Conference Proceedings

15" International Erlang User Conference

STOCKHOLM, SWEDEN

12" November 2009

v

SPONSORS

- w synapse
ERICSSON = mobile networks

Erlang Training and Consulting Ltd

% I(larna Mobile TAPE@

§ process . O'REILLY
2]
=
el
©
o
S °
Sjoland&Thyselius & Q uvi Q
Lreative Software Bolutions TR X

15th International Erlang User Conference

Conference Programme

8:30 - 9:00 Registration, Tea and Coffee Page
... Welcome and introduction
0033 Bjarne Dicker !
c os< Nitrogen and Riak By Example
9:15 - 9:43 3
Rusty Klophaus
T TS Hacking Erlang through preprocessing 15
Jacob Vorreuter
10:15 - 10:45 Morning Break B
_ .« A Cloud as an Interface
04 -1ES Michael Truog 31
1< 11.4< Discodex: intuitive data indexing
HL1s- 1S g red Flatow, Ville Tuulos Bl
N — 5T;i:,{gi;z;lourney to the Clouds 45
1< 1-.4c TOKyo Cabinet and CouchDB with Mnesia
13124 Rickard Cardell 55
12:45 - 13:45 Lunch
Anonymity in Erlang
13:45 - 14:1
o Guy Wiener 67
A Opague Data Types in Erlang 77
Kostis Sagonas
T S Impl*.ovin.g your test code with Wrangler 79
Huiqing Li, Simon Thompson
1< 1c4: Erlang SMP support - behind the scenes
P patrik Nyblom 3
15:45 - 16:15 - Afternoon Break
1615 - 1645 A ;ontinqous build system for Erlang 101
Eric Merritt
1645 - 1715 BERT is to Erlang as JSON is to JavaScript (plus a mini Git tutorial!) 103
' "~ Tom Preston-Werner, Scott Chacon
Putting UBF to work (and Getting the outside world to talk to Erlang)
17:13-17:45 Joseph Wayne Norton, Scott Lystig Fritchie 105
1745 - 100 LeAtESt news from the Erlang/OTP team at Ericsson 117

Kenneth Lundin

Erlounge

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Bjarne Décker
Manager of the CSLab at Ericsson
- the birthplace of Erlang

Welcome and introduction

Abstract

Bjarne will open the conference and give a short introduction.

Biography

Bjarne Décker joined Ericsson in 1966 as programmer and systems analyst. In 1984 he
set up the Computer Science Lab together with Mike Williams to explore, develop and
introduce new software technology in Ericsson often in collaboration with university
research. The CSLab pioneered things like Unix, A.l., Lisp, Prolog and workstations in
Ericsson. Erlang was created at the CSLab by an initial team of Joe Armstrong, Mike
Williams and Robert Virding. Bjarne organised the first Erlang User Conference in 1994,
He has had various external committments such as chairman of the steering committee
of the Swedish national research programme in Computer Science 1987-1992 and
member of the Evaluation Committee of European Union's ICT-Prize. The CSLab was
closed in 2002 in the IT crash. Bjarne holds a Technology Licentiate degree of the Royal
Institute of Technology in Stockholm and was promoted to an Honorary Doctorate of
Technology at Linkdping Universily in 1993. He is also a member of the Royal Swedish
Academy of the Engineering Sciences.

Welcome and introduction

It is our great pleasure to welcome you to the Fifteenth International Erlang User
Conference (EUC 2009). For ten years the Erlang User Conference has been held in
the Ericsson Conference facilities in Alvsjé Southwest of Stockholm. However last
year, the Erlang User Conference outgrew the lecture hall. With a capacity of 140
delegates, several interested people had to be turned away. Thus this year’s Erlang
User Conference is a turning point with the classical Astoria cinema as the venue and
with nearly 250 people attending. Otherwise we keep to the established format of a
combination of papers about fun, exciting new applications and presentations of
technological developments. The applications show how Erlang is rapidly moving
from its initial base in telecommunications to new areas like cloud computing.

Bjarne Dicker
Erlang User Conference 2009 Chairman

Manager 1984-2002 of the Computer Science Laboratory
at Ericsson where Erlang initiated

Page 2

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Rusty Klophaus

Author of Nitrogen Web Framework,
Riak committer

Nitrogen and Riak By Example

Abstract

Nitrogen has gained a quick and active community by providing extensive example-
based documentation. In this talk, Rusty will continue this example-based approach by
walking through a simple application built on Nitrogen and Riak, highlighting common
patterns and best practices.

Biography

Rusty Klophaus is the author of the Nitrogen Web Framework and a Riak code commit-
ter. Rusty typed his first line of Erlang code in early 2008 after trying (and quickly
discarding) a number of other functional languages. He now ferociously evangelizes the
merits of Erlang to anyone who will listen. Rusty grew up on a farm, earned a degree in
Computer Science from Princeton University, spent a summer in Philadelphia as a
professional musician, co-founded a .NET software consulting company, and has
managed multi-million dollar technology projects. He recently joined Basho Technolo-
gies, a company focused on providing large data storage, access, and analysis solutions
powered by Erlang.

Nitrogen Fortrong N itro g en an d
- Riak by
FIIOK Example

Rusty Klophaus b h Erlang User Conference
@rklophaus Stockholm, Sweden
1ip://lwww.basho.com D as 0 November 12, 2009

“50 line code snippets are useful,
but how do you build
a real application?”

Page 4

Problem / Use Case \

“Should | try to use Webex, or just email the slides?”
“The file is 5MB, what if their email server blocks it?”
“Should | send this as a .pdf, .ppt, .pptx, or Keynote?” |
“Slide 3 will have no impact without an explanation.”
“I hope they don’t read slide 10 out of context.

“Is the audience even paying attention, or are they reading
ahead?”

Solution: Web Slideshow Tool

Accepts .ZIP containing images, text, code.
Accepts .PDF (requires Ghostscript)

Via emalil, chat, etc.

[
|
|
[
|

When you advance a slide, everybody in the
audience sees the same thing.

Near-Instant feedback [f sgmebody disconnects.

Components

P e e m——— —— e — — — — e S e s e S s

Nitrogen
Web Framework

Inets
HTTP Server

| |
. |
| Riak |
» Persistence Layer 1
| See———— |
| |

age 6

®
[] []
Nitroqen i YebFramework

Nitrogen: The Basics

#link { id=myLink, text="Login” }

wf:wire (myLink,
#event { type=click, postback=click})

wf:update (myPanel,
#span { text="You clicked!” })

~ Nitrogen: Web 2.0 in Erlang |

* ~40 built-in elements, ~15 actions, 8 validators
¢ One-line Ajax and Comet
 Abstraction layer for JQuery features:

» Effects, Sorting, Drag and Drop

* Create custom elements and actions

Ak VYRS TG 1

« Streaming File Uploads s
* APIs for session state, pagge state, cookies, security

wsriak

Riak: The Basics
Store Dats

Obj = riak object:new(Bucket, Key, Value),
ok = Client:put(Obj, 3)

Retrieve Data

{ok, Obj} = Client:get (Bucket, Key, 2)

Bucket and Key are both binaries

Value can be any term
Page 8

Riak: Inspired by Dynamo

Add a machine: Gain capacity, speed, and reliability.

Remove a machine: blocks of data (partitions) are
moved to rebalance the cluster.

B g%

P

g /
AN w4

When a machine dies, the other nodes cover for it.
(Hinted handoff.)

Conflicting edits are either last write wins, or can
bubble up to your application, if desired.

Riak: Inspired by Dynamo

lexible
* Tune N per bucket (Number of data replicas.)

* Tune R and W per operation. (How many replicas must
respond?)

« Swappable storage engines. Choose one that fits your
data.

Page 9

Riak: Innovation

7

uce for 1
Streaming, multi-stage maps and reduces
The code runs where the data is stored

| Dat:
Alink is a pointer from one object to another
HTTP interface to traverse links to get related objects

A %
°® g

Riak: Innovation

ting System
« Subscribe to events using a matchspec

lulti-Lingual
« Erlang, Javascript, Java, Ruby, PHP, Python, & HTTP

Page 10

Back to our application...

Structure

l / '—b—l; web_index.erl i

l web_view.erl l
' web_img.erl |

Page 11

web index.erl

itr t

« Template

» Upload and Upload Event
Flash

Redirect

Connect a Client
Obijects, Buckets, and Keys
« Put

web view.erl

Custom Elements
Comet

Session

Series ID

¢ Get

Page 12

slide_list_element.erl
« Sorting
* Click Events / Actions

slide controls_element.erl

Nitrogen Concepts
* KeyPress Events / Actions

Page 13

web img.erl

itr ceits

* Content Types
« Path Info

lak Concept
* Get an Object

http://github.com/rklophaus/caster

http://nitrogenproject.com
@nitrogenproject

http://nitrogenproject.com
~ijak @justinsheehy, @argvO,
@hobbyist, @jrecursive, @rklophaus

http://rklophaus.com

@rklophaus

Thursday 12 November 2009
Stockholm, Sweden

Conference Proceedings
15th International Erlang User Conference

Jacob Vorreuter

Erlang hacker at Electronic Arts

Hacking Erlang through
preprocessing

Abstract

The preprocessing step in Erlang code compilation is largely undocumented, but very
powerful. The language can be extended to include custom guards, syntax and
constructs. Included in the talk are the following:

Dynamic compilation with the eri_scan, erl_parse, epp and compile modules

Reverse engineering compiled BEAM code into forms

Preprocessing vs macros

The parse_transform compile directive and example usages like:

adding helper functions into modules that take advantage of record definitions that
aren't available at runtime

performing data integrity checks by expanding custom guards into additional function

clauses
Example usages of the custom_guards, dynamic_compile and excavator projects in
production environments at EA.

Biography

Jacob writes Erlang code for Electronic Arts. His work there has included deploying
scalable ejabberd chat clusters and developing a high-traffic Erlang api used by game
teams to read and write real-time game data. He's written or contributed to many open
source Erlang projects, including dynamic_compile, emongo, erlang_protobuffs, etap,
emysql and the binary protocol memcached client.

Hacking Erlang

building strange and magical creations

itk scotvorrautac com/hscRing -4l ftas gt oom/Jatob Voroautar

Step 1

understanding the abstract format

hitp/ ffecobvorrautancomyhacking-ariang

hibpy/@ithul com/dasobVorrauter

Things Worth Trying:

® code injection
® meta programming
® reverse engineering byte code

¢ anything that makes Ericsson cringe...

http://jacohvorreutercom/hacking-erlang http://github.com/JacobVorreuter

The Abstract Format

® atree-like structure representing parsed Erlang code

httpyf jnoobyorreutan onm hacking-oriang btk github, comydagob Vorreutar

The Abstract Format

® 3 tree-like structure representing parsed Erlang code
® comprised of a list of forms

The Abstract Format

® 2 tree-like structure representing parsed Erlang code
e comprised of a list of forms

What are forms?

http://jacobvorreuter.com/hacking-erlang http://github,.com/JacobVorreuter

Page 16

The Abstract Format

® g tree-like structure representing parsed Erlang code
® comprised of a list of forms

Forms are tuples that
represent, top-level
constructs like function
declarations and
attributes

http://Jucobvorreuter.com/hacking-eriang http://githiub,com/JacobVorreuter

The Abstract Format

® atree-like structure representing parsed Erlang code
® comprised of a list of forms

«(examplel).
a7.([foo/2]).

foo(D -> "Hello Stockholm!™,
[{aliribute 1, nloduic ceamglelk, . o

{fottribute, 2 export, | [1ou,6}]},
{function 4, f00,@, [{ctauss 4, {1, (1, [{striag,4, “lMelio Stockhola! “}1]}1}]

htep://jacobvorreuter.com/hacking-erlang http://github.coin/JdacobVorreuter

The Abstract Format

® g3 tree-like structure representing parsed Erlang code
® comprised of a list of forms

<l¢(examplel),
:([foo/@]).

foo() -> "Hello Stockholm!™.
[{altribute 1, moduie . examplel}, l o

, 2 axoort [{feo, @b)},

K o suse, O] 00, [string, 4, "Balls Slockhaln! "1 7T

http://jacobvorreuter.com/hacking-erlang

http://github,com/JacobVorreuter:

The Abstract Format

® a tree-like structure representing parsed Erlang code
¢ comprised of a list of forms

-module(examplel).
-expart([foo/@]).

foo() -> "Hello Stockholm!™,

[{attribuke, 2 module,axanplel},
{attribate, 2, 2xpoct, [{foo,@}1},

{function, 4 foo,®, {{clause 4,{] [],[{string, 4, "Hallo Stacknolm!“}33]1}]

http://iacobvorreuter.com/hacking-erlang http://github,com/JacobVorreuter

The Abstract Format

® atree-like structure representing parsed Erlang code
® comprised of a list of forms

ia(examplel),
([foo/@]).

foo(Q -> "Hello Stockholm!™.
{{otlrisute i, noduie, examplel}, s 11

Inttribute 2, exocst, [[foa,C1]},
{function,4,foo,®, ({clause,4,{],{],[{string, 4,6 "Hello Steckholm!}714]13]

http://Jucobvorieuter.com/hacking-erlang http://github com/JacobVorreuter

The Abstract Format

® 3 tree-like structure representing parsed Erlang code
® comprised of a list of forms

Taking g step back:
Where do forms come from®?

http://jacobvorreuter.com/hacking-erlang http://github,com/JacobVorreuter

The Abstract Format

® a tree-like structure representing parsed Erlang code
® comprised of a list of forms

Forms are generated by grouping
and interpreting tokens scanned
from source code.

http://jacobvarreuter.com/hacking-erlang http://github.com/dJacobVorreuter

Scanning Source Code
the first step in compiling

' k|
-modulefexomplel).

-ﬁipnrt(fffofa]).

4 M FanlN ..
® use regular expresgsions to tokenize string
input

htbpy Aucobyorreutercom/Misokingorliang neup/fy, 4 JTuopbVorroutar

erl scan

This module contains functions for
tokenizing characters into Erlang
tokens.

http://jacobvorreuter.com/hacking-erlang http://github com/JacobVorreuter

Scanning Source Code
the first step in compiling

-

]
-modulelexomplel) .
-axport([fpo/0]).

L -

foo() -»
UHello Stockhoim!™,

http://jacobvorreuter.com/hacking-erlang http://github.com/JacobVorreuter

Scanning Source Code
the first step in compiling

-module(examplel).
-export([ff“’/])‘
L=

y

® use regular expressions to tokenize string
input

® generate a list of tuples, esch representing
an atomic unit of source code

http://lacobvorreuter.com/hacking-erlang http://éithub,com/JacobVorreuter

erl scan

xomplel).
([foo/0]).

foo() -> "Helle Stockholm!".

1> Code = "-module(examplel) . \n-export([foo/@]) . \\nfon() -> \"Hello StockholmiN®. ®.

