roughly equivalent to to Verified XM L, XM L-schemas, SOAP
and WDSL.

. UBF(C) is a meta-level protocol used between UBF client and
servers.

Many, many thanks to Joe Armstrong, IJBF's designer and original
implementor.

Enr,¡,r.rc UssR Co¡.I¡'URENCE 2009, SrocxHol-rvr 5

Why UBF?
'in u, n,utsh,e|l,

. RPC with a formal, precise specification

o Erlang server implementation

. Erlang and non-Erlang client im plementations

. Simple yet elegant, concise yet expressive

. And most importantly ... easy to extend and to customize to
our needs

Page 108

ERLaNc UssR Cox¡'eRoNcB 2009. Srocxsol-rr¡ Cr

MTA ISP MOBILE PC o&M

SMTP/POP/IMAP HTTP

LDAP CLIENT API

FRONT API

AUTH API BACKAPI

DIRECTORY STORE DATA STORE

(-IBF Case Stu,dy
A Custom \Uebmail System

ERlnruc UspR CoNreneNcn 2009, SrocxHouv

UBF Case Study
C o nl;r'a ct S t a t'i sti, c s

These code snippets show how to obtain the methods, types, leaf
types, and records of an UBF contract.

Methods = [{Req,Res} I I {Req,Res} <- Mod:contract-anystateO].
Types = [{T,Mod:contract-type(T)} ll T <- Mod:contract-typesO].
LeafTypes = [{T,t"lod:contract-type(T)} ll T <- Mod:contract-leaftypesO].
Records = [{R,Mo¿:contract-record(R)} ll R <- Mod:contract-recordsO].

Page 109

8

API Contracts Methods Types Leaf Types Records

Auth 2 26 96 53 4

Client 5 28 2BB 231 13

Front 11 61 469 3s8 32

Back 10 29 186 136 5

Total 2B B5 628 443 35

ERr¡nc UsnR CoNpeRarucn 2009, S'rocxuor,n

¿t

I

UBF Contracts
Changes €i New þ:eatures

Predefined primitives

o Renamed constant0 to atomO

. Renamed intO to integerO

o New float0, tuple0, list0, and proplist0 primitives

. Optional type0? - 'undefined' or typeO

. Optional attributes (..g. binary(ascii,nonempty))
. ascii: only ASCII values
. asciiprintable: only printable ASCII values
r nonempty: not equal to ", [], <<>>, or {}
I nonundefined: not equal to 'undefined'

ERI¡Nc Us¡R CoNrBRoNce 2009, Srocxr¡olrr¡ o

UBF Contracts
cont'inu,ed

User-defined primitives

. New binary and float constants

o Support Erlang syntax for integer constants

o New integer ranges (..integer0, integerO)
. ftrecord{ } syntax with automatic generation of Erlang

record defines

. [typ.Q]? for optional lists

. [typ.Q]* for mandatory lists

. [tvp.Q]{N}, [tvp.Q]{N,}, and [tvp"Q]{M,N} for
length-constrained I ists

Page 110

ERI¡.Nc UsnR Co¡¡reReNce 2009, SrocrHolrr¿ 10

UßF Contrar:ts
cont'inue.d,

New feature "type importing"

o Permit type only contracts (i.e. STATE and ANYSTATE
contract blocks are now optional)

. lmport UBF types from other UBF contracts

o Check and permit duplicate UBF types only having the same

definition

ERL¡,r.¡c UspR CorqroRnNcn 2009, S'rocrHoll¡ 11

UBF Contracts
cot¿t'ir¡,u,ed .

New feature "type importing"

. lmport ABNF-based types from ABNF specifications
. ABNF-based types are formal specifications for binaryO types
. Ander Nygren's abnfc module is used to parse ABNF

specifications into an internal abstract syntax tree (AST).
. lmplemented new ABNF parser for UBF's contract checker to

verify binaries against ABNF-based types.

o lmport EEPS-based types from any Erlang module
o Using a parse transformation, UBF contract types are

automatically added to an existing Erlang module havíng type
defines.

. Not all EEPS-based types are supported (pid0, fun0, ...)

. Support for EEPS-based records is in progress
Page 111

En-leuc UssR Co¡¡peRoxcn 2009, S:¡ocxnolu 72

f ìLiirtìi, rtl

I

¡.
:

UBF Pl'ugin Callbacks
Changes €i New Featur"es

Stateful is the original callback API implementing a shared plugin
manager process, a per-session contract manager process, and a

per-session plugin process.