2> erl_scan:string(Code).

http://jacobvorreuter.com/hacking-erlang http://github coin/dacobVorreuter

Page 18

te(examplel).
+([fo0/0]).

fao() -> "Heillo Stockholm!™,

htbp://github,com/JdacobVorreuter

duielexamplel),
sor+([foos@]).
foo() -> “Hello Stockkolm!®.
z sran el gl one)
el ey, = token

PO Lnat,

fotem, 3, fo0]
i

359

i

{

{

1}

http://jacobvorreuter.coin/hacking-erlang htep://github.com/JacobVorreuter

erl_parse

This module is the basic Erlang
parser which converts tokens into
the abstract form of either forms,
expressions, or terms.

http://jacobvorreutel.comn/hacking-erlang http://github,com/JacobVorreuter

c(examplel).
:([foo/@]).

foo() -» "Hello Stockhulm!”,

2 sel_scanstelrgitage)
et

foe.

kH

ule(examplel).
rt([foo/0]).

foo() -= "Hello Stockholml™.

| tokean

erl_parse

Cpporse form{{e" 1t
Jaiom,] exatalek
S
faton, 1
wdut 2805

Josk, foriethnte,] moanie exnanl it

hbtp://jacobvorreuter.comy/hacking-erlang

http://github, com/JacobVorreuter

erl_parse

o pomae_foesd [{*-' 1)
{atim,
o

3, (ot P buts, 2 eaport

nittpy/aoohvormouteroom/ hasking-orlang

compile

This module provides an interface
to the standard Erlang compiler. [t
can generate either a new file which
contains the object code, or return a,
binary which can be loaded directly.

hbbp://iacobvorreuter.coin/ hackmg-eclang hbtp://gihub.com/Jdaco Vorreuter

Jistring, 3, " hello Steckbioin! =) 111}

285,16, 11

netp/cobyvorreutar comm/haeKing orlang

httpyf/github.oom/ daopb Vorrauter

Hutp/ R b comfJasobVorrautear

erl_parse

e pirse_foeeC] {aten, 1, fo)
G ¥
b AL
0o
{string. 3, “lelio Stockhoim|®},
fdot A1)
{6k, {finction, 3, fon.8,
LicTouse, 5,00, 00, [istring. 3. Hello Stockholm) “} 1111}

hitep:ncotvorrautercomy hackingd erlangd httg//einhub, com/dreobVorreutor

neupe/fucobyorroutoncomy/ hacking erlang nttpyfgithib, com/dacobVorrauter

i Inod_Hinar
[motule, examplal)

Httpd fgthubcom/dacob Vorraitan

compile

~3bute, 1, module, axampied b,
{att=ibute, 2 expert, [{fon 6}]} .
{functron,3, foo,C, {{ciause,3,[],J. [{string,3, Hailv Stockhoim! "33}]}]
Uin} = compiiesfurmsibarms, [}
<o 7%,79,82,49,9,8,2,284,66,09,05,77.05,126,111,189.0,0,0,
52,8,9.0,5,8,18%, . ..>x}
7» code:leas_[nnoty(Med, [0, B:in)
{module,examplel}
8> eavmplei fon()
“Heilo Stuckhalm!™

http://Jacobvorreuter.com/hacking-erlang http://github. com/JacobVorreuter

dynamic_compile

The dynamic_compile mnodule performs
the actions we've just seen, plus takes care
of macro expansion and inclusion of
external header files.

http://github.com/JacobVorreuter/dynamic _compile

http://lacobvorreuter.com/hacking-erlang htp://github.com/JacobVorreuter

hetp/ facobvolr 3 eleing-arbang httpdf mthub gom/dacob Vorraytar

\, IS THERE A MODULE THAT
% CAN PERFORM ALL OF
* THOSE STEPS FOR ME?!?!?

http://Jacobvorreuter.com/hacking-erlang http://github,com/JacobVorreuter

dynamic_compile

9 Code = "-mudule(exompiel) hr-export([fons/8]).\ninfon() -» \"Kello $tackhoim!"
“-radulelexa=plel) . n-ezport{[fonsA]) mnfoal) -> \“Hella Stackholals",
18> {Mod, Bin] = dyvna=1_campie;f rom_atr1nsCace)
{exemplel, «w70,79,82,49,8, 0,1, 284,60, 69,65,77 65,116,111,
09.6.4,0,52,3,8,0,5,4 101,124,)
11> vode:loud_binary(Mod, {1, Bir).
fmodul &, wxamplell
12> examplel:fond).
“lelle Stocxholm!™

the parse_transform
debate...

http://jacobvorreuter.com/hacking-erlang http://github.com/JacobVorreuter

yeah, you can do

everything with macros
anyway
p—

Programmers
are strongly advised
NOT to engage in parse

| transformations

http://github,com/dacobVorreuter nhttp/bcotvorrautance g, o b Varnabar

How do parse_transforms work?

wait! parse_transforms are

cool and have their place in the J
_ language...in mndcratlt‘:n)/
'-\-_‘_‘___-_-__-___

If the option {parse_transform, Module}
is passed to the compiler, a user written
function parse_transform/R2 is called by
the compiler before the code is checked

for errors.

htbp://lacobvorreuter.com/hacking-erlang http://github, coin/JacobVorreuter

How do parse_transforms work?

talprint_forms).
t([porse_transform/2]).

parse_transform(Forms, _Options) -» {attribut

wo: format (" forms: ~p-n", [{attribute
Forms., {functl

([fr)&(f)j) L

hbtp://github coin/JacobVorreutsr http://jacobvorreuter com/hacking-erlang htp://github.com/JacobVorreuten

Page 22

a pizza example

#pizza{
size = "large",
toppings = [Tonions"”, “peppers”, Yolives'],
pritéies (514,90

encode pizza

[{s5ize, "large"}, *

ftarpings, [Monions”, "peppers', "olives"]},
{price, "$14,297}]

http://tacobvorreuter.com/hacking-erlang http://g1ithub,com/JacobVorreuter

a pizza example

remember, at runtime all references
to record instances have been
replaced with indexed tuples.

http://jacobvorreuter,com/hacking-erlang htbp://github.com/JacobVorreuter

w({n0 Lransiar, &
([encade_record/1]).

=<card(pizzae, {s1ze, toppings, price})

encode_record(Rec)
[RecNameilields] = tuple_to_list(Rec),
Flelddares = expanded_record_fields(RecNome),
lists:zip(FieldNames, Fielgs).

1s exomplel:encode_record({pizza, “large”,
[Monwons", "peppers”, "olives™), "§14.99"1),
ff<ize "large”},
{toppings, [ontens ", "peppers™ "olives" 11, /
Iprice,"514.99" ;]

http://jacobvorreuter.coin/hacking-erlang http://github,com/JacobVorreuter

a pizza example

io(example).
([encode_record/1]).

-resord(pizza, {size, toppings, pricel}).

encode_record(Rec) -
cuse Rec of

Pizza wien is_record(Pizza, pizzs) ->
[{»1z¢, Pizza#pizza,size},
{:om 5, Pizzo?pizza.toppings},
{Brree, Pizzarpizza.pricel];

=->

exitCetl _do § oo Wit this)

http://github, com/JacobVorreuter

a pizza example

(example2).
{prrsa_tunciorm,; &npunid
r([encode_record/1]).

a(pizza, {size, toppings, price}).
encade_record(Rec) -»
[RecMame | Fields] - tuple_to list(Rec),

fieldNares = expanded_recard_fields(RecName),
lists:zip(FieidNames, Fieids).

http://Jacobvorreuter.com/hacking-erlang http://github.com/JacobVorreuter

expand_records.erl

http://jacobvorreuter.com/hacking-erlang http://slthub.com/JacobVorreuter

intermission

-_—

hetp://github.coin/dacobVorreuter

Compiling Custom Syntax
» dingbats <

» numbers ¢
PV 1~ 16 »® <

http://Jacobvorreuter.comn/hacking-erlang http://github,com/JacobVorreuter

Compiling Custom Syntax

leex - A regular expression based lexical analyzer
generator for Erlang, similar to lex or flex.

yecc - An LALR-1 parser generator for Erlang, similar
to yacce.

http://jacobvorreuter.com/hacking-erlang http://github com/JacobVorreuter

Act II

compiling custom syntax

http://jacobvorreuter.com/hacking-erlang hbtp://github,corn/JacobVorreuter

Compiling Custom Syntax

»= dingbatss=<

» numbers v
PV 1- 16 > ® Q<

2> dingbats:numbers().
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

http://jacobvorreuter.com/hacking-erlang http://github.com/JacobVorreuter

leex

The leex module takes a definition file with the
extension .xrl as input and generates the source
code for a lexical analyzer as output.

<Header>
Definitions.
<Macro Definitions>
Rules.

<Token Rules>
Erlang Code.
<Erlang Code>

http://jacobvorreuter com/hacking-erlang http://github,com/JacobVorreuter

example_scanner.xrl

Definitions.
<Macro Derinitions>
Rules.

<Token Rules>
Erlang Code.
~Kriang Code>

http://jacobvorreuter.comyliucking-erlang

example_scanner.xrl

Definitions,

A =a-z][0-9a-zA-Z_}*
1 =[0-9)*

W8 = ([\O0O-\s]|%.*)

Rules

A\ {token, {module,TokenLine})

\» {token, { function,TokenLine})
{token, |'->" TokenLine} }
{token, {'[',TokenLine})

{token, '], TokenLine})

{token, {atom,TokenLine.list_to_atom(TokenChars)}}
(token, {integer, TokenLine,list_to_integer{ TokenChars)}}
{token, {'<-' TokenLine} |,

{token,{'| | TokenLine]}

{token, { heart,TokenLine} }

{end_token,{dot, TokenLine})

skip_token.

Erlang Code.
<Erlang Code>

http://jacobvorreuter.coin/hacking-erlang

example_scanner.xrl

1> leex:file("src/example_scanner.xrl").
{ok,"src/example_scanner.erl"}

http://jacobvorreuter.com/hacking-erlang

htp://github com/JacobVorreuter

http://github.com/Jacob Vorreuter

http://github,com/JacobVorreuter

example_scanner.xrl

Definitions

N = (a-2][0-9a-2A-Z_]*
- [0-9)+
= ([\OOO-\s](|%.*)

Rules.

<Token Rules>
Erlang Code.
<Briang Code>

http://Jacobvorreuter.com/hacking-erlang

example_scanner.xrl

Definitions.

A =[a-z][0-9a-zA-Z_]*
1 = [0-9}+

WS = ([\O0O-\s][|%.*)

Rules,

\m {token,{module,TokenLine}}
A\ . {token,{function, TokenLine}}
AV {token,{"->TokenLine})

\ . {token,|'[',TokenLine}}

N : |token,{']',TokenLine}}

{token,{atom,TokenLine,list_to_atom(TokenChars)})
{token, |integer. TokenLine,list_to_integer(TokenChars)}}
{token, {'<- TokenLine] }

{token,{'| |'.TokenLine} }

{token,{heart,TokenLine})

{end_token, (dot.TokenLine}}

skip_token.

Erlang code

http://jacobvorreuter.com/hacking-erlang

yecc

The yecc module takes a BNF* grammar

definition as input, and produces the source

code for a parser.

<Header>
<Non-terminals>
<Terminals>
<Root Symbol>
<End Symbol>
<Erlang Code>

* Backus-Naur Form (BNF} is a metasyntax used to express context-free grammars: that is, a formal way to describe formal languages

http://Jacobvorreuter.comy/hacking-erlang

http://github,. com/JacobVorreuter

http://github coin/JacobVorreuter

http://github com/JacobVorreuter

<'Fgrmunals>

<Rnat Byinhol~

<End Symbols

<Erlang Code>
before the module
deglaration \n your
parser

http://jacobvorreuter.comy/hacking-erlang hbtp://github com/JacobVorreuter

exampe_parse.yrl

Nor-terminals>
<Terminals>

Root Symhol~
“End Symbol-
~Eriang Code>

http://jacobvorreuter.com/hacking-erlang

example_parse.yrl

<Non-termunals>
Terminals atom integer heart module function (' ' ->'"'<-" | |
~Root Symbal»

<Bnd Symbol-
~Kriang Code=

http://jacobvorreuter.com/hacking-erlang

nttp://github comn/JacobVorreuter

http://dithub.com/JacobVorreuter

example_parse.yrl

Header "%% Copyright (C)"

"%% @Author Jacob Vorreuter"
We could do

<Nou-terminals> something like
<Tarminals> this

~Root Symbol= wh.a.t';;l:r
<Bnd Symbol>

<Erlang Clode>

http://jacobvorreuter.comn/hacking-erlang http://github. comn/dJacobVorreuter

example_parse.yrl

<~Nou-tercinals>
<Terminals>

rminal symbo! al
eRUS ZD :;:'ings forming tllf:f:pﬁ?:r a
<Lnd Symbol> formal grammar and cannot be
HBREE et broken down into smalisr units

without losing thetir literal
meaning

http://jacobvorreuter.com/hacking-erlang http://github,comy/JacobVorreuter

example_parse.yrl

<Non-ternunals>

Terminals atom integer heart module function '[* ']* ->' '<-**| |'

<Root Symboi>

<Bnd Symbol-

~lirlang Code> These terminal symbols ere the

products of the regular axprassions
in our lexicel analyzer

nttp://jacobvorreuter.com/hacking-erlang http://github.com/JacobVorreuter

example_parse.yrl

<Nop-terminale>
Terminals atom intedee heart module function [* ']’ ->''<-' | |

<Root Syrmbol>
<End Symbol> Nonterminal symbols are the rules
<Erlang Code> within tha formal grammar consisting
of a sequsnce of terminal symbols or
nonterminal symbols. Nonterminal
gymbols may self refsrancs to specify
resursion,

http://jacobvorreuter.com/hacking-eriang

example_parse.yrl

Nonterminals element module_declaration function_declaration function_body
comprehension

Terminals atom liiteger hieart, o
<Root Symbol>
<End S8ymbol>
<Erlang Code>

Here we are declaring symbals
that will be further defined as
descendants of the root symbal

http://jacobvorreuter.com/hacking-erlang

examp_parse.yrl

Nonterminals €lement module_declarstion function_declaration function _body
comnprenension
Terminals atom integer heart module funchion '[* '] W>" < '] |

Rootsymbol element,

element -> module_declaration : '$1'

element -> function_declaration : '$1'

module_declaration -> module atom :
(attribute,line_of('$2'),module,value_of('$2")}

function_declaration -> function atom '-> function_body :
(function line_of(‘'$2"),value_of('$2"),0,[| clause.line_of(‘$2'),[1,[],'$4'}]}

function_body -> comprehension : [‘$1].

comprehension -> ‘(" ']': nil

comprehension -> '[' integer '<-' integer'| |’ heart '}' :
{lc.line_of('$2"),{varline_of("$2"),'A'},[{generate line_of('$2'),
{varline_of('$2'),'A'},
{call line_of('$2"),{remote,line_of('$2'),{atorm, line_of('$2") lists],
{atom, line_of('$2'),seq}|,['$2.'$4'111])

<End Symbol>
<Erlang Code>

http://Jacobvorreuter.com/hacking-erlang

http://github,corn/JacobVorreuter

http://lacobvorreuter.com/hacking-erlang

http://github, com/JacobVorreuter

http://github,.com/JacobVorreuter

example_parse.yrl

Nonterminals element module_declaration function_declaration function_body
comprehension

Terminals atom integer heart module funetion '[! '] ->" < '] |
<Rout Symbaol»

<End Symbol>

<Erlang Code:>

http://lacobvorreuter.com/hacking-erlang

example_parse.yrl

Nonterminals element module_declaration function_declaration function_body
compreliension
Terminals atom integer hieart module tunction '[' '} > < 1| |
<Rootl Symbol>
<End Syrmmbol> The root symbel is the most
<Erlang Code> genaral gyntastic sategory

which the parser uitimately will

parse every Input string into.

http://github com/JacobVorreuter

example_parse.yrl

Nonterminals element maodule_declaration funetion_declaration function_body
comprehension
Terminals atom integer heart module functiorn '[* 3 W' <-4 |*
Rootsymbol element
element -» module_declaration : '$1
elernens -» function_declaration : ‘$1'
madule_declaration > medule atom ;
{attribute,line_of('$x"),module value_ofl'$29}
funetion_declaration -> funetion atom *>' function_hody :
{tunction line_of('$2"),value_of(‘$R"),0.({clause line_of('$2"),[I.| }.'64'j]}
Tunction_body > comprehkension : ['$1']
compretiension -’} : nil
comprehension <> ' integer ‘< integer '| | heart '] :
{lehne_of('$2), (varline_of('$r').'A'} [{generate line_of('82'),
{vair,)ine_or()SA,
{callline_of(*$1"), [remote. line_of(’$2"), {atom line of("$2'),lists}
farom, ing - of("F2). =

<End Symbol>» the end symbol 18 & declaration of

<Brlang Code> the end_of_input gymbol that your
soanner is axpaoctad to uss.

http://jacobvorreuter.com/hacking-erlang

example_rse.yrl | example_parse.yrl

Nonterminals element module_declarstion function_declaration fiinetion_body Nonterminals elemnent module_declaration function_declaration function_hody
comrnreliension cornprehension
Terminals atom Luteger hearvt, moduls function * 11 =<t Terminals atom Liteger heart module funetion ' > <t |
Rootsyvmbol eiemnent Rootsymbol element
elernont > module_declaration : '$1 element > inodule_declaration : ‘1
clernent <> tunction_declaration ; '§1 elemsant, > function_d. ration . '$1°
module_declarabion -> module aton module_declaration -» module atoun :

{artmbute line_of('$2'),module,value_of('$2)1 [attribute line_of('$&'), module.value_of('$2')}
fupetion_declarstion -» funetion atom > funetion_body funetion declaration -> funetion atom ->' function_bhody :

[turchion.line_of('$2'),value_of(‘$R"),0,[{clause,)ine_of("$L2").11,[1,84'])) {tunetion line_of(*8&'), value_of('$R"),0,({clause.line_of(‘82'),(1,
tunction_body > comprehiension : |'§1'] function_boedy -> comprehension : [(*$17]
comprehension > ‘[*1': nil comprehiension > '[* 1 : nil
comprehsusion > '[! integer < in [hears) eompreliension -> ' mteger ‘< integer '| |' heart ')

{leline_of('$R"), (varline_of('$R") | {generate,line_of("$2"), {leJine_of('$2"), [varline_of('$2'),'A'}l,[{generate, line_of('$2').

Hhe),'A'), {varline_or('$27),'A'],
[calll - N, (remote line_of('$2"),{aton, line_of ("$2') lists), {callVine_cf('$2"), (rernote line_ofC$2'), (atomn,line_of('$2") lists},
fatom. line_ot('§2'),seq) }.['52".'%47]11]1
The Brlang cods ssotion
Endsymbol dot. can contain any functions
<Erlang Code> that we nead to call from

<lirlang Code> our symbel definitions

http://jacobvorreuter.coin/hacking-erlang http://github.com/JacobVorreuter http://jucobvorreuterrcom/hacking-erlang http://github comn/dacobVorreuter

example_parse.yrl example_parse.yrl

Nonterninals eizment moduls_ wabion function_declaration function_body
SOMPrehension

Teruiinals atom integer heats Indule funetion 'y == a1 | v " . "
Rhohaymbol dic: 1> yecc:file("src/example_parser.yrl”, []).