Stateless is a new callback API ¡mplementing only a per-session
contract manager process and per-session plugin process. The
implementation callback function API is a bit less complex.

LPC is a new callback API ¡mplementation that has no side-efFects
LPC stands for Local Procedure Call.

The implementor of a UBF plugín can choose to implement one,
two, or all three of the above callbacks.

ERI¡,r.rc UssR CoNFnRENcE 2009, Srocxuoll¿ 13

LIBF Transports

UBF
TC.PAP
Client

," usr 'i
' ICP/IP

HNP
client

HTTP ì

HTTP

Key Points

o Same contract with multp"le transports
o Same application with multìple contracts

ERI¡.¡rc UseR Cor.rF BRENcE 2009, Srocrnor,rr¡ 74

UBF
Dr¡ver

Contract
Mãô¿ger

Cllent
Appllcôtloñ

UBF
Client

Seryèr
AÞþllcat¡on

cllent
Appllcatlon

JSON
clleñt

JSöN-RpC
Þrlvêr

JSON-RPC
Dalvea

LPC

Cl¡ent

Serv¡ce
Contract

"B

tlBF Transpr¡r'ts
Chanqes {g New þ:eatures

EBF is "Erlang Binary Format", â simple TCPIIP protocol that
uses Erlang-style conventions.

. Uses Erlang BlFs term-to-binaryO and binary-to-term0 to
serlialize terms.

. Terms are framed using the'gen-tcp' {packet, 4} format: a

32-bit unsigned integer specifies packet length.

ETF is "Erlang Term Format", a simple protocol that relies on

Erlang's native distribution. This approach can be useful for
Erlang-only deployments.

ERr-¡,Nc UspR Co¡.r¡'onnNcn 2009, Srocxnolu 15

UBF Transports
cor¿ti,nued ...

JSF is "JavaScript Format" , a simple TCP llP protocol that uses

JSON (RFC 4627).

o Uses LShift's Erlang-rfc4627 to serialize terms.

. A few extra conventions are layered on top of LShift's
implementation to help distinguish between atoms, tuples,
records, and ubf strings.

U BF-JSON RPC is a framework for integrating U BF and

JSON-RPC over HTTP.

. Relies on JSF and provides new helper utilities to encode and

to decode JSON-RPC requests and responses.

. lncludes a simple inets-based HTTP client and HTTP server

module that demonstrates how to use the LPC callback APl.
Page 113

16ERl.quc UsBR Co¡¡r'BRENCE 2009, SrocxHolir¡

¿

t

UBF Meta-Da,ta,
I)acumentation

Client API - add a draft mail (UBF, EBF, and ETF style)

{ mail-add-draft, authinfoO, maildraft-oldu1dO?, nailheadersO, draftbody-parsedo
, [rfc2396-ur1 O.] , naildraft-optionsO?, timeout_or_expiresO] =>
{ ok, uidO, lmimepart-urf O]] I res-errO;

Client API - add a draft ma¡l (JSF and JSON-RPC style)

equer st{
t'vgrsion"
r idI
t'methodt'
t'params'l

)
response {

t'version"
fl idil
t'result t'

t'errortt

: "1.1",
: bi-naryO,
: rrmail_add_draft",
: I maildraft-olduidO?, rnailheadersO, draftbody_parsedo

, [rfc2396-urlO], maildraft-optionsO?, timeout-or_expiresO l

: "1.1rt,
: binaryO,
: {'$1'rr . I t"$4" : "ok"], uidO, fmimepart_urlO]]]

I res-errO I nu11,
: errorO?

)
)

ERleNc UsrR Cor'TFBRENCE 2009, Srocrnolv 77

IIBF Meta-Data
'1-esti'ng

Functional Testing

. lntegration - external clients and external servers

. Dialyzer - re-use type definitions

. EUnit - automatic test input generat¡on

. QuickCheck - automatic generation of QuickCheck generators
and abstract state machine property tests

Performance Testing

. Load client generators

o Load server stubs

. Transaction logs and statistics

Page 114

ERI¡Nc UsnR CoN¡'ERENCE 2009, S'rocruolr¿ 18

UBF a,rLd, Qui,ckCÍt eck
Bas'ic Strategy

UBF Contract

. Boilerplate generators and properties (with only one push of a
button)

. Custom generators

o Custom properties

o Non-U BF APls

r Top-down and bottom-up testing

. Low-level transport and high-level application layers

ERle¡¡c UsoR ConrsRENcE 2009, Srocxnolu 19

Test Model

UBF Client UBF CheckerQuick
Check Callbacks Application

enerators
ickChec

ERlaNc UseR CoxToRENCE 2009, Srocxuor.r¡ 20

What's IVert?