Glement ¢ ation g1 {ok, "src/example_parser.erl"}
element -> claration . $1°
maodule_deciaration -» rodile stom
{al e line_of('$2'), mocuis, value_of('$2")
Tsnction_declarstion -> Tunction atem > function body :
{function line_of('$2') . value_of('$X"),0,| {ciaise line_of('$2),| |, 1,641)]
uehon_body -> catnprebensien : (1]
comprenension >
Sopnprehiension - ' o
{icline_of('$:2'),{ v
[varline_of('$x').'A')
{callline_of('$2"), (reimnote line_of (&), {atum.line_of(‘$2") Jists}
{atot line_of('3
YMDOI 207

Erlang code
value_of(Token) -> element(3. Token)
line_of('Token) -> element(2, Token),

http://jucobvarreuter,com/hacking-erlang http://github coln/JacobVorreuter http://jacobvorreutsr.com/hacking-erlang http://github.com/JacobVorreuter

example_parse.yrl example_parse.yrl

1> yecc:file("src/example_parser.yrl™ []). 1> exampled:compile_and_load("src/dingbats”).
{ok,"src/exarple_parser.erl”} {module,dingbats}

Jvorreuter$ erlc -o ebin src/*.erl

http://jacobvorreuter.com/hacking-erlang http://github com/JuacobVorreuter http://Jacobvorreuter.com/hacking-erlang http://github,.comn/JacobVorreuter

example_parse.yrl example4.erl

¢ ompled),
exampled:compile_and_load{ "src/di ats), G omplle_ond_ loads/1]),
imodule, dingbats}

{ak, Bin}
[FormlForms] = scan_pa
« [Form, (Y s i B,
, Mod, Binl} = compile:forms
code: load_binary(Mod, [J, Bini),

Tolkens, £
. Form} = exampl f
scan_parse([], LeftGverChars, Endloc, [Formlh

lists:reverse

htbp://jacohvorreuter.coimn/hacking-erlang hibbp://github.corn/dacob Vorreuter htbp://github, cotn/JacobVorreurer

custom syntax in
the wild...

e Lisp Flavored Erlang
e Prolog Interpreter for Erlang

e Hrlang implementation of the Django Template Language

END

nbbp://jacobvorreuter.comy/hacking-erlang http://github.com/JacobVorreuter) gobyorralber omy/hnekiiE: erlong IttodEthub. oo

Page 29

Page 30

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Michael Truog

Creator of Cloudi

A Cloud as an Interface

Abstract

Cloudi is a free Erlang based private cloud for efficient processing in C++ to maximize
hardware utilization with dynamic load balancing. Cloudi relies on external databases
for keeping the work fault-tolerant by preserving the work data. Implementing work for
the cloud is as simple as declaring the cloud interface. The presentation provides an
introduction to the Cloudi framework.

Biography

Michael received diverse distributed systems experience from Mobile, Online Gaming,
Special Effects/Animation, and Government industries that led to an appreciation of
Erlang for creating maintainable systems. A focus on real live systems with a pragmatic
view on efficiency directed the creation of the Cloudi framework for free private cloud
computing.

Cloudl] «&

A Cloud as an Interface

Erlang User Conference, Stockholm, Sweden

o 0k wbhPE

November 12, 2009

Michael Truog
mjtruog@gmail.com

What is Cloudi?

Private Cloud Computing Framework
Fault-tolerant Work Processing

Dynamic Load Balancing and Scheduling
Ordered Work Input/Output

Distributed Execution of C/C++ Work

. The Future

Page 32

A Private Cloud Computing
Framework
* Provides an open-source cloud
- BSD License

* An alternative to paying for a black-box
commercial cloud

- Internal processing is secure processing

» Creates a stable distributed processing
environment from any available Linux
machines

Fault-tolerant Work Processing

* Erlang/OTP coordinates all work allocation,
execution, and data output

* Any crash of C/C++ code is handled
- Any signals, including uncatchable signals

e Uses Erlang Port processes subscribing to
the cloud as Erlang C Nodes

- Fault-tolerance overhead is currently 0.172
ms/task locally and 0.347 ms/task remotely
(based on cloud_job_latency test results)

Page 33

Fault-tolerant Work Processing . . .

| —— = J——

Database
A

o

(o)

Database

Machine A

Master Cloudi
Node (Erlang VM)

" Response

1.N Erlang Port to C/C++ |
Connected as C Node

' 1..M Task Threads
[— _

Erlang .« . Local £

Port ' CNode” |\
Control | ASN.1
Functions | Task
' Request
il and

"

":'5"-‘—?7'—

1 1..M Task Threads

Machine B
| Slave Cloudi
Node (Erlang VM)
~ Remote Erlang
C Node Port
ASN.1 Control
Task Functions
. Request
. and
_r’ Response

1..N Erlang Port to C/IC++
Connected as C Node

Dynamic Load Balancing and
Scheduling

* Workers are ideally stateless and form a pool
of workers in the cloud

 Cloudi adjusts the task size based on the task
execution time that is requested

— Convergence is slow to avoid problems with

unstable work processing

* Cloudi verifies that work is loaded

During work allocation

After node reconnection
Page 34

Ordered Work Input/Output

* The Erlang work module enforces an order on
the work task input

e Cloudi maintains the task input order when
collecting output so data is stored in the same
order

* Work processing is paused when excessive
data accumulation occurs

Distributed Execution of C/C++ Work

* One “do_work” function is required in a
dynamic library for the C/C++ work

- Loaded when Cloudi requests it

» Six Erlang functions within the work module
provide work task specification

- The functions define the task size (float value in
range (0..1)) and task data (binary data)

* Any Erlang data module can handle output
- PostgreSQL, MySQL, memcached, Tokyo Tyrant

Page 35

The Future

* Replicated Cloudi instances can be used for
failover (needs management application)

— Failover uses separate epmd processes for local
name registration

* More databases will be supported
* More fault-tolerance testing

* Download Cloudi @ http://cloudi.org/
- Version 0.0.8 alpha is now available!

Questions?

Page 36

Conference Proceedings | Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Discodex: intuitive data indexing

Disco combines the strengths of Erlang and Python to enable rapid development of
massively parallel computational pipelines. Disco implements the MapReduce frame-
work, making it a powerful platform for doing distributed computing on immense datas-
ets. The first step to building a system driven by data, is indexing the data in such a way
that it is accessible in logarithmic or constant time. Such random access is crucial for
building online systems, but also valuable in optimizing many other applications which
rely upon lookups into the data. "Discodex” builds on top of Disco,abstracting away some
of the most common operations for organizing piles of raw data into distributed,
append-only indices and querying them. By adopting erlang-style immutability of data
structures, itis possible to index and query billions of data items efficiently. Discodex
adopts a similar strategy to Disco in achieving this goal: making the interface so embar-
rassingly simple and intuitive, that development time is never an excuse for not building
an index. In this talk we discuss the architecture of this awesome, open-source tool {with
Erlang at its heart), and how to use it. We also provide a reai-world example of using
Discodex for data insight at Nokia, and the reason we built it in the first place.

Ville Tuulos
Erlang hacker at Nokia Research and initiator of the Disco Project

Ville Tuulos is a researcher with Nokia Research in Palo Alto. He has been working with
large data sets since 1999, building solutions for statistical information retrieval. After
several misguided attempts to orchestrate highly distributed systems in C and Python,
he found Erlang in 2006. He is also co-author of the book "Mobile Python - Rapid appli-
cation development on the mobile platform®. In 2007 he started to build Disco, an
Erlang / Python implementation of the Map/Reduce framework for distributed comput-
ing. Disco is now used by Nokia and others for quick prototyping of data-intensive
software, using hundreds of gigabytes of real-world data.

Jared Flatow
Erlang Hacker at the Nokia Research Center

Jared Flatow is an engineer at the Nokia Research Center in Palo Alto. Prior to joining
the NRC in 2009, Jared was tackling large-data problems in the field of bioinformatics
at the Northwestern University Biomedical Informatics Center in Chicago. Jared was
among the first to apply Map/Reduce to problems in bioinformatics, presenting his work
using Hadoop at the Next-Generation Sequencing Data Analysis conference in 2008.
Jared long-dreamed of rewriting a Map/Reduce framework in Python, but it was not until
discovering Disco that he realized the elegance of combining the strengths of both
Erlang and Python towards that end. Since then, Jared has become a contributor to
Disco, and co-architect of the simple and scalable Discodex data- indexing pipeline. His
recent efforts have been aimed at using Discodex to achieve a full-stack massive-scale
data visualization pipeline with his colleagues at the Nokia Research Center.

Page 37

x: intuitive data indexing

discodex: intuitive data indexing

Erlang User Conference, Stockholmi, 2009

Jared Flatow
Ville Tuulos

¢ By s Resnarsh

X. intuitive data indexing

state of disco

Disce 0.3 highlights

e Easier installation
¢ New fair scheduier
s Scales better to terabyte-scale datasets

Caming on the pipeline

* Embedded web server (mochiweb) for even easier instaliation
s Enhanced management of jobs and resuiting data {tagging)

= Streaming raesulis

= 10 / network scheduling

* adhoc data analysis & random data access

505 Kk g Besnach Canier

Page 38

: intuitive data indexing

big data

many huge (giga/terascale) datasets consist of lots of individual data records

s« data is collected incrementaliy, and never deleted
= samples from an experiment or survey
* e.g. server logs, netflix training set, wikipedia, dna sequencing

some operations on big data are rmore expensive than others

= properties which have global dependencies are more expensive
= properties which are completely focal to individual records are cheaper
» we can usually precompute indices to speed up downstream operations

22000 Nolily Revargh Cungel

: intuitive data indexing

wishlist for big data infrastructure

« random aceess in arbitrary dimensions

s persistent distributed storage

e real-time + low-latency reads

* as-lazy-as-possible evaluation

+« heterogeneous k/v scale {bytes to gigabytes)
« efficient multi-dimensionai queries/joing ??

* pure and simple interface

& 2005 Nty laasdy Canti

Page 39

X: intuitive data indexing

the data storage landscape

¢ mutable k-v stores
¢ e.g. dynamo/berkeleydh, tokyo cabinet, etc.
o only support single-key 1ookup
* bigtable-like (column-based, semi-structured, distributed hash table}
o e, hypertable, hbase, cloudstore, hstore, ete.
« highly comiplex, difficult to get right
e Ao mature (open-source) implementations
+ relational databases
< inls of overhead, both mairtenance and transactional
» erlang-specific
o e.g. mnesia, deis
s not buiit for scale/high-performance
« no external interface
¢ document-based stores
o e.g. couchdb
o not meant for huge data

:intuitive data indexing

T

D08 Makia Bgseproh Contpr

Page 40

¢ Intuitive data indexing

discocdb

s jow-level C data structure

+ maps key -> muitiset{values)

e immutable + persistent: write once to a file

« Pytheon/erlang wrappers: api = dictionary + enf

P00 ptkin B emarch Croes

. Intuitive data indexing

discodb format

designed for lightning fast random-acces

(header)

keys -> int ids
{minimal perfec. hashing}

' d

lookup key id/offset

tkey id -> [value ids]
. : {delta-encoded)
retriewe values itentor

,.
A

key ids -> keys
| value ids -> values

v 2003 Rk la Botearity Conipr

Page 41

X: intuitive data indexing

discodb.erl

ets-like Erlang binding to discodb

* ddb:new(), ddbiadd(bdb, Key, val)
e ddb:lookup(Ddb, Key), ddb:guery(Ddp, CnfQuexy)
lect (Ddb, MatcehSpeco)

+ ddbisge

Lazy query evaluation with continuations

intuitive data indexing

discodex

+ distributed discodbs form indices for data

e disco jobs create indices/harvest query results

¢ buiid/query indices through RESTful APT

¢ dead simple command line/Python interfaces

» indexing parameterized by parser/demuxer/balancer functions
s supports querying billions of keys in real-time

Page 42

¢ intuitive data indexing

discodex|

htp://

.

.
.
"
.
'

python
client

discodex design

disco
master

h

ttp://

|command line ::Iienl:

> cat datasel

| discodex index

> discodex get <index> | discodex query

<query>

¢; intuitive data indexing

five demo!

£ 2000 fabla Beorprth Canler

Page 43

X Intuitive data indexing

questions?

009 Roiw Ressaron Crngug

Page 44

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Ulf Wiger
Uber Erlang programmer and CTO

Erlang's Journey to the Clouds

Abstract

Erlang was invented in the 90s to address rapid development of non-stop scalable
telecoms systems. Initial requirements included massive concurrency, distribution
transparency, in-service upgrades, plug-and-play expansion and high programmer
productivity. A rapidly growing Open Source community is now using Erlang for scalable
web services, messaging systems and cloud computing services. In this talk we will look
at how Erlang is breaking out of the clusters of last century and entering today's cloud
computing environments.

Biography

UlIf Wiger became one of the first commercial users of Erlang (certainly the first in North
America) when he bought a license in 1993. At the time, he was busy designing disaster
response systems in Alaska. In 1996, he joined Ericsson and became Chief Designer of
the AXD 301 development. At nearly 2 million lines of Erlang code, AXD 301 is the most
complex system ever built in Erlang, and probably the most complex commercial system
built in any functional language. In recent years, UIf has been involved in several
products based on the AXD 301 architecture, and has been an active member of the
Open Source Erlang community. In February 2009, UIf began his new job as CTO of
Erlang Training and Consulting Ltd.

Erlang Training and Consulting Ltd

Erlang’s Journey to the Clouds

Erlang User Conference, Nov 12t, 2009

The Cloud, to us old-timers

» Software as a Service
= Access program and data from anywhere, using any device

» Hardware as a Service
= Access computing resources as-needed, without owning a data center

» “Resolving the tensions between
the end-user and the data center”
= Power vs Accessibility
= Powerful clients vs Ease of deployment
s (Google VP Vic Gundotra @ Google | O Keynote 2008)

Copyright 2004 - Erlang Trasing and Constlbng 1¢ w

Page 46

Telecom in the 90s

. . . Erlang Problem Statement (paraphrased):
Stovepipe model’ on its “How can we program telephony

way out in THIS environment?”

The network as a
communications ‘cloud’

Future
Multiservica natworkaiclien sarver

Caatent

Broadband ISDN -> Voice
over ATM -> Voice over IP

Today -> Mobile IP (IPvé)

Aesh rangport and awichlag sctworbs
Source: Ericsson Review No 1, 1998

Capyright 2008 - Brlang Traamg and Consutting it¢ w

“Conversational services”

Bridging the Legacy

LR ———— Source: Ericsson Review No 3, 2000
Frum 5
ENG(NE Integral.
- -
o | ot il'—‘u
== | l_- B | |
T { . s ‘;.T TR F
f ; Y bz | \ L B
s f ™ ’.ﬁ [|
o . \ ; N, r’"‘
mg“:.ui " :ﬂ\(- u 1 : .lg_'
Virtual voice trunks T = St _ Cross-domain
N a1 oy } Voice-over-Packet
e, n "

g Ny
Single-Domain Lz '.1/ it
Voice-over-Packet [Far.

ENGINE Bridpahwid.

Copyzipht 267 - Edlang Traimag and Consclling L¢ w

Page 47

Erlang the Enabler

Faprs 3
Thig EWLAE o] ot

Source: Ericsson Review No 3, 2000

Copyilght 2008 - Erlang Trainmg and Consulting it

Erlang the Enabler

AXE

| as - T =
| e l !
mec | = |
------------- ‘--q--o—-nn-l------
= 1
oW
: s s ‘
=== s N\ Alpam
7 L
Fd b

Legacy Phone Switch

Switch Emulator and
Voice-over-ATM Controller

Extremely complex state machines
Scalability and redundancy required
> 99.999% uptime, including maintenance

Copyrlght 2008 Erlang Training and Conselting Li¢

Page 48

So What Next...?

» The first big project worked out
» Erlang proven ready for the Big Time

» Erlang released as Open Source 1998
= No fanfare, no marketing...
= 1-2 messages/day on the mailing list first year
= < 1000 downloads/month

> New initiatives needed...

Copyiight 2008 - Erlang Traming and Consulhag Lid w

Idea: A Scalable Web Server...?

Build a 5-nines scalable
web server based on AXD 301

= 256 processor boards on a
non-blocking, redundant
160 Gbps backbone!

Two erlang-related
Innovation Cell proposals
presented at the same time

The AXD 301 track rejected -
Ericsson doesn’t sell
web servers

Capytioht 2008 - Erlang Trafstag and Consulling Ltd w

Page 49

Idea: A Scalable Web Server...?

| R _
o S
L X
P\
Siee ¥ -
F—;) s - :'["\'\
& B EI“ \
L || ol
L o PRSI
e i \

Ak3 « . =il 1 Compue= Bat Enf rmn ocd Eal 57 Rde Lokmeat
LA e y > i ree o
e at 1 ATTP G
Praa o

N2 Wndtund Wes Sermr wing e BS5s Enhanved DNS ot
Inteliigen HTTP Gstaway packegas.

Eddie - An Ericsson-sponsored Open Source web server cluster framework 1999

Copyiiaht 2008 - triang Tramag and Consulling Ltd w

Scalable Email - Bluetail Mail Robustifier

Load-balancing frontend to
standard mail servers

Added

= Robustness

» In-service scalability

= Service differentiation

...transparently

Released 1999

[IMAP Gold cluster
(O IMAP Standard clusler

=3 IMAP (res cluster

CopyighUZOCA - Erlang Travsing and Consulting L1 W

Page 50

Scalable https - SSL Offload Accelerator

Bluetail bought by Alteon
(Alteon bought by Nortel)

ISD- SSL

Continuing to make
scalability solutions on
commodity hardware

ISD-SSL released 2001

Copy: bht 2008 - Erlang Trauag 2nd Consialting Ltd w

Scalable XMPP Chat - ejabberd

Load balancer

e /Fully replicated é

Mnesia database

First released 2003

Copyiight 2008 - Erlang Yraining ané Consltiag Ld w

Page 51

Runcom IXI MMGS - Email and IM Gateway

Massively scalable Y < |J——
@ o e s take
>12k messages/second O~ —td
ik d - D
150,000 connected users % ~==-alt” 4 "'"*?'_TI_EJ :
Bridging different e ‘ ‘--*WJ Wlcg
messaging standards E o s e

Copy:ight 2008 - £rlang Yraining and Consulting ité w

Erlang, the un-Ruby

» Offering a cost-effective way to build...
= Massively scalable
= Extremely robust
= Eminently maintainable

...back-end services (using an odd-looking syntax)

> But organizations developing such systems
are by nature conservative!

> Perl (“duct tape”), Ruby and Python (OO scripting)
offered something more immediately useful to
individual programmers

Copyright 2008 Erlang Tralning and Consulting Ltd w

Page 52

What Changed?

> Web services matured - started requiring scalability
and serious uptime

> Web 2.0 - opened up for a new class of (conversational)
web services

» Multicore - forced everyone to start thinking about
concurrency

> Virtualization - brought distributed systems development
to the masses

Copyright 2008 - Erlang Traag ang Conmuliag Lid w

New wave - Web frameworks

> Yaws - fast dynamic-content web server

» MochiWeb - dynamic-content weh server with JSON
» ErlyWeb - Web development framework

» Erlang Web - XHTML-based Web framework

» Nitrogen - Erlang-style JQuery

» WebMachine - RESTful Web services

» Chicago Boss - Django-style Web framework, but asynchronous

Copyripht 2008 - Erlang Traisiag and Consuliiag L w

Page 53

New wave - Databases for the Cloud

» Scalaris - Distributed Hash Tables

» CouchDB - RESTful Document Store

» Dynomite - Dynamo-like Distributed Key-Value Store

> Riak - Decentralized Key-Value Store w/map-reduce

» Disco - Map-Reduce framework

» Client versions for non-Erlang storage engines
= MongoDB, TokyoCabinet, MySQL, BDB, ...

Copyright 2004 « Erlang Trainuag and Consulting Ltc

Conclusion

> Erlang was born and bred
for Cloud infrastructure

» Connectivity, scalability,
messaging are becoming
mainstream concepts

» Cloud computing brings

Distributed Programmingto o

the masses

» New exciting components
appear every month

CopyrtghL 2000 - Erlang Traintag and Consulting Ltd

500000 -

Requests per month fo www.erlang.org

o
oooooo

Page 54

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Rickard Cardell

Tokyo Cabinet and CouchDB with
Mnesia

Abstract

Couch DB and Tokyo Cabinet are two very interesting database managers. CouchDB is
famous for its robustness, its simple document storage model, and its RESTful interface,
and also for the fact that it is written in Erlang. TokyoCabinet, on the other hand, is
written in C, is blazingly fast, and an interface to Mnesia already exists (tcerl via mnesi-
aex). In this talk | will discuss how | used Mnesia as a frontend to these database manag-
ers and the problems | encountered while integrating it with a legacy Erlang system
based on Mnesia. | will also present the results of some transaction benchmarks, and
discuss some interesting features of CouchDB and TokyoCabinet.

Biography

Rickard is doing a Master's thesis at Kreditor, where he evaluates two different database
managers, Tokyo Cabinet and CouchDB, for possible use as a backend for Mnesia. He
got his first experience with Erlang during a course in Distributed Systems at Uppsala
University.

Tokyo Cabinet and CouchDB
with Mnesia
by Rickard Cardell

Tokyo Cabinet

- Key-value store
- space efficient
- several storage types:
Hash, B+tree and more
- several APl:s: Perl, Java, Ruby, LUA, Erlang
- apps for distributing: Tokyo Tyrant
- used by large community

Page 56

11/3/2009

Tokyo Cabinet cont.

- disk resident - both in RAM and on disk
- need sync() for resident storage

- no repair of broken tables

- mmap() - memory mapped file

Pan of file File In

mapped to RAM
RAM A A
File on disk

CouchDB -basic features

- made in Erlang!
- HTTP Restful interface
- replication
- non-sgl
- views for queries
- documents for storage
- no type constraints in database
- MVCC -MultiVersionConcurrencyControl
- revisions
- no locks or transactions
- conflict resolution on application level
- non destructive updates
- much more..

Page 57

11/3/2009

Mnesia's shortcomings

- infamous 2GB table limit of DETS
- ETS is RAM hungry

- repair broken table takes time

Prerequisites

- a large system highly integrated with Mnesia
- had to integrate my solution to the system
- replacing Mnesia is a big effort
- all data stored in tables as Erlang terms
- need to replace lots of mnesia:select to X:select
- table definitions as records - untyped
- complex relations between tables

- How to solve this?
- Use a totally different DBMS
or
- Replace ETS and DETS in Mnesia

Page 58

11/3/2009

My solution

- make backends of Tokyo Cabinet and CouchDB
- less code changes to the system
- transparent to the user
- will make use of Mnesia locks and transactions
- already an extension to Mnesia: MnesiaEX

MnesiaEX - Mnesia extension

- ability to apply arbitrary storage to Mnesia
- almost transparent to the user
- adds a new storage type external_copies
- works together with current storage types
- ACID issues
- Tokyo Cabinet has already API: Tcerl

[mnesia:read,...)] v LY
external_coples
\ . -coP et database driver
Mnesia +
MneslaEX
disc_copies Database
disc_only_copies backend
ram_copies
Page 59

11/3/2009

Tokyo Cabinet with MnesiaEX -Tcerl

- API for Tokyo Cabinet B+tree: Tcer/
- written by Paul Mineiro
- used in production

- interface to Mnesia via linked-in-driver
- speed over uptime
- good support for mnesia's functions
- select, match_object, read, write, next, previous ...
- ordered_set
- store the records as binaries
- Ssync or async writes
- need clean exit

CouchDB with MnesiaEX - Cdberl

- implemented Mnesiaex behaviour for CouchDB
- named it Cdberl

- Multi Version Concurrency Control means
no locks/transactions
- ignored MVCC
- can't use replication
- can't use revisions
- using the HTTP interface
- Erlang terms to JSON
- cache revisions for faster updates

- improvements to do: use bulk documents

Page 60

11/3/2009

11/3/2009

Cdberl - impedance mismatch

- map/reduce want JSON, not binaries

- no direct translation from Erlang terms to JSON
- non trivial problem
- example: Bigint

Cdberl - queries

- a query needs a precomputed view

- mnesia:match_object -> create a view and then invoke
- not very dynamic
- long time to generate views

Page 61

Representing Erlang terms in JSON

Erlang SON

ptom, string,

>asdf basdf"

ist (string), array,

>"otp" B[111,116,112]
nteger, >32-bit Integer/float
1234 1234

uple, object with array,
>{1,2,3,4} b {tuple, [1,2,3,4]}
pxample:

1>to_json{{person, 1}).

'{obj:{tuple:[person, 1]}}"

Stress testing

- TPC-B, a standard DBMS benchmark / stress test
- measures transactions per second
- updates to four tables per transaction
- 3 reads, 3 writes, 1 update
- serial transactions

- Account table, 100000 records/rows

- Teller table, 10 records/rows

- Branch table, 1 record/row

- History table, 0 records/rows from start

Page 62

11/3/2009

TPC-B -result

Result:

- ram_copies: 5000tps
- disc_copies: 4200tps
- Tcerl (large cache): 2000tps
- Tcerl (small cache): 1200tps
- disc_only_copies: 200tps
- Cdberl: 30 tps

Stress test -result cont.

Disk space of database files

Account table, 100000 records. Actual disk size:

Cdberl (CouchDB): 111MB / 30MB*

disc_copies: 21MB
disc_only_copies: 15MB
Tcerl (TokyoCabinet): 4MB
ram_copies: n/a

* before and after compaction

Page 63

11/3/2009

My conclusion

- CouchDB
- robust storage
- easy to create powerful views
- easy to communicate with
- easy to replicate
- growing user base
- no load time on startup
- designed for parallell use

- takes time to generate a view on large table
- no real dynamic queries

- a bit slow write performance

- quite large files until compaction

- doesn't integrate well with Mnesiaex

My conclusion cont.

Tokyo Cabinet

- integrates quite good with Mnesia

- although experienced memory leaks and crashes

- good read and write performance
- simple API

- very small database files

- no startup time on load

- little documentation
- only one developer
- must be synced to disk

Page 64

11/3/2009

So...

- Mnesiaex is a fine interface
- very easy to apply other database manager

- Tokyo Cabinet and Tcerl need more investigation in regard to

durability issues.
- CouchDB, can be a part of the system, but probably not the
general solution for Klarna

Questions?

Page 65

11/3/2009

10

Appendix - misc info

Cdberl source code and information is located at GitHub: hitp:/github.com/RCardell/cdberl
The TPC-B benchmark that I've used can also be found there.

All tests ran for between 15minutes to 4hours, ~20 times per storage types until stable result was found. The
tables was checked for consistency afterwards.
Test setup:

Erlang/OTP R12B5 w. HIPE (default setup was fastest)

Mnesiaex 4.4.7.6 htip://code.aoogle.com/p/mnesiaex/

CouchDB 0.90

Tokyo Cabinet 1.4.21
- bucket number: 2-5 times n records
- size of leaf node cache
small cache setup: smallest possible = 1
large cache setup: best result with n = ~5000x

Tcerl 1.3.1h hitpiicode.google.com/plicerl!
Tcerldrv 1.3.1g

Ubuntu 9.04 64bit
1x4 Cores

8 GB RAM

2 SATA Disks Raid 0

Rickard.Cardell@gmail.com

Page 66

11/3/2009

11

Conference Proceedings

‘ Thursday 12 November 2009
15th International Erlang User Conference

Stockholm, Sweden

Anonymity in Erlang

Generally speaking, servers and clients in Erlang are implemented as named functions
in named modules. Similarly, processes communicate via messages that have a
statically-known structure, and specifically, with static tags, that serve as the \names" of
the messages. This exposes a great deal of information about an Erlang application:
The names of the modules, the name of the entry-point functions within the module, the
\names" of the messages between the server and the client, etc. In this work, we show
how higher-order functions, and some well-studied techniques from functional program-
ming, can be used to obtain anonymity of servers and messages.

Guy Wiener

Guy Wiener is a Ph.D. student at Ben-Gurion University, studying software engineering
and programming languages.

Mayer Goldberg Ay

Tl 4w r
Mayer Goldberg did his PhD research in programming languages under the direction i .

of Daniel P Friedman of Indiana University, and Olivier Danvy of the University "
of Aarhus. Mayer is currently a senior lecturer of computer science at -

Ben-Gurion University, Beer Sheva, Israel.

Anonymity in Erlang

Mayer Goldberg & Guy Wiener

Abstract

Generally speaking, servers and clients in Erlang are implemented as named functions in named modules.
Similarly, processes communicate via messages that have a statically-known structure, and specifically,
with static tags, that serve as the “names” of the messages. This exposes a great deal of information
about an Erlang application: The names of the modules, the name of the entry-point functions within
the module, the “names” of the messages between the server and the client, etc.

In this work, we show how higher-order functions, and some well-studied techniques from functional
programming, can be used to obtain anonymity of servers and messages.

1 Introduction

The basic looping construct in Erlang is the tail-recursive function call. Erlang compiles these into code that
is as efficient as while-loops in other programming languages.

Servers in Erlang are typically written using recursive functions [2, Chapter 8.2] and [3, Example 4-1].
The server is implemented as a function that receives a message, and as long as the server continues after
receiving the message, the server will be re-invoked by calling the respective function tail-recursively.

Invoking a function on an Erlang node involves calling one of the spawn functions with the node (optional),
the module name, the function name, and the list of its arguments. It is also possible to call spawn by passing
it a closure as an argument. Any global name that is evaluated by this function must be defined on the node
on which the spawned process will be running. If the name is undefined a run-time error will occur.

The fact that the server is recursive exposes several things about the underlying architecture:

e The name of the module in which the server appears needs to be known to the client.
e The client must also know the name of the server function and its arity.

e There must be, on the server, a mounted file system. If the module file is located on that file system,
then the Erlang system must have read privileges to it. If the module file is located only on the client,
the Erlang system must have write privileges to it

There are situations in which these constraints are undesirable. Erlang is currently available for many
platforms, including thin clients and mobile devices. Forcing the client and the server to share files in
advance prevents users from taking advantage of available Erlang nodes on resource-restricted platforms.
Even if accessing the file system is permitted, it places a constraint on general-purpose servers. Instead of
having the client hold the software that it wants to send to the general-purpose server, it forces the client to
first update the server and only then run the new software on the server. Exposing the structure of the server
module is also not always desired, since that makes the server writer more focused on the public functions
of the module, rather then on the message protocol.

2 Replacing recursion with self-application

Any recursive call can be replaced by a call to a function reference that is passed as an argument. Consider
the following example of the factorial function, given in the ubiquitous C programming language:

Pag 68

Recursive version: Self-applicative version:
int fact(int n) { int fact(void *f, int n) {
return (n == 0) 7 reutrn (n == 0) ?
1: 1:
n * fact(n - 1); } n * ((int (*)(void *, int))f)(f, n - 1); }
Used as: Used as:
int n_fact = fact(n); int n_fact = fact(&fact, n);

Notice that the self-applicative version computes the factorial function only when the function is applied
to itself, along with an integer argument. If we were to code the self-applicative version of factorial in Erlang,
we would get:

fact(F, 0) —> 1;
fact(F, N) -> N x (F(F, N - 1)).

which can be invoked as follows:
fact(fun fact/2, N).

Note that the self-applicative function fact is not recursive. It can be written entirely using anonymous
functions:

Fact =
fun (N) ->
(fun (F) -> F(F, N) end)
(fun (F, N) ->
case N of
0 ->1;
_—>Nx*xF(F, N-1)
end
end)
end.

and this is how it can be invoked:

> Fact(b).
120

> Fact (7).
5040

Writing such functions can be simplified by slightly changing the interface of such functions, and ab-
stracting out a general-purpose “recursion-maker”, known in the functional programming community as a
“fixed-point combinator” [4, Page 178]:

Y1 =

fun (F) ->

(fun (X) -> X(X) end)
(fun (M) ->

F (fun (Arg) ->
M(M)) (Arg) end)
end)
end.

And here is how Y1 could be used:

Page 69

To define factorial:
Factorial =
Y1 (fun (Fact) ->
fun (N) ->
case N of
0 ->1;
_ => N *x Fact(N - 1)
end
end
end) .

We can now use our functions as follows:

> Factorial(b).
120

> Factorial(7).
5040

In languages that support variadic functions (6ﬁ71?12tions that take any number of arguments), for ex-
ample, Scheme, Python, etc., it is possible to extend Y1 so that it can be used to define any number of
mutually-recursive functions, each taking any number of arguments [6, 7]. Because Erlang lacks support for
defining variadic functions, we shall not pursue this direction here, but rather encode our functions using

self-application directly.

3 Anonymous servers

As we have seen, it is possible to rewrite recursive functions, so that the recursive call is replaced by
self-application. This allows recursive functions to be written anonymously, that is without using a globally-
defined name for the function. Since a server in Erlang is a specific kind of recursive function, this same

To define Fibonacci:

Fibonacci =
Y1 (fun (Fib) ->
fun (N) ->
case N of
0 -> 0
1 ->1;
_ -> Fib(N - 1) +
Fib(N - 2)
end
end
end) .

> Fibonacci(10).
55
> Fibonacci(20).

rewriting strategy can be used to create anonymous Erlang servers.
Here is a toy server for returning successive Fibonacci numbers:

FibonacciServer =
(fun (X) -> (X(X))(0, 1) end)
(fun (M) ->
fun (N1, N2) —>
fun () ->
receive
{fib, Pid} ->
Pid ! {fib, N1},
(MDY (N2, N1+N2)) O ;
restart -> (M), 1O ;
done -> ok
end
end
end
end) .