Documentation

o Complete edocs and examples for the UBF code repos¡tories

. ABNF specification for UBF(A), UBF(B), and UBF(C)

. ABNF specification for EBF, JSF, and JSON-RPC

lnteropera bility

. EUnit: open-source the input generators for UBF

. QuickCheck: open-source the generators and the framework
for UBF

o EEPS: better integration with Erlang specs, types, and records

. FFI: Erlang ports and drivers based on UBF for other
languages (e.g. CIC++, Haskell)

o Other tools and approaches (e.g. Protocol BufFers, Thrift,
B ERT) Pase 1 15

Thank You

ht tp. I I gith ub.com/norton I ubf

I I githu b.com/ norton /u bf-a bnf

I I githu b. com/norton /u bf-eep8

I githu b. com / norton / u bf-json rpc

http:
http:

http:/

ERr,.qNc UsnR CotTpRENCE 2009. Srocxnolv 27

116Page

f *nfercnce Froceed å nçs

15th lnternational Erlang User Conference

Thursd*y 'f 2 ÍS*v*r¡'rher 2üü$

Stockh*ln¡, Sweder"l

Kes"e tÌ*tlx å-ux n'xd üm

Manager of the Erlang/OTP developmentteom

l-ntest rlews fnsræ the f;rlmmg/üTF teærn
at ffirÊcssos's

F,bstract

Kenneth gives an update of the Erlang/OTP team's work at Ericsson - their current
projects and plans for future.

ffií*graphy

Kenneth Lundin has been working with SW development since the late 70s. As a
curiousity it can be mentioned that Kenneth was one of the pioneers in the use of C++

at Ericsson. Unsurprisingly Kenneth's interest for OO languages has been slighty revised

since then. He joined the Erlang/)TP project in it's early stages L996 and has þeen

working both with application components and the runtime system since then. Has been

managing the team for about 70 years now.

Page 117

2009-10-29

rRLAI',JG/OTP LATEST N IWS

ËRLAI{G USËR COL¡ËËRËl"lcË 20ûg
Kenneth Lundin

CONTËT,¡T5

¡ Release plans

: New Build Process for Docurnentation
r GIT repository
r New erlang.org WËt-site
¡ Native lmplemented Functions (NlFs)

2mt10-29

1Ericsson AB 2009
Page 118

2009-10-29

RËLTAST PLAI{S

Decided
r R13ß03 to be released on November 23:rd

Freliminary
¡ R13804 in February 2010

¡ R13805 in April 2010

r R14 in June 2010

@ EdBso¡ Æ m0

a
NTW WAY TO BUILD DOCUMEI"IîATION

r Much fasler build
) Easior tû rnaintain and enhance
r Produces MAN, HTML and PDF
¡ Takes the same XML ¡nput as docbuilder
r docbuilder will be phåsed out
r Makes use of well known Open Source tools:

- xEltproc ên xsll processor åvír¡¡âble on äll ma]or platforfis
- Apachê FOP alsû avâilêìbie orì â¡i rrajar plâtforûts

Additional functionality planned in upcoming releases
: seatch facilìties
> improved layout.
> n¡¡ke ioc shor¡ld work out of the box (to make it easier fcr users lo contaibute to the

tools ând the documentation)
) easy 1o use for everyone documenting their Frlang modules and applications.
> lntegration with edoc
> new better DTD's and XMl$chemas

@ Ed6sn AA 2@9 2@ç1ù29

2Ericsson AB 2009
Page 1 19

2009-10-29

OVERVIEW OF DCICUÂllENTAT|Otl BUILD

sæ

î
!

f

!
W3C standard

Freeware (Apache FOP)Freeware

2mgiG2S

html

xsl-fo

GIT REPÛSITORY

¡ We will put the $CIurces for Erlang/OTP in an official public
GIT repository {probably an GITHUB).

r Will be updãted on a dãily basis.
¡ Test suites will also be available in the repository.
r lntention is to make it easier to provide patches and easier
for us to receive patches.

r Will be available from R13803

3Ericsson AB 2009
Page 120

2009-10-29

a
l.¡EW ERLAI'{G,ÕRG Wf B-SITË

Ì erlâng.CIrg with now layout and technology

: Easier to update news and articies

; The goal is to make the
site rnore alive and up to date.