The server answers 3 messages:

e {fib, Pid}, to have the next number in the Fibonacci sequence sent to the process ID Pid.

e restart, to restart the Fibonacci server.

e done, to stop the Fibonacci server.

Page 70

This is the entire code for the server. Any client can pass this code onto any server in its cluster, via the
spawn command. Here is how it can be used:

(one@erlang.edu)26> P
<5b74.42.0>
(oneQerlang.edu)27> P
{fib,<0.54.0>}
(one@erlang.edu)28> P ! {fib, self()}.
{fib,<0.54.0>}

(oneCerlang.edu)29> P ! {fib, self()}.
{fib,<0.54.0>}

(one@erlang.edu)30> P t {fib, self()}.
{£ib,<0.54.0>}

(one@erlang.edu)31> P ! {fib, self()}.
{£ib,<0.54.0>}

(one@erlang.edu)32> flush().

Shell got {fib,0}

Shell got {fib,1}

Shell got {fib,1}

Shell got {fib,2}

Shell got {fib,3}

ok

(oneCerlang.edu)33> P ! restart.
restart

(one@erlang.edu)34> P ! {fib, self(}.
{fib,<0.54.0>}

(oneCerlang.edu)35> P ! {fib, self()}.
{£ib,<0.54.0>}

(one@erlang.edu)36> P ! {fib, self()}.
{£ib,<0.54.0>}

(one@erlang.edu)37> P ! {fib, self()}.
{£ib,<0.54.0>}

(one@erlang.edu)38> P ! {fib, self()}.
{fib,<0.54.0>}

(one@erlang.edu)39> P ! {fib, self(}}.
{£ib,<0.54.0>}

(one@erlang.edu)40> P ! done.

done

(one@erlang.edu)41> flush().

Shell got {fib,0}

Shell got {fib,1}

Shell got {fib,1}

Shell got {fib,2}

Shell got {fib,3}

Shell got {fib,5}

ok

spawn (’two@erlang.edu’, FibonacciServer).

{fib, self(}.

Notice that we do not know anything about the node on which the server is running other than its address:
No paths, module names, function names, etc.
4 Anonymous messages

Now that we have anonymous functions, we move on to anonymous messages. Messages typically have a
static structure to them, they are usually ordered tuples the first tuple of which is an atom that serves as a
tag that identifies the type of message.

Page 71

For many purposes it is desirable that message tags be privately shared between a client and a server,
and not accessible otherwise. This is quite easily achieved as an extension to our anonymous server. For
private tags in the following examples, we chose 20-digit long pseudo-randomly generated large integers. In
a realistic application, we might use larger integers, or might prefer pseudo-randomly generated atoms of
great length.

In the following example, we modified the Fibonacci server, to define a server-client pair in which the
client asks for the next Fibonacci number using a message that is tagged via a secret tag, generated at
run-time, and shared only between this specific server and client. The code could be used to create any
number of such server-client pairs, each pair sharing its own secret pseudo-random tag. We left out the
definition for the pseudo-random number generator Random/0, which just calls random:uniform/0 several
times, and creates an integer of the right length.

ServerAndClient =
fun O —>
(fun (Mfib) ->
{(fun (X) -> (XX)) (0, 1) end)
(fun (M) —>
fun (N1, N2) ->
fun () ->
receive
{Mfib, Pid} ->
Pid ! {fib, N1},
(M) (N2, N1+N2))O)
restart -> ((M(M)) (0, 1))0 ;
done -> ok
end
end
end
end),
(fun (Pid) -> Pid ! {Mfib, self()}, ok end)}
end)
(Random())
end.

The following interaction shows how to define a server-client pair, how to spawn the server, how the client
communicates with it, and what messages are received in response.

6> {Server, Client} = ServerAndClient().
{#Fun<erl_eval.20.117942162>, #Fun<erl_eval.6.35866844>}
7> Pid = spawn(Server).

<0.39.0>

8> Client (Pid).

ok

9> Client(Pid).

ok

14> Client(Pid).
ok

16> flush().
Shell got {fib,0}
Shell got {fib,1}
Shell got {fib,1}
Shell got {fib,2}
Shell got {fib,3}
Shell got {fib,5}

Page 72

Shell got {fib,8}
ok

The value of Mfib is a 20-digit integer, and is unique to the client-server pair. We could just have easily
have picked a 40-digit, or 100-digit integer, rendering impractical any attempt to arrive at the tag, either by
guessing, or by systematically trying every integer.

In fact, we can make the tag even more secure, by having the client and server re-select a new tag every
so often. An unauthorized client that might try to connect to the server by trying out numbers sequentially
would be able to conclude nothing from past failures.

Here is a function for creating server-client pairs that re-select the tag after each use. FEach call to
ServerClientAndInitialTag would return a new triple of server, client, and an initial tag by which both
the server and the client are synchronized:

ServerClientAndInitialTag =
fun () ->
(fun (Mfib) ->
{(fun (X) -> (XX)) (0, 1, Mfib) end)
(fun (M) ->
fun (N1, N2, MfibMsg) ->
fun () ->
receive
{MfibMsg, Pid} ->
(fun (NewMfibMsg) ->
Pid ! {fib, N1, NewMfibMsg},
(M) (N2, Ni+N2, NewMfibMsg)) ()
end)
(Random()) ;
restart -> ((MOD) O, YO ;
done -> ok
end
end
end
end),
(fun (Pid, Msg) —> Pid ! {Msg, self ()}, ok end),
Mfib}
end)
(Random())
end.

The following interaction shows how to define a server-client pair, what is the value of the first tag, how to
spawn the server, how the client communicates with it, and what messages are received in response, and
how the values of subsequent tags change according to the value of the responses from the server.

6> {Server, Client, InitialTag} = ServerClientAndInitialTag().
{#Fun<erl_eval.20.117942162> ,#Fun<erl_eval.12.35291978>,

684685090982776576}

6> Pid = spawn(Server).

<0.38.0>

7> Client(Pid, 684685090982776576) .
ok

8> flush().

Shell got {fib,0,9230532871182784512}
ok

9> Client(Pid, 9230532871182784512).
ok

10> flush().

Page 73

Shell got {fib,1,31133272937120710656}
ok

11> Client(Pid, 31133272937120710656).
ok

12> flush().

Shell got {fib,1,59651150244340162560}
ok

13> Client(Pid, 59651150244340162560) .
ok

14> flush().

Shell got {fib,2,55825795815156547584}
ok

16> Client(Pid, 55825795815156547584) .
ok

16> flush().

Shell got {fib,3,56212452643441508352}
ok

17> Client(Pid, 56212452643441508352).
ok

18> flush().

Shell got {fib,5,57882298363287674880}
ok

As can be seen, each message sent to the server has its own message tag that is synchronized between the
server and the client. Fach message sent from the server to the client contains, in addition to the fib tag
and the next value in the Fibonacci sequence, the message tag to be used by the client in the subsequent
request.

Any realistic client would need, of course, to receive the messages sent back by the server, and especially
in this last example, where the client would be unable to communicate with the server unless it obtained
the name of the subsequent message tag. For brevity, however, we presented only the simplest server-client
pairs that use anonymous messages to communicate.

5 Discussion

Self-application has its origins in the A-calculus and combinatory logic, where it is central to defining re-
cursive functions. Functional programming languages, and especially those that are dynamically-typed, can
use self-application in place of recursion. Exercises related to self-application and recursion are common
in functional programming courses. For example, Structure and Interpretation of Computer Programs [1,
Section 4.1.7, Page 393], and The Little LISPer [5, Chapter 9, Page 171).

In Erlang, self-application is more than just a programming exercise. While recursive functions cannot be
passed between nodes, it is possible to pass functions that use self-application in place of recursion. We have
thus been able to pass complete [albeit, small] servers among nodes. This has been done without requiring
any access to the file system on the server host.

Once we have an entire server as a higher-order, non-recursive function that can be passed between nodes,
it is straightforward to abstract over the message tags, and create server-client pairs that have their own,
private message tags. For some added privacy, we can even have the message tags change between message
calls.

In the servers we demonstrated, the message tags are selected pseudo-randomly during run-time. This is
significant, because at no point does the source code contain the message tags. The message tags are private
even if the source code is available.

If the pseudo-random number generator in these examples is replaced by a true, hardware-based, random
number generator, a formidable level of privacy should be achieved.

Page 74

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation of Computer
Programs. The MIT Press, McGraw-Hill Book Company, Second edition, 1996.

[2] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf, 2007.
[3] Francesco Cesarini and Simon Thompson. Erlang Programming. O'Reilly, June 2009.

[4] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic, volume 1. North-Holland Pub-
lishing Company, 1958.

[5] Daniel P. Friedman and Matthias Felleisen. The Little LISPer. Science Research Associates, Inc, 1986.

(6] Mayer Goldberg. A Variadic Extension of Curry’s Fixed-Point Combinator. In Olin Shivers, editor,
Proceedings of the 2002 ACM SIGPLAN Workshop on Scheme and Functional Programming, pages
69-78, October 2002.

[7} Christian Queinnec. LISP In Small Pieces. Cambridge University Press, 1996.

Pagt 75

Page 76

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Kostis Sagonas
HiPE compiler writer and tool developer

Opaque Data Types in Erlang

Abstract

Many languages provide mechanisms for programmers to declare abstract data types
(ADTs), hide the details of their implementation, and allow manipulation of these ADTs
only by controlied interfaces. This information hiding strategy allows the implementation
of the ADT module to be changed without disturbing the client programs. In Erlang
programs structural information about ADTs is exposed by pattern matching and type
inspecting built-ins, making it very hard to guarantee that changes in the ADT's imple-
mentation will not have devastating effects on client's code. We have recently extended
Erlang with the ability to declare opaque terms (i.e., terms whose structure should not
be inspected outside their defining module) and detect violations of their opaqueness
using Dialyzer. In this talk we will present this addition to the language and its capabili-
ties, and will show interesting examples of code that (erroneously) depended on imple-
mentation details of commonly used library modules (ETS tables, gb_sets, gb_trees, etc.).

Biography

Kostis Sagonas is an academic who has been involved in the development of the Erlang
language and its implementation since 1999. At Uppsala University, he has led the
development teamn of the HiPE native code compiler. Together with his students he has
contributed directly to various changes and additions to the Erlang language (e.g.,
bit-level pattern matching and bit-stream comprehensions, type and spec declarations,
etc.) its libraries and runtime system support for concurrency. A hacker at heart, he has
created widely used software development tools for Erlang, like dialyzer which by now
has located literally thousands of bugs and software defects in Erlang programs. At
NTUA in Athens, he has turned his obsession for clean designs and programs into yet
another slick software tool for Erlang, called tidier, whose details are going to be
unveiled for the first time at the Erlang Factory.

Page 78

Conference Proceedings ‘ Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Improving your test code with Wrangler

In this talk we show the 'similar code' detection facilities of Wrangler, combined with its
portfolio of refactorings, allow test code to be shrunk dramatically, under the guidance
of the test engineer. The talk is illustrated with examples from Open Source and
commercial Erlang development projects.

Huiging Li
Inventor of Wrangler

Huiging Li got her PhD at Kent University in September 2006 and works as a post doc
in the EU project ProTest to further develop the refactoring tool Wrangler.

Simon Thompson
Creator of Wrangler and co-author of Erlang Programming

Simon Thompson is Professor of Logic and Computation in the Computing Laboratory of
the University of Kent, where he has taught computing at undergraduate and postgradu-
ate levels for the past twenty five years, and where he has been department head for the
last six. His research work has centred on functional programming: program verification,
type systems, and most recently development of software tools for functional program-
ming languages. His team has built the HaRe tool for refactoring Haskell programs, and
is currently developing Wrangler to do the same for Eriang. His research has been funded
by various agencies including EPSRC and the European Framework programme. His
training is as a mathematician: he has an MA in Mathematics from Cambridge and a
D.Phil. in mathematical logic from Oxford. He has written four books in his field of
interest; Type Theory and Functional Programming published in 1991; Miranda: The
Craft of Functional Programming (1995), Haskell: The Craft of Functional Programming
(2nd ed. 1999) and Erlang Frogramming (with Francesco Cesarini, 2009). Apart from
the last, which is published by O'Reilly, these are all published by Addison Wesley.

Improving your test code with Wrangler

Huiqing Li', Adam Lindberg?, Andreas Schumacher® and Simon Thompson®

! School of Computing, University of Kent, UK
{H.Li,8.J.Thompson}@kent .ac.uk
2 Erlang Training and Consulting Ltd.
adam.lindberg@erlang-consulting.com
3 Ericsson SW Research, Ericsson AB
andreas.schumacher@ericsson. com

Abstract. In this paper we show how the ’similar code’ detection facil-
ities of Wrangler, combined with its portfolio of refactorings, allow test
code to be shrunk dramatically, under the guidance of the test engineer.
This is illustrated by a sequence of refactorings of a test suite taken from
an Erlang project at Ericsson AB.

Key words: Erlang, similar code, refactoring, testing, clone detection,
generalisation, strategies

1 Introduction

Wrangler [1,2] is a tool that supports interactive refactoring of Erlang pro-
grams®. It is integrated with Emacs and now also with Eclipse. Wrangler itself
is implemented in Erlang. Wrangler supports a variety of refactorings, as well
as a set of “code smell” inspection functionalities, and facilities to detect and
eliminate code clones. In this paper we explore a case study of test code provided
by Ericsson SW Research®

Why is test code particularly prone to clone proliferation? One reason is
that many people touch the code: a first few tests are written, and then others
author more tests. The quickest way to write these is to copy, paste and modify
an existing test, even if this is not the best way to structure the code, it can be
done with a minimal understanding of the code.This observation applies equally
well to long-standing projects, particulirly with a large element of legacy code.

What comes out very clearly from the case study is the fact that refactoring
or clone detection cannot be completely automated. In a preliminary experiment
by one of the Wrangler developers (Thompson) the code was reduced by some
20% using a “slash and burn” approach, simply eliminating clones one by one.
The result of this was — unsurprisingly — completely unreadable. It is only with
the collaboration of project engineers, Lindberg and Schumacher, that we were

* We acknowledge the support of the 7th Framework Programme of the European
Commission for the ProTest[3] project to which the work reported here contributes.

® We are grateful to Ericsson SW Research for permission to include portions of the
code in this paper.

Page 80

2 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

able to identify which clone candidates should be removed, how they could be
named and parameterised and so forth. Moreover it requires domain insight to
decide on which clones might not be removed. These questions are discussed at
length here.

The remainder of the paper is organised as follows. Section 2 describes the
Wrangler refactoring tool, and in particular the support that it provides for clone
detection and removal. Section 3 describes the case study itself, and Section 4
highlights some lessons coming from the case study (cross-referenced with the
stages of the case study). We then describe future work and conclude the paper.

2 Clone detection and removal with Wrangler

Duplicated code, or the existence of code clones, is one of the well-known bad
code smells when refactoring and software maintenance is concerned. ‘Dupli-
cated code’, in general, refers to a program fragment that is identical or similar
to another, though the exact meaning of ‘similar’ might vary slightly between
different application contexts.

While some code clones might have a sound reason for their existence [4],
most clones are considered harmful to the quality of software, as code duplication
increases the probability of bug propagation, the size of both the source code and
the executable, compile time, and more importantly the maintenance cost [5,6].

The most obvious reason for code duplication is the reuse of existing code
(by copy, paste and modify for example), logic or design. Duplicated code in-
troduced for this reason often indicates program design problems such as the
lack of encapsulation or abstraction. This kind of design problem can be cor-
rected by refactoring out the existing clones in a later stage [7,8,9], it could
also be avoided by first refactoring the existing code to make it more reusable,
then reuse it without duplicating the code [8]. In the last decade, substantial
research effort has been put into the detection and removal of clones from soft-
ware systems; however, few such tools are available for functional programs, and
there is a particular lack of tools that are integrated with existing programming
environments.

Wrangler Wrangler [1,2] is a tool built in the School of Computing at The
University of Kent, with support from the European Commission. Wrangler
supports interactive refactoring of Erlang programs. It is integrated with Emacs
and now also with Eclipse. Wrangler itself is implemented in Erlang. Wrangler
supports a variety of refactorings, as well as a set of “code smell” inspection
functionalities, and facilities to detect and eliminate code clones.

Wrangler provides a ‘similar’ code detection approach based on the notion of
anti-unification [10,11] to detecting code clones in Erlang programs, as well as a
mechanism for automatic clone elimination under the user’s control. The anti-
unifier of two terms denotes their least-general common abstraction, therefore
captures the common syntactical structure of the two terms.

Page 81

Improving your test code with Wrangler 3

In general, we say two expression/expression sequences, A and B, are similar
if there exists a ‘non-trivial‘ least-general common abstraction, C, and two sets
of substitutions o1 and oo which take C to A and B respectively. By ‘non-trivial’
we mean mainly that the size of the least-general common abstraction should
satisfy some threshold, but certainly other conditions could be added.

This clone detection approach is able, for example, to spot that the two
expressions ((X+3)+4) and (4+(5-(3*X))) are similar as they are both instances
of the expression (Y+Z), and so both instances of the function

add(Y,Z) -> Y+Z.

Our approach uses the Abstract Syntax Tree (AST) annotated with static
semantic information as the internal representation of Erlang programs. Scalabil-
ity, one of the major challenges faced by AST-based clone detection approaches,
is achieved by a two-phase clone detection technique. More details of the process
can be found in {12].

Wrangler clone detection Wrangler provides facilities for finding both iden-
tical and similar code. Two pieces of code are said to be identical if they are the
same when the values of literals and the names of variables are ignored, while the
binding structures are the same. The Wrangler definition of similarity is given
above. For both identical and similar code, two operations are possible:

Detection This operation will identify all code clones (up to identity or simi-
larity) in a module or across a project. For each clone the common general-
isation for the clone is generated in the report, and can be cut and pasted
into the module prior to clone elimination.

Search This operation allows the identification of all the code that is identical
or similar to a particular selection, so is directed rather than speculative.

Examples of both will be seen in the case study.

3 The Case Study

The case study examined part of an Erlang implementation of the SIP (Ses-
sion Initiation Protocol) [13]. As a part of SIP message processing it is possi-
ble to transform messages by applying rewriting rules to messages. This SIP
message manipulation (SMM) is tested by a test suite contained in the file
smm_SUITE.erl, which is our subject here.

The size of the sequence of versions of the files — in lines of code — is indicated
in Figure 1, which shows that the code has been reduced by about 25% through
these transformations. As we discuss at the end of this section there is still
considerable scope for clone detection and elimination, and this might well reduce
the code by a further few hundred lines of code.

Page 82

Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

Version LOC Version LOC Version LOC
1 2658 6 2218 10 2149
2 2342 i 2203 11 2131
3 2231 8 2201 12 2097
4 2217 9 2183 13 2042
5 2216

Fig. 1: The size of the refactored files

The sequence of transformations

In this section we give an overview of the particular steps taken in refactoring
the SMM test code.

Step 1 We begin by generating a report on similar code in the module. 31 clones
are detected, with the most common on being cloned 15 times. The generalisation
suggested in the report is

new_fun() —>

SetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),

?TRIAL (ok, SetResult),

%% AmountOfRuleSets should correspond to the amount of rule sets in File.
Amount0OfRuleSets = ?SMM_RULESET_FILE_1_COUNT,

?0M_CHECK (AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
?0M_CHECK (AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, sizel),
Amount0fRuleSets.

which shows that the code is literally repeated sixteen times. This function defin-
tion can be cut and pasted into the test file, and all the clones folded against it.
Of course, it needs to be renamed: we choose to call it import_rule_set_file_1
since the role of this function is to import rule sets which determine the actions
taken by the SMM processor, and this import is a part of the common setup in
a number of different test cases. The function can be renamed when it is first
introduced, or after folding against it, using the Rename Function refactoring.

Step 2 Looking again at similar code detection we find a twelve line code block
that is repeated six times. This code creates two SMM filters, and returns a
tuple containing names and keys for the two filters. This is a common pattern,
under which the extracted clone returns a tuple of values, which are assigned to
a tuple of variables on function invocation, thus:

{FilterKeyl, FilterNamel, FilterState, FilterKey2, FilterName2}

= create_filter_12()

Page 83

Improving your test code with Wrangler 5

We have named the function create filter_12; this reflects a general policy
of not trying to anticipate general names for functions when they are intro-
duced. Rather, we choose the most specific name, generalising it — or indeed the
functionality itself — at a later stage if necessary, using Wrangler.

Step 3 At this step a 21 line clone is detected:

new_fun() ->

{FilterKeyl, FilterNamel, FilterState, FilterKey2, FilterName2}

= create_filter_12(),

?0M_CHECK ([#smmFilter{key=FilterKeyl,
filterName=FilterNamel,
filterState=FilterState,
module=undefined}],

?SGC_BS, ets, lookup, [smmFilter, FilterKeyil),

?0M_CHECK ([#smmFilter{key=FilterKey2,
filterName=FilterName2,
filterState=FilterState,
module=undefined}],

78GC_BS, ets, lookup, [smmFilter, FilterKey2]),
70M_CHECK ([#sbgFilterTable{key=FilterKeyl,
sbgFilterName=FilterNamel,
sbgFilterState=FilterStatel}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKeyil),
70M_CHECK([#sbgFilterTable{key=FilterKey?2,
sbgFilterName=FilterName2,
sbgFilterState=FilterState}],
7MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
{FilterName2, FilterKey2, FilterKeyl, FilterNamel, FilterState}.

Inspecting this shows up a smaller clone, encapsulated in the suggested function

new_fun(FilterState, FilterKey2, FilterName2) ->
?0M_CHECK ([#sbgFilterTable{key=FilterKey2,
sbgFilterName=FilterName2,
sbgFilterState=FilterStatel}],
7MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]).

which we choose to replace first: as a general principle we found it more useful
to replace clones bottom up. The clone was replaced by the function

check filter_ exists_in_sbgFilterTable(FilterKey, FilterName,FilterState) ->
70M_CHECK ([#sbgFilterTable{key=FilterKey,
sbgFilterName=FilterName,
sbgFilterState=FilterStatel}],
7MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Page 84

6 Huiqging Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

where as well as renaming the function and variable names, the order of the
variables is changed. This can be done simply by editing the list of arguments,
because before folding against the function there are no calls to i, since it is
newly introduced.

Steps 4-5 Introduce two variants of check_filter_exists.in_sbgFilterTable:

— In the first the check is for the filter occurring only once in the table, so that
a call to ets:tab2list replaces the earlier call to ets:lookup.

— In the second the call is to a different table, sbgFilterTable being replaced
by smmFilter.

Arguably these three alternatives could have been abstracted into a common
generalisation, but it was felt by the engineers that each of the three functions
each encapsulated a meaningful activity, whereas a generalisation would have had
an unwieldy number of parameters as well as being harder to name appropriately.

Step 6 Erlang provides two mechanisms for finding out whether the code for a
module M is loaded:

erlang:module_loaded(M) -> true | false
code:is_loaded(M) -> {file, Loaded} | false

Use of the former is deprecated outside the code server, but both are used in
this file. We want to remove the deprecated calls, all of which are symbolic calls
in contexts like:

?0M_CHECK (false, 7SGC_BS, erlang, module_loaded, [FilterAtomi])

So what we do is to define a new function, in which we abstract over module
name, the type of blade and the expected result of the call to erlang:module_loaded.

code_is_loaded (ModuleName, BS, Result) ->
?0M_CHECK (Result, BS, erlang, module_loaded, [ModuleName]).

We then fold against this definition to remove all calls to erlang:module_loaded,
expect for that in the definition of code_is_loaded itself. We can then write a
different definition of this function, which implements the same functionality
using the other primitive:

code_is_loaded(BS, ModuleName, false) ->
70M_CHECK(false, BS, code, is_loaded, [ModuleName]).
code_is_loaded(BS, ModuleName, true) —>
7OM_CHECK ({file,atom_to_list(ModuleName)}, BS,
code, is_loaded, [ModuleName]).

At this point it is possible to stop, having introduced the code_is_loaded func-
tion. Alternatively, in order to keep the code as close as possible to its previous
version, we can inline this function definition. In the next step we will see another
reason for doing this inlining.

Page 85

Improving your test code with Wrangler 7

Step 7 We note that as well as finding symbolic calls to code: is_loaded within
the OM_CHECK macro call, it is also called within CH.CHECK. We are unable to
replace a macro call by a variable, and so we write — by hand — a generalisation
in which the macro call is determined by an atom parameter

code_is_loaded(BS, om, ModuleName, false) ->
?0M_CHECK(false, BS, code, is_loaded, [ModuleName]);
code_is_loaded(BS, om, ModuleName, true) ->
7OM_CHECK({file, atom_to_list(ModuleName)},
BS, code, is_loaded, [ModuleName]);
code_is_loaded(BS, ch, ModuleName, false) ->
?CH_CHECK (false, BS, code, is_loaded, [ModuleName]);
code_is_loaded(BS, ch, ModuleName, true) ->
?CH_CHECK({file, atom_to_list(ModuleName)},
BS, code, is_loaded, [ModuleName]).

It is here that inlining of the code_is_loaded function in step 6 is valuable: it
allows us to deal with premature generalisation, under which we find that we
want further to generalise a function without layering a number of intermedi-
ate calls: we inline the earlier generalisations and then build the more general
function in a single step.

Steps 8,9 In this step a ten line clone was identified found, but rather than
replacing that — which combines a number of operations — it was decided to look
at sub-clones, and this indicated code used 22 times in the module, extracted as

check_add_rule_set_to_filter(FilterKey, FilterName, RuleSetName,
FilterRuleSetPosition, Result) ->
AddResult =
?SMM_ADD_RULE_SET_TO_FILTER(FilterKey, FilterName,
RuleSetName, FilterRuleSetPosition),
?TRIAL (Result, AddResult).

This gives the ninth version of the code, and two similar sub-clones are extracted
thus:

check_ruleset_name_in_filter(FilterName, RuleSetName) ->
{ok, RuleSetKey} = ?SMM_NAME_TO_KEY(sbgRuleSetTable, RuleSetName),
check_ruleset_key_in_filter (RuleSetKey, [[FilterNamell),
RuleSetKey.

check_ruleset_key_in_filter(RuleSetKey, Result) ->
?0M_CHECK (Result,
?MP_BS, ets, match, [sbgIsmFilterRuleSetUsageTable,
{’_’, {RuleSetKey, ’_’}, ’_7, $1°11).

which gives the tenth version of the code.

Page 86

8 Huiging Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

Step 10 Clone detection now gives this clone candidate:

new_fun(FilterName, NewVar_1) ->
FilterKey = 7SMM_CREATE_FILTER_CHECK(FilterName),
%%Add rulests to filter
RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",
16 lines which handle the rules sets are elided ...
Y%Remove rulesets
NewVar_1,
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

The main body of the function sets up four rule sets and adds them to a filter,
but the function identified contains extraneous functionality at the start and
end:

— the filter key is created as the first action: FilterKey = ..., and
— (in at least one of the clones) the rulesets are removed thus: NewVar_1 .

Instead, the body is extracted thus:

add_four_rulesets_to_filter(FilterName, FilterKey) ->

RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",

16 lines which handle the rules sets are elided ...
{RuleSetNamedA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

in which the final action doesn’t need to be passed in as a parameter, and the
FilterKey becomes a parameter rather than a component of the result.

Step 11 In a similar way to the previous step, a lengthy clone is identified,
but in the abstraction the first line is omitted, making it an abstraction without
parameters: setup_rulesets_and_filters.

Step 12 This final step consists of a sequence of stages concerned with refac-
toring the form of data representation in dealing with

— sets of attributes, which are transformed into named lists, such as
Attributes_1=[LineW1, ColumnWi, TypeAtom, FailingRuleSetW1, ResasonWi],
— other sets of attributes are represented by O-ary functions:

ruleset_error_attributes() -> [7?sbgRuleSetErrorLineNumber, ...,

Page 87

Improving your test code with Wrangler 9

Finally, we can replace an explicit zipping together of lists by the uses of function
lists:zip/2, and this gives us a much better structured function:

import_warning_rule_set(main) ->
%k Since the rule set file contains errors, no rule sets will be imported.

AttributeNames = [line_number, column, type, failing rule_set, error_reason],
Keyl = 1,
P?ACTION("Do SNMP Get operatioms on the"
"sbgRuleSetErrorTable with key “p."n", [Key1l),

GetResultl = 7SMM_SMF_GET (rule_set_error, [{key, Keyi}], AttributeNames),
LineWl = 4,
ColumnWi = ?SMM_RULE_SET_WARN_1_COL,
TypeAtom = warning,
TypeMibVal = ?SMM_REPORT_TYPE(TypeAtom),
FailingRuleSetWl = " ",
ResasonWl = ?SMM_RULE_SET_WARN_1_REPORT(LineW1),
Attributes_1 = [LineWl, ColumnWi, TypeAtom, FailingRuleSetW1, ResasonWi],
?TRIAL(1lists:zip(AttributeNames, Attributes_1), GetResultl),

. 40 lines elided ...

an incidental benefit of the inspection was to reveal that the lines

TypeAtom = warning,
TypeMibVal = ?SMM_REPORT_TYPE(TypeAtom),

were repeated, doubtless a cut-and-paste error, which went undetected because
the pattern matches succeeded at the second occurrence.

Continuing the case study: further clone detection

"The work reported here produced a sequence of twelve revisions of the code, but
it is possible to make further revisions. In this section we look at a selection
of reports from similar and identical code search, and comment on some of the
potential clones identified.

Similar code The similar code detection facility with the default parameter
values reports 16 further clones, each duplicating code once. The total number
of duplicated lines here is 193, and so a reduction of some 145 lines could be
made by replacing each clone into a function definition plus two function calls.

Looking for similar code with the similarity parameter reduced to 0.5 rather
than the default of 0.8 reports 47 clones, almost three times as many. Of these,
eight duplicate the code twice (that is, there are three instances of the code
clone) and some of these provide potential clients for replacement. However, not
all of them appear to be good candidates for replacement. Take the example of

Page 88

10 Huiqing Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

/Users/simonthompson/Downloads/smm_SUITE13.erl:1756.4-1761.50:
This code has been cloned twice:

/Users/simonthompson/Downloads/smm_SUITE13.erl:1772.4-1778.50:
/Users/simonthompson/Downloads/smm_SUITE13.er1:1789.4-1795.50:

The cloned expression/function after generalisation:

new_fun(FilterAtoml, FilterAtom2, NewVar_1, NewVar_2, NewVar_3) ->
NewVar_1,
code_is_loaded(?SGC_BS, om, FilterAtoml, NewVar_2),
code_is_loaded(?MP_BS, om, FilterAtoml, false),
code_is_loaded(?SGC_BS, om, FilterAtom2, NewVar_3),
code_is_loaded(?MP_BS, om, FilterAtom2, false).

This code has three parameters, and the first is an arbitrary expression, NewVar_1,
evaluated first in the function body. A more appropriate candidate is given by
omitting this expression, and giving the generalisation

new_fun(FilterAtoml, FilterAtom2, NewVar_1, NewVar_2) ->
code_is_loaded(?SGC_BS, om, FilterAtoml, NewVar_1),
code_is_loaded(?MP_BS, om, FilterAtoml, false),
code_is_loaded(?SGC_BS, om, FilterAtom2, NewVar_2),
code_is_loaded(?MP_BS, om, FilterAtom2, false).

This particular generalisation has a similarity score of more than 0.8, but does
not appear in the default report because it involves only 4 expressions, and the
default cut-off is a sequence of at least 5.

Identical code The standard report to detect identical code reports 87; the
number is larger here because the default threshold for reporting here is to consist
of at least 20 tokens rather than 5 expressions or more. However, a number of
over-generalisations result from this report; for example, the function

new_fun(ModuleNamel, NewVar_1, NewVar_2, NewVar_3, NewVar_4) ->
code_is_loaded(?SGC_BS, NewVar_1, ModuleNamel, NewVar_2),
code_is_loaded(?SGC_BS, NewVar_3, ModuleNamel, NewVar_4).

is reported as occurring 23 times. Arguably, generalising to replace these two
expressions will not result in code that is more readable than it is already: it
clearly states that it checks for two pieces of code being loaded.

Carrying on There are clearly some more clones that might be detected, but as
the work progresses the effort involved in identifying and replacing code clones
becomes more than the value of transforming the code in this way, and so the
engineers performing the refactoring will need to decide when it is time to put
the work aside.

Page 89

Improving your test code with Wrangler 11

4 Lessons learned

This section highlights the lessons learned during the activity reported in the
previous section, cross-referring to the steps of that process when appropriate.

Inlining is a useful refactoring There is a clear use case for function inlining
or unfolding when performing a series of refactorings based on clone elimination
[Step 7). The scenario is one of premature generalisation thus:

— identify common code, and generalise this, introducing a function for this
generalisation;

— subsequently identify that there is a further generalisation of the original
code, which could benefit from being generalised;

— the problem is that some of the original code disappeared in the first stage of
generalisation, and so it needs to be inlined in order to generalise it further.

Of course, it would be possible to keep the intermediate generalisation as well

as the final one, but in general that makes for less readable code, requiring the

reader to understand two function definitions and interfaces rather than one.
Inlining is also useful to support a limited form of APT migration [Step 6].

Bottom-up is better than top-down We looked at ways in which clones
might be removed, and two approaches seem appropriate: bottom-up and top-
down. In the latter case we would remove the largest clones first, while in the
other approach we would look for small clones first, particularly those which are
the most common. We decided to use the bottom-up approach for two reasons
[Steps 3, 8, 9].

— Using this it is much easier to identify pieces of functionality which can easily
be named because they have an identifiable purpose.