*t!' w' ff{ 4tvG

2m9-1G29

l.lfW ERLANG,ORG Wf B-SITE (srtnpsHor)

269-1G29

ERLANG

/rI
ç

EUc 2êgg regietrat¡on ie now open

-¿tñ-;:. l:l: l:

scdb h.åd
w¡6 V $ùF ¡¿F¡rìrà.b', ¡@¡o ¡o

llE Erl3ng uss CoúsêRe h Sdþbr 6 Noldbs 12 rs M
open f6r æti@b¡. ¡

REAti A{{ttr,Ll:s

t)OW¡\¡l ûÂf) Flìl /¡i{G.1OTP

4Ericsson AB 2009
Page 121

2009-10-29

I.IATIVã I ri/1 P LEI1I1 E l.{TE D FU Þ.I CTI O N S

New feature (stíll experimental) Tor native implementation of funetions
(in C)

, Cnmplementing the driver concept.
: Fxciting, Really Useful, But dangerous

' We call these functions NIF's {Native lmplemented Functionsl. to
differentiate them from BIF's {Built-in Functions) which are móre or less
part of the language.

i NlFs offer an easier and more efficient way to implement synchroncus
functions in C than the driver crncept.

: Dynamically loadable and upgradable
, Several functions ìn a module can be imnlemented in C usinq this

technique. Metadata in the module, the <in Io;<Ì attribute, tõlls tfle
loader which functisn to call for loadinc anð"initialization of the shared
library containing the NIF's

r But as said, r*ally dangerous. u$e w¡th cäre!

N ATI V E I J1/1 p LE /V1 [l,l T E D F U t J CT I O N S (EXArvrpLE)

Erlang code

-module (nifteEt).
-on_load (on_Io¿d/0) .

-export ([reverse_bin,/1 , cal1s/0])

on_Loadfl ->
LibDir = code:priv_dir(ayapp),
erlang:load_nif (f,ilena¡ne: join([LibDir, "bír:' , "nifs',])

** Dutrûf irçJ,enenÈatione
reverse bin(_) ->

erlang : error (not_iryleraeated) .

ca1l.s O ->
erlang : error (not_i:rylernented) .

2@91G29

5Ericsson AB 2009
Page 122

2009-10-29

¿l

N AT I V E I /V1 P L I l1l1 E f.l T E D F U l{ CT I O l.l 5 (EXAI1/1 pLF)

C code initialization
#include "erl_nj.f.h"
ttpedef stluct {

i.nÈ calls;
) PrivDaÈa;

data->cal1s++;
]
static int load(ErlHifgnv* env, void** priv_data) {

Plir¡Data* data = enif_alloc(env, sizeof (Prir'Datå))

if (data : !{UL',) return -1,'
dåta->ca}1s = 0,'
rpriv_data = data,'
return 0;

l
staÈic ínt reload(ErlNifEnvr env, void** priv_data) {

return 0;
)
6tåtic void unload(ErlNíf,Er¡vr env. void* P¡iv dat¿) {

enlf_f¡ee (eov, p!iv_dåtê) ;

2m$1G29

- ...:j.i

t
|.¡ AT I V E I A/1 p LE /V1 E l l T E D r U l.J CT I O N S (rxnnn p rr)

C code (the NIF implementations)

s tåtic ERL*I{IA_TËRM reverse_bio (E¡lHifEnv* env, SRL_$IF-TE&U e1)

PrivDatå* d¡ta = {PrivDatâ*) enif_get_data(env) ;
EllNifBinôry ibin;
ErlNifBinary obin;
int i;

dåtå->ca11a++,'
if (!enif_is_binary(a1)) {

return enif_¡rake_badarg (env) ;
)
enif_inspect_binary {a1 . eìbín) .'

enif,*alloc_binary (i.bin . sire, Sobin) ;
for (j.=0; i < ibin.si2e; i++) {

obin.data[i] = ibin.daùalibin.size-i-|l; /* reverse */
)
enif_release_binary (6ibÍn) ;
return enif_nske_binat.y (env, Éobin) ,'

6Ericsson AB 2009
Page 123

2009-10-29

tJAîlVE lrlAPLËÅ/1ËNTtD FUNCTICINS (exnnnpre)

Ç code (mandatory administration to hook into the Erlang VM)

ståti.c 8rlNif!'unc nif_funcs tl =

{

{"reverse_bin", 1. reverse_bin},

{"cells",0, cal,ls}

¡

ERL*NIF_IÞ¡I1 (nifÈest, nj.f_fuocs , load / leload, unloêd)

ERTCSSON

7Ericsson AB 2009
Page 124