— it is also likely that these will not have a huge number of parameters, and
in general we look for code which is not over-general.

Finally, there is the argument that — to a large extent, at least — it should not
matter about the order in which clone removal takes place, since a large clone
will remain after small clones are removed, and vice versa.

Clone removal cannot be fully automated What we have achieved in this
example is clearly semi-automated: we have the Wrangler support for identifying
candidates for clones but they may well need further analysis and insight from
uses to identify what should be done. For example,

— Is there a spurious last action which belongs to the next part of the code,
but which just happens to follow the clone when it is used? If so, it should
not be included in the clone [Steps 10,11]. This can also apply to actions at
the start of the identified code segment.

Page 90

12 Huiging Li, Adam Lindberg, Andreas Schumacher and Simon Thompson

— Another related reason for this might be that this last operation adds another
component to the return tuple of an extracted function; we should aim to
keep these small.

— We might find that we identify behaviour of interest which occurs close to
an identified clone; then use similar expression search to explore further.

— An identified clone may contain two pieces of separate functionality which
are used together in many cases, but not in all cases of interest. Because of
the thresholding of clone parameters it might be that we only see the larger
clone because the smaller one is below the threshold chosen for the similar
code report [Steps 3, 8, 9].

Self-documenting code Is it always useful to name values, as in

BlahMeaning = ... blah_exp ... ,
FooMeaning = ... fco_exp ... ,
Result = f(BlahMeaning, FooMeaning),

rather than
Result = £(... blah_exp ... , ... foo_exp ...)

as the former case is self documenting in a way that the latter is not. On the
other hand, is it the responsibility of the client of an API, here for the function
f, to document this API at its calling points? If it is to be documented at a
calling point it can be done by choice of variable names, or by suitably placed
comments.

Naming values How should constants best be named in Erlang code. Three
options are possible: namely definition by

— a macro definition
— a function of arity 0
— & local variable

The code at hand does the first and last: the second was added during the
refactoring process.

Another option presents itself: instead of worrying about what is contained
in a set of variables, should a record be u3ed instead? This has some advantages,
but records have drawbacks in Erlang. Names are not first class, so cannot be
passed as parameters or values, which is something that can be used in practice,
such as passing a list of field names to the zip/2 function [Step 13].

Improvements to Wrangler The case study also brought to light a number of
improvements that might be made to Wrangler. Inlining was the most important,
and is now included in the latest release of the system.

It was also suggested that a number of options could be added to the Code
Inspector: this highlights “bad smells” and other notable code features, such as:

Page 91

Improving your test code with Wrangler 13

variables used only once, variables not used, and rebinding of variables (that it,
bound variables occurring in a pattern match).

Finally, the question was raised about how much refactoring sequences used
on one module could be reused in refactoring another. This question of memoi-
sation or scripting merits further work.

5 Conclusions and Future Work

As we have reported, the exercise here was only possible as a collaboration
between the developers of Wrangler and engineers engaged in developing and
testing the target system. Together it was possible substantially to re-engineer
the test code to make it more compact and more structured. As well as illustrat-
ing the way in which Wrangler can be used, we were able to provide guidelines
on refactoring test code in Erlang which can also be applied to systems written
in other languages and paradigms.

Wrangler is under active development as a part of the ProTest project, and
the insights gained here will feed into its further development.

References

1. Li, H., Thompson, S., Lévei, L., Horvéth, Z., Kozsik, T., Vig, A., Nagy, T.: Refac-
toring Erlang Programs. In: EUC’06, Stockholm, Sweden (November 2006)

2. Li, H., Thompson, S., Orosz, G., T”oth, M.: Refactoring with Wrangler, updated.
In: ACM SIGPLAN Erlang Workshop 2008, Victoria, British Columbia, Canada

3. ProTest: Property based testing. http://www.protest-project.eu/

4. Kapser, C., Godfrey, M.W.: ”Clones Considered Harmful” Considered Harmful.
In: Proc. Working Conf. Reverse Engineering (WCRE). (2006)

5. Roy, C.H., Cordy, R.: A Survey on Software Clone Detection Research. Technical
report, School of Computing, Queen’s University at Kingston, Ontario, Candada

6. Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Software Qual-
ity Analysis by Code Clones in Industrial Legacy Software. In: METRICS ’02,
Washington, DC, USA (2002)

7. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Partial Re-
design of Java Software Systems Based on Clone Analysis. In: Working Conference
on Reverse Engineering. (1999) 326-336

8. M. Fowler: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

9. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: ARIES: Refactoring Support
Environment Based on Code Clone Analysis. In: IASTED Conf. on Software En-
gineering and Applications. (2004) 222-229

10. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5 (1970)
153-163

11. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence 5 (1970) 135-151

12. Li, H., Thompson, S.: Similar Code Detection and Elimination for Erlang Pro-
grams. In: PADLI10. (2010) to appear.

13. SIP: Session Initiation Protocol. http://tools.ietf.org/html/rfc3261

Page 92

Conference Proceedings Thursday 12 November 2009

15th international Erlang User Conference Stockholm, Sweden

Patrik Nyblom

Erlang virtual machine developer

Erlang SMP support - behind the scenes

Abstract

This talk will tell you the story about how Eriang got multicore support and will give you
all the gory details about utilizing multicore processors in a conventional programming
language. I'll tell you what we've done at OTP so that you, as an Erlang programmer, can
sit back and enjoy the fact that you don't have to bother with such things!

Biography

Patrik Nyblom works in the OTP project developing the Erlang virtual machine and has
done so for the past ten years.

Erlang Multicore support

Behind the scenes

-
ERICSSON =
TAKING You FolwARD

Erlang VM (BEAM) when we started

Virtual register machine which scheduled light weight
processes

— One single process scheduler and one queue per priority
level

— Preemptive multitasking based soleli’ on “reductions”
— Switching between I/O operations and process scheduling

* 1/O drivers and “built in functions” (native functions) had
exclusive access to the data structures
— Network code
— ETS tables
— Process inspection etc
— Code management

© Encseon AB 2008 Pibw 2 Daployimg mutticors for & highty parallel applicalion 2009-08-28 Shicsson i

Page 94

| Perfect program for using multicore

* A lot of small units of execution

|
|
| * The parallel mindset has created applications just
‘ waiting to be spread over several physical cores
|
|

Sfingleﬁ core Multi core

®Encsson AB 2009 Paie 3 Deployig mulkcore for a highly parallal applieation 2008-08-28 GRicsson |

Conversion steps

» Multiple schedulers

= Parallel 10

* Parallel memory allocation

= Multiple run-queues and generally less global locking

| ©Encsson AB 2009 Piblc 4 Deploying mullicora for & highly pavellel sppiication 2009-08-28 BRICSSON ¥ |

Page 95

Multiple schedulers

]

=

Paraliel I/C

Tools

— Locking order and lock-checker

~ Ordinary test cases
~ Benchmarks (synthetic)

Techniques

— Own thread library (Uppsala University)

— Lock tables

— Custom lock implementation for processes

— Lots of conventional mutexes

Result

— One scheduler per logical core

Insights

— You will have to make memory/speed tradeoffs
— Lock order enforcement is very helpful

© Encason AB 2009

Tools

~ More simple benchmarks
— Customer systems

Daploying multicors for a ighty parallsl applicalion

- Intuition {or — the problem was obvious...)

Techniques

- More fine granular locking

2009-08-28

Ericsson

— Locking on different levels depending on 1/O driver implementation

— Scheduling of operations other than process execution

Result

— Real applications parallel...

— Customer drivers possible to make parallel

Insight

— Doing things at the right time can vastly reduce complexity

Deploying mullicora for a highly paraifel applicabon

Page 96

2009-08-28

Multiple allocators

» Tools
— Even more benchmarks
— vTune (Intel)
— Thread profiler {Intel)

“ Techniques
— Each scheduler has it's own instance of memory allocators
— The “malloc” implementation was already our own
~ Locks are still needed as one scheduler might free another
schedulers memory

* Result
— Greatly improved performance for CPU intense applications
* Insight

— Not only execution has to be distributed over cores

© Encsson AB 2009 Pibie F Deployng multcore for a highly jsafssl applicalion 2003-08-28 sRicsson

Multiple run-queues and generally less
global locking

* Tools
- Custom lock counting implemented
— More massive multicore CPU's to test on (Tilera, Nehalem)
— More customer code from more projects

* Techniques
~ Distributing data over the schedulers
~ Load balancing at certain points
— More fine granular locking (ETS Meta- and shared tables)
— Reimplementation of distribution marshaling to remove need for
sequential encode/decode
“ Results
— Far better performance on massive multicore systems
— Nehalem performance great, but core2 still problematic
= |nsight
— No global lock will ever fail to create a bottleneck

© Encsson AB 2009 Pubic 8 Easrmyng mabcors br @ gy porasl peston 20000828 BRicssoN B

Page 97

Example of performance gain w/

| multiple run-queues in TileProt4
|

Spesdup
—— ———
-
18,00~
—
—_—— —
10,00
—-—
= =
500~
Lo
' ‘ '
20,00 whiey 40,84 60,00
I © Encsson AB 2009 Puble L] Deplaying multicore for @ highly parallel applicaion 2009-08-28 ERICSSON ‘

Comparing “Clovertown” Xeon E5310
to “Gainstown” Xeon X5570

= tohatam
~core

s
fvtietin

| Memory/CPU Interprocess communication
|_ = ﬂE-c_:-MIHE‘ B Plibke 10 . -Dspluywmulumtwunmmy_pamlmappwglion 2009-08-28 ERIcssoN 3

Page 98

= No global lock ever goes unpunished
* Data as well as execution has to be distributed over cores
— Malloc and friends will be a bottleneck
» You will have to make memory/speed tradeoffs
New architectures will give you both new challenges and

performance boosts
— Revise and rewrite as processors evolve

» Doing things (in the code) at the right time can reduce
complexity as well as increase performance
* Take the time to use third party tools and to write your own.

» Work incrementally

© Encsson AB 2009 Pabs " Deploying mullicore for & highly parsiat applicalion 2009-08-28 ERICSsoN

1O W

» Lock checker (implemented in VM) and strict locking
order

vTune and thread profiler

* oProfile

* Lock counter (implemented in VM)
Acumem (Www.acumern.com)

* Valgrind

» Benchmarks

— Customers
— Open Source

» Percept (Erlang application parallelism measurement
tool)

© Enceson AB 2009 P 12 Daploying mullicors for highty parailel appficaion 20080828 aRicssoN B

Page 99

W W

Non uniform memory access
— Schedulers private memory near core

— Distribute processes smarter, taking memory access into
account

= Delayed deallocation to avoid allocator lock conflicts
— Especially important for Core systems

= Developing our libraries
* More measuring, benchmarking, customer tests...

©Encssan AB 2009 Wve 13 Daplaying mulicors for @ highty paraliel appicaion 2008-08-28 ERicssoN 3

ERICSSON 2

TAKING YOU FORWARD

Page 100

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholim, Sweden

Eric Merritt

Erlang author and Erlware Committer

A continuous build system for Erlang

Abstract

Eric will talk about how to use a new continuous build system for Erlang. He will also
provide an intro into working with the continuous build system to automatically detect
changes in source, build, test and publish OTP applications and releases. This will allow
you to start getting the benefits of easy and straightforward continuous build in your
Erlang projects.

Biography

Eric Merritt is a Software Engineer who specializes in concurrent languages and distrib-
uted systems. For the last eight years he has been coding Erlang and has also been
heavily involved in the Erlang community. Currently, Eric is a core developer for the
Erlware family of open source products and is the primary developer for the Sinan build
system. Eric has been involved in both professional and Open Source development for
the last ten years. He started his career developing applications in C and Java on IBM
Mainframe and Midrange hardware. He also provided training and consulting in object-
oriented principles and concepts. However, his interest in languages, concurrency and
distributed systems quickly drove him to more interesting and challenging work at
companies like Amazon.com. Currently Eric brings his expertise to PEAK6 Investments,
LP, a successful proprietary trading firm in Chicago.

Page 101

Page 102

Stockholm, Sweden

Conference Proceedings ’ Thursday 12 November 2009

15th International Erlang User Conference

BERT is to Erlang as JSON is to JavaScript
(plus a mini Git tutorial!)

We'll start off with a mini Git tutorial to help conceptualize the problems we had at
GitHub that were addressed in the crafting of BERT and BERT-RPC. If you're unfamiliar
with Git, this may open your eyes to the power, flexibility, and speed of this distributed
version control system. Your language is great at dealing with distributed systems,
shouldn't your SCM be just as adept? BERT (Binary ERlang Term) is a new serialization
format based on Erlang's external term format. it supports rich data types such as atoms,
heterogenous lists, tuples, binary data, booleans, dictionaries, and more. Just as JSON
acts as an excellent inter-process data format for web-based technologies, BERT acts as
an efficient inter-process data format for low-latency server technologies. Built on top of
BERT is BERT-RPC, a simple, dynamic RPC protocol providing both synchronous and
asynchronous requests, caching directives, streaming, and even callbacks. Tom created
these technologies to help us scale GitHub. Tom needed a fast, robust way for one
process to make low-latency calls to another. Tom looked at Thrift and Protocol Buffers,
but those solutions were too complex and not flexible enough to hang with Ruby. Tom
also wrote Ernie, an Erlang/Ruby hybrid BERT-RPC server that makes it dead simple to
write your RPC functions in Ruby (or other languages). Together, all these technologies
power GitHub's new federated architecture and allow us to independently and horizon-
tally scale both frontend and backend layers.

Tom Preston-Werner
Cofounder of GitHub and Erlectricity maintainer

As cofounder of GitHub, the world's largest and most active Git hosting website, Tom
Preston-Werner possesses inside knowledge of the Git ecosystem and how it is changing
the way in which code collaboration is done. Tom is respoi:<ible for both low-level system
architecture scaling and user interface design/usabilily. He's currently obsessed with
finding ways to marry the productivity of Ruby with the high concurrency prowess of
Erlang.

Scott Chacon
Git evangelist and Ruby developer

Scott Chacon is a Git evangelist and Ruby developer employed at Logical Awesome
working on GitHub. He is the author of the Git Internals PDF book by Peepcode as well
as the maintainer of http://git-scm.com and the Git Community Book. Scott has
presented at RailsConf, RubyConf, Google, and a number of local groups in addition to
teaching corporate training on Git across the country.

Page 103

Page 104

Conference Proceedings ' Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Putting UBF to work (and Getting the
outside world to talk to Erlang)

Many protocols have formal specifications: ASN.1, ONC-RPC, CORBA, AMQP, Thrift,
Protocol Buffers, zillions more.... We believe there are at least three reasons why indus-
try uses such specifications. However, most industrial uses take advantage of the first
mostly and only occasionally the second: #1 Specify bits "on the wire" in a way all parties
agree. #2 APl documentation: how the protocol's API works. We have found that there's
a very important third reason: #3 Protocol meta-data: input for other tools (deveiopment,
testing, etc.). My company is one of several that is collectively building a custom
Webmail system for a large carrier in Asia. (The initial deployment will be used by well
over 1 million customers.} We definitely take advantage of reasons #1 and #2 to facili-
tate the multi-way project planning with several development groups and the
carrier/customer. Their value in communicating both with developers and with project
managers is quite large.

We would like to share with other Erlang developers our experiences of using and
enhancing UBF for reason #3. Much of this work is slowly making its way into the wider
world, using an MIT license and distributed via GitHub
(http://github.com/norton/ubf/tree/master).

Joseph Wayne Norton
Erlang Enthusiast

Joe Norton is a technical manager, system architect, developer, and Erlang enthusiast
working in the mobile industry.

Scott Lystig Fritchie

Gemini Mobile Technologies

Scott Lystig Fritchie met his first UNIX system in 1986 and has almost never met one
since that he didn't like. A career detour as a UNIX systems administ rator got him
neck-deep in messaging systems, e-mail and Usenet News. He rediscovered full-time
programming while at Sendmail, Inc., where a colleague introduced him to Erlang in
2000. His world hasn't been the same since then. Now at Gemini Mobile Technologies,
Inc., he's back in the messaging world. He's finishing a distributed key-value database
with strong consistency semantics, micro transactions, and on-the-fly resizing, all in
Erlang. In addition to hacking Erlang code and occasionally the Erlang virtual machine,
he's had papers published by USENIX, the Erlang User Conference, and the ACM.

Page 105

Putting UBF to Work
(and Getting the Outside World to Talk to Erlang)

Joseph Wayne Norton / Scott Lystig Fritchie
norton@geminimobile.com / fritchie@geminimobile.com

Gemini Mobile Technologies, Inc.

November 12, 2009

ERLANG USER CONFERENCE 2009, STOCKHOLM 1

A Quick Survey

Universal Binary Format

Who has heard of UBF ...
e inside the Erlang community?

e outside the Erlang community?

Who has tinkered with UBF ...
e at home?

e at work?

Who has deployed UBF ...
e as part of a commercial service?

e as part of a commercial product?

Page 106

ERLANG USER CONFERENCE 2009, STOCKHOLM 2

Introduction

Protocols and Specifications

Many protocols have formal specifications

e ASN.1, ONC-RPC, Corba, AMQP, Thrift, Protocol Buffers,
zillion more ...

Why does industry use such specifications?

e Specify bits “on the wire” in a way all parties agree

e API| documentation: how the protocol's API works

ERLANG USER CONFERENCE 2009, STOCKHOLM

Introduction

continued...

We have found that there are very important other reasons ...

e System design and architecture: input for humans

e Protocol meta-data: input for tools

UBF has proved to be very handy in helping us with the above
items ...

Page 107

ERLANG USER CONFERENCE 2009, STOCKHOLM

What 1s UBF?

i a nutshell

e UBF(A) is a protocol above a stream transport (e.g.
TCP/IP), for encoding structured data roughly equivalent to
well-formed XML.

e UBF(B) is a programming langauge for describing types in
UBF(A) and protocols between clients and servers. UBF(B) is
roughly equivalent to to Verified XML, XML-schemas, SOAP
and WDSL.

e UBF(C) is a meta-level protocol used between UBF client and
servers.

Many, many thanks to Joe Armstrong, UBF's designer and original
implementor.

ERLANG USER CONFERENCE 2009, STOCKHOLM 5

Why UBF?

m a nutshell

RPC with a formal, precise specification

@

Erlang server implementation
e Erlang and non-Erlang client implementations

e Simple yet elegant, concise yet expressive

And most importantly ... easy to extend and to customize to
our needs

Page 108

ERLANG USErR CONFERENCE 2009, STOCKHOLM 6

UBF' Case Study

A Custom Webmail System

MTA ISP MOBILE PC O&M

3 "CLIENT API P!

__ ./ e

FRONT API)

f_.
.

(" BACKAPI)
DIRECTORY STORE DATA STORE ‘
ERLANG UsER CONFERENCE 2009, STOCKHOLM 7

UBF Case Study

Contract Statistics

API Contracts | Methods | Types | Leaf Types | Records
Auth | 2 26 96 53 4

Client | 5 28 288 231 13

Front | 11 61 469 358 32

Back | 10 29 186 136 5

Total | 28 85 628 443 35

These code snippets show how to obtain the methods, types, leaf
types, and records of an UBF contract.

Methods = [{Req,Res} || {Req,Res} <- Mod:contract_anystate()].

Types = [{T,Mod:contract_type(T)} || T <- Mod:contract_types() 1.
LeafTypes = [{T,Mod:contract_type(T)} || T <- Mod:contract_leaftypes()].
Records = [{R,Mod:contract_record(R)} || R <- Mod:contract_records()].

Page 109

ERLANG User CONFERENCE 2009, STOCKHOLM 8

UBF Contracts

Changes € New Features

Predefined primitives

Renamed constant() to atom()

Renamed int() to integer()

New float(), tuple(), list(), and proplist() primitives

Optional type()? - 'undefined’ or type()

Optional attributes (e.g. binary(ascii,nonempty))

ascii: only ASCII values

asciiprintable: only printable ASCII values
nonempty: not equal to ", [|, <<>>, or {}
nonundefined: not equal to 'undefined’

ERLANG Usegr CONFERENCE 2009, STOCKHOLM

UBFE Contracts

continued ...

User-defined primitives

e New binary and float constants

Support Erlang syntax for integer constants

» New integer ranges (..integer(), integer()..)

record defines

[type()]? for optional lists

[type()]+ for mandatory lists

[type(){N}, [type()]{N.}, and [type()]{M,N} for
length-constrained lists

Page 110

ERLANG UsSer CONFERENCE 2009, STOCKHOLM

#record{...} syntax with automatic generation of Erlang

UBF Contracts

continued ...

New feature “type importing” ...

e Permit type only contracts (i.e. STATE and ANYSTATE
contract blocks are now optional)

e Import UBF types from other UBF contracts

e Check and permit duplicate UBF types only having the same
definition

ERLANG USER CONFERENCE 2009, STOCKHOLM 11

UBF Contracts

continued ...

New feature “type importing” ...

e Import ABNF-based types from ABNF specifications

e ABNF-based types are formal specifications for binary() types.

e Ander Nygren's abnfc module is used to parse ABNF
specifications into an internal abstract syntax tree (AST).

¢ |mplemented new ABNF parser for UBF's contract checker to
verify binaries against ABNF-based types.

e Import EEP8-based types from any Erlang module
e Using a parse transformation, UBF contract types are
automatically added to an existing Erlang module having type
defines.
e Not all EEP8-based types are supported (pid(), fun(), ...)

e Support for EEP8-based records is in progress
Page 111

ERLANG USErR CONFERENCE 2009, STOCKHOLM 12

UBF Plugin Callbacks

Changes & New Features

Stateful is the original callback APl implementing a shared plugin
manager process, a per-session contract manager process, and a
per-session plugin process.

Stateless is a new callback APl implementing only a per-session
contract manager process and per-session plugin process. The
implementation callback function APl is a bit less complex.

LPC is a new callback API implementation that has no side-effects.

LPC stands for Local Procedure Call.

The implementor of a UBF plugin can choose to implement one,
two, or all three of the above callbacks.

ERLANG USER CONFERENCE 2009, STOCKHOLM

UBFE Transports

Jouee Y
ioTeenp ioTCRP G
I y Client ", Listenar ’.'

UBF Contract Plugln
Driver Manager Handiar

r’ ‘. l |
| fOoHTTR Y § HTTP %
Y Client 4 Listener

. § \ b

Cllent
Appilcation

Server
Application

'-__(_,' ‘.__'_,-'
LPC
Client [

Cllent JSON-RPC JSON-RPC
Application Drlver Driver
1
=" |

| Service [
Contract prvice
A" ntract
g"

|

Key Points

e Same contract with mult:EIe transports
age 112
e Same application with multlple contracts

ERLANG USER CONFERENCE 2009, STOCKHOLM

13

14

UBF' Transports

Changes € New Features

EBF is “Erlang Binary Format”, a simple TCP/IP protocol that
uses Erlang-style conventions.

e Uses Erlang BIFs term_to_binary() and binary_to_term() to
serlialize terms.

e Terms are framed using the 'gen_tcp’ {packet, 4} format: a
32-bit unsigned integer specifies packet length.

ETF is "Erlang Term Format”, a simple protocol that relies on
Erlang’s native distribution. This approach can be useful for
Erlang-only deployments.

ErLANG USErR CONFERENCE 2009, STOCKHOLM 15

UBFE Transports

continued ...

JSF is “JavaScript Format”, a simple TCP/IP protocol that uses
JSON (RFC 4627).

e Uses LShift's Erlang-rfc4627 to serialize terms.

e A few extra conventions are layered on top of LShift's
implementation to help distinguish between atoms, tuples,
records, and ubf strings.

UBF-JSONRPC is a framework for integrating UBF and
JSON-RPC over HTTP.

e Relies on JSF and provides new helper utilities to encode and
to decode JSON-RPC requests and responses.

e Includes a simple inets-based HT TP client and HT TP server

module that demonstrates h0\4v1§o use the LPC callback API.
age

FERLANG USER CONFERENCE 2009, STOCKHOLM 16

UBF Meta-Data

Documentation

Client API - add a draft mail (UBF, EBF, and ETF style)

{ mail_add_draft, authinfo(), maildraft_olduid()?, mailheaders(), draftbody_parsed()
, [rfc2396_url()], maildraft_options()?, timeout_or_expires() } =>
{ ok, uid(), [mimepart_url()] } | res_err();

Client API - add a draft mail (JSF and JSON-RPC style)

request {
"yersion" : "1.1",
vig" : binary(),
"method" : "mail_add_draft",
"params" : [maildraft_olduid()?, mailheaders(), draftbody_parsed()
, [rfc2396_url()], maildraft_options()?, timeout_or_expires()]
}
response {
"version" : "1.1",
"ig" : binary(),
"result" : {"$T" : [{"$A" : "ok"}, uid(), [mimepart_uri()] 1}
[res_err() | null,
"error" : error()7?
}
}
ERLANG UseR CONFERENCE 2009, STOCKHOLM 17

UBF Meta-Data

Testing

Functional Testing

Integration - external clients and external servers

Dialyzer - re-use type definitions

EUnit - automatic test input generation

QuickCheck - automatic generation of QuickCheck generators
and abstract state machine property tests

Performance Testing
® Load client generators
e Load server stubs
e Transaction logs and statistics
Page 114

ERLANG User CONFERENCE 2009, STOCKHOLM 18

UBF and QuickCheck

Basic Strategy

/ Test Model
Quick csk—s : Aoplicati
Check <—»Callbacks » UBF Client =H{UBF Checker— Application
A
13 :
" QuickCheck
] Generators i
‘- UBF Contract

Boilerplate generators and properties (with only one push of a
button)

Custom generators

Custom properties
Non-UBF APIs
e Top-down and bottom-up testing

Low-level transport and high-level application layers

ERLANG USER CONFERENCE 2009, STOCKHOLM 19

What’s Next?

Documentation
e Complete edocs and examples for the UBF code repositories
e ABNF specification for UBF(A), UBF(B), and UBF(C)
e ABNF specification for EBF, JSF, and JSON-RPC

Interoperability
e EUnit: open-source the input generators for UBF

QuickCheck: open-source the generators and the framework
for UBF

EEP8: better integration with Erlang specs, types, and records

FFI: Erlang ports and drivers based on UBF for other
languages (e.g. C/C++, Haskell)

Other tools and approaches (e.g. Protocol Buffers, Thrift,
BERT) Page 115

ERLANG USER CONFERENCE 2009, STOCKHOLM 20

Thank You

http://github.com /norton /ubf
http://github.com /norton /ubf-abnf
http://github.com /norton /ubf-eep8
http://github.com /norton /ubf-jsonrpc

ERLANG Usgr CONFERENCE 2009, STOCKHOLM

21

Page 116

Conference Proceedings Thursday 12 November 2009

15th International Erlang User Conference Stockholm, Sweden

Kenneth Lundin
Manager of the Erlang/OTP development team

Latest news from the Erlang/OTP team
at Ericsson

Abstract

Kenneth gives an update of the Erlang/OTP team's work at Ericsson - their current
projects and plans for future.

Biography

Kenneth Lundin has been working with SW development since the late 70s. As a
curiousity it can be mentioned that Kenneth was one of the pioneers in the use of C++
at Ericsson. Unsurprisingly Kenneth's interest for OO languages has been slighty revised
since then. He joined the Erlang/OTP project in it's early stages 1996 and has been
working both with application components and the runtime system since then. Has been
managing the team for about 10 years now.

Page 117

2009-10-29

ERICSSON

ERLANG/OTP LATEST NEWS

ERLANG USER CONFERENCE 2009
Kenneth Lundin

CONTENTS

» Release plans

> New Build Process for Documentation
s> GIT repository

» New erlang.org WEB-site

» Native Implemented Functions (NIFs)

© Erlcsson AB 2009 2009-10-29

Page 118
Ericsson AB 2009 1

Ericsson AB 2009

RELEASE PLANS

Decided

» R13B03 to be released on November 23:rd
Preliminary

» R13B04 in February 2010

» R13B05 in April 2010

y R14 in June 2010

® Erlcsson AB 2009 2009-10-29

NEW WAY TO BUILD DOCUMENTATION

=]

» Much faster build

> Easier to maintain and enhance

+ Produces MAN, HTML and PDF

> Takes the same XML input as docbuilder
» docbuilder will be phased out

s Makes use of well known Open Source tools:
- xsltproec an xslt processor avaiiable on all major platforms
- Apache FOP also availabie on ait major platforms

Additional functionality planned in upcoming releases

search facilities

> impraved layout.

make doc should work out of the box (to make it easier for users to contribute to the
tools and the documentation)

easy to use for everyone documenting their Erlang modules and applications.
Integration with edoc

new better DTD's and XMLSchemas

~

v

© Ericsson AB 2009 2009-10-29

Page 119

2009-10-29

2009-10-29

g

OVERVIEW OF DOCUMENTATION BUILD

i
xsl html r.
1 ‘ mdni

/ W3C standard /

Freeware Freeware (Apache FOP)

© Ericason AB 2009 2009-10-29

=]

GIT REPOSITORY

» We will put the sources for Erlang/OTP in an official public
GIT repository (probably on GITHUB).

> Will be updated on a daily basis.
» Test suites will also be available in the repository.

» Intention is to make it easier to provide patches and easier
for us to receive patches.

> Will be available from R13B03

® Ericsson AB 2009 0010-29

Page 120
Ericsson AB 2009 3

Ericsson AB 2009

NEW ERLANG.ORG WEB-

SITE

» erlang.org with new layout and technology
» Easier to update news and articles

» The goal is to make the
site more alive and up to date.

© Ericsson AB 2009

2008-10-29

READ ARTICLES

ERLANG

DOWNLOAD EREANG/OTP

EUC 2009 registration is now open
a-20

Wnitan by Syetam scrimatrator, 20091
The Erlang User Corference in Stockholm on November 12 1s now

ﬁh‘ apen lar registration. @
o

A new Erann bonk is on ifs wawl

Ertang i & srogramming language used to budd
manhrely sTiRalle 408 fealtme Cestem with
tompuremants on high svilabsiy. Somo of €3 usen are
Lo, E-commare, conputes telithany and
InsLant measagung- EAaNg's runtime sy soam has bust-in
aupbort for i il Fartalt ol

Origraaty developud ot Ercusan. @ was releasad ai
o souTDe w1904,

© Ericsson AB 2009

2009-10-29

Page 121

2009-10-29

Ericsson AB 2009

=]

NATIVE IMPLEMENTED FUNCTIONS

?Ievc\é)feature (still experimental) for native implementation of functions
in

» Complementing the driver concept.

+ Exciting, Really Useful, But dangerous

> We call these functions NIF's (Native implemented Functions), to
differentiate thern from BiF's (Built-in Functions) which are more or less
part of the language.

 NIFs offer an easier and more efficient way to implement synchronous
functions in C than the driver concept.

» Dynamically loadable and upgradable

+» Several functions in a module can be implemented in C using this
technique. Metadata in the module, the on Load attribute, télls the
loader which function to call for loading and initialization of the shared
library containing the NIF's

» But as said, really dangerous, use with care!

© Ericsson AB 2009 20001079

B’

NATIVE IMPLEMENTED FUNCTIONS (ExAMPLE)

Erlang code

-module (niftest).
-on_load(cn_load/0) .
-export([reverse bin/l,calls/0]).

on_load() ->
LibDir = code:priv_dir (myapp),
erlang:load nif(filename:join([LibDir,”bin”,”nifs”]).

%% Dummy implementations
reverse bin(_) ->

erlang:error (not_implemented) .
calls() ->

erlang:error (not_implemented) .

9 Ericsson AB 2009 2009-10-29

Page 122

2009-10-29

NATIVE IMPLEMENTED FUNCTIONS (ExAMPLE)

a

C code (initialization)

e ——er TS T r—
#include "erl nif.h"
typedef struct {
int calls;
} PrivData;

data->calls++;

}

static int load(ErlNifEnv* env, void** priv data) {
PrivData* data = enif_alloc(env, sizeof (PrivData)):
if (data == NULL) return -1;
data->calls = 0;
*priv_data = data;
return 0;

}

static int relcad (ErlNifEnv* env, void** priv data) ({
return O;

}

static void unload (ErlNifEnv* env, void* priv_data) ({
enif free(env, priv_data):

© Ericsson AB 2009 2008-10-29

SE e

NATIVE IMPLEMENTED FUNCTIONS (EXAMPLE)

C code (the NIF impiementations)

static ERL_NIF_ TERM reverse bin (ErlNifEnv* env, ERL NIF TERM al)
PrivData* data = (PrivData*) enif get_data(env);
ErlNifBinary ibin;
ErlNifBinary obin;
int 1i;

data->calls++;
if (l!enif_is binary(al)) {
return enif make_badarg(env) ;
}
enif inspect binary(al, &ibin) ;
enif alloc binary(ibin.size, &obin);
for (i=0; i < ibin.size; i++) {
obin.data[i] = ibin.data[ibin.size-i-1]; /* reverse */
}
enif release binary(&ibin);
return enif_make_bina!y(env,&obin);

©Ericsson AB 2009 WOR1020

{

Page 123
Ericsson AB 2009

2009-10-29

Ericsson AB 2009

NATIVE IMPLEMENTED FUNCTIONS (EXAMPLE)

=]

C code (mandatory administration to hook into the Erlang VM)

o i

e o a P

static ErlNifFunc nif_ funcs([] = g

{ —’_éi functionName, arity, fptr |

{"reverse bin", 1, reverse bin},

{"calls", 0, calls}
}i
ERL_NIF_INIT(niftest,nif_funcs,load,reload,unload)

o S

eﬂangMeduIeName.funcTabl'e.load_fptr.reload_fptr.unload_fptr

/|

® Evicsson AB 2009 2001020

ERICSSON

Page 124

2009-10-29

