
Urlang User Uontèrence 2003 Sida I av I

9th International Erlang/OTP
LIser Conference

Stockholmo November 1,8, 2003

rF: t,
* gfr#
rr

Ën
NT

I
l
?

I

llú

#

r

lll'rt
hl -ii:;.í rl

Tfi'r#8il

Proceedings

EUC'2003 http z / /www. erlang ,se/e:uc/03/
Ericsson AB
P.O. Box 1505
SE-125 25 ^tilvsjti Stocl¡frolm
Swede,n

ffi Fq##s##þtrd #,
W

f,ffir
TW
E R tANG

9i
.j,

i

fi l e : //C : \Mi n a.o/o2û dolmm en t\EI IC' 2 0 03 \nro c.h tm l 2003-11-12

Conference

t n\J Lvvt - rTogrammg

08.30 Registration.

Danie Schutte, Teba Bank

14.00 Getting Erlang to Tatk to
IIaI Snyder, Vail, and Leon

14.3 0 Erlang/euickChech

Erlang.

17.00 What's newin R9C.
Ke,nneth Lundin, Eriosson.

17.30 Close (andptb evening)

Mckaël Rémond demonstrates the 3I) Video Game.
Torbjörr Tünkvist demonsEates the Ticket Tracker.

ErIang/oTP user conference 2oo3

09.00IF-V tog designed Erlang.
Mike Williams, Ericsson.

09.25 Yet Another Web Gui trþamework.
Göran Båge and Johan Blom, Mobile Arts.

09.50 3D Video Game- I)evelopment in Erlang.
Mckaël Rémond.

10.30 Coffee.

11.00 Eow we utilized Erlang to
Svitches.

Develop a Banking System and Financial Transaction

Sida 1 av 1

11.30 cyberathretics - epen source and the Age of wireress.
UfWig€r, Ericsson.

lz.Û0ld-lrþg LDAP and Radius from Erlang.
Tordöm Tünkvist, Nortel.

12.30 Lurrch.

I "$ C+r (orfrom ei to IIBF).
Smith, Case Westem Reserve University

Thomas Arts, IT-university, and John Hugheg charners.
15.00 Performance Analysi, lsiog Model Checking.

Thomas Arts, rT-r¡riversity, ãod ¡,tao José sánãhez penas, university of Con¡nha.
15.30 Coffee.

16.30 Profiledriven Inlining for
Thomas Lindgren.

:

ì.

¡....-.
ji. . ,, ,j

1: .

I
i..i:.j

16.00 All you wanted to know about EPE (and might have been afraid to ask).K Sagonag M. Petterss@, R Carlsson, P. Gr¡st¿ßson and T. Lindahl, Uppsala University

dons f

II

I

tr

tions intermissionsI)emonstra

fi le://C:\Minao/.'2ùdo1orment\F.IIC'2003\prooramme.html
2003-11-12

ERNcssoN #l

Why did we create Erlang?

mik@erixøicsson.se

Mike\A/llliams
Ericsson AB
Stockholm

Svræden

Acfiltþp*æ i/Nkc\lltraçEùsn^g 1

t

enrcsso?,¡ ãl

Maybe it didn't happen exacily this way, but this
is the way I think it should have happened

ACMLþp{h@ ifikcì ñaËEfi(glÂA 2

!_ -r

ERIC5SON ã

Problem Domain - Highly concurrent and
distributed systems
n Thousands of simult¡aneous transastions

! Light uæight t¡:ansactions
û Greatest CPU load is imflementing corìcunency and

communication nc't computation

n Many computers
tr differer¡t types (Bigendians, Liüleendians, lntel, Sparc, por¡¡erpC

etc)
ü slrare nothing (no sfrared memory, different communication

mechanisrns (Ethemet, ATM, proprietary))

n Many OS's
ü Solaris, VxìÂlorks, \Â/indouæ, pSOS, Linu<, etc

,cclrlJ!Ft2@g ErlænAB 3 l/tkcìll¡üens

enrcSSOrr¡ Z

Problem l)omain - No down time

tr Not allowed to have any planned or unplanned downtime
n Acceptance criterion: five nines = 9g.gggo,ó uptime orS minutes

down time per year

n Recovery from sorfhruare errors
ü Large syslems will hare sofhnare h.rgs

n Recovery from harduare failure
I Netuork failure, processor failure

tr Enable adding / deleting computers and other hardrnare at
run time

tr Update code in running systems

ErlsrAE¡ IÁCi,l uFp€b2CrFF w¡kcì f,JG

L *

ERTCSSOi¡ t

Problem Domain - Ease of programming

n Highly "elpressive" programming language
n Easy portability between processor architectures
n Large scale development (tens or even hundreds of

programmers)

! lncremental and erploratory programming

n Debugging and tracing - even in systems running at
customer sites

! Easy to fix bugs (patches) and upgrade at all phases of
design ! even in systems running at customer sites

Acl|l utp¡¡h'rç()rc Ébsn AÊ 5 l/fkcì^Ífæ

f. rr

È*"'.;' ,

!i!;,
I i-
ilr -''"
l.:.'.ç..''
I
7.:

i.

t : :-.

lj

3

ERTCSSON

Solution l)omain - Concurrency

n No existing industry quality OS or language otrers light
ureight enough threads / processes

! Processes must be independent
tr No shared resources
E One process must not be able to destroy another process
tr Reduce event/state matrix by selective message reception

EriÐAB 5ACIA$peb-T¡Fe l¡lkcì/lll[alc

¿T

ER|C5SON g

Solution I)omain - Conc¡ryency & Distribution

n As we didn't uant to rnodify or create and new OS,
implementation of light vreight processes needed to be
done in "middleuare", l.e. on top of the OS.

! Making processes independent requires either controtof
the MMU or a language without pointers (or with safe
pointers)

tr Reducing the evenUstate matrix makes the signal/ state
model undesiable.
I The signal state model requires a thread only suspending at the

top lwel, not in a fundior¡/sr¡broutine. This makes proper RpC's
impossible

ACilur*2@ Erls.rAB 7 if,kcltìfiens

enrcssoru ll

Solution Domain - Concurrency & Distribution:
Design decisions
tr lmp¡ement concurency in a virtual machine on top of

operating system.
n Use a language without erplicit pointers.
n Use copying message passing as only interprocess

communication mechanism.
D lmplement selective message reception.
n Make communication between processes on different

machines identical to communication betr¡veen processes
on same machine.
I Type ir¡formation retained at runtime enaHes ar,¡tomatic conversion

of Erlang termsto an extemalformat.

ACI¡l,JFÐb.æ Êri.sAB a lfikcìnf;rns

-?

ER¡C55ON É

Solution l)omain - No down time

tr Pr¡nciple for enor detection: It is unsafe to artow the faiting
part of the sysfem to detect and conect failures itself

No atility to crastr
The oberver

Fail
Failing part of

the system Obsenrer

ACâ,ltþ9t2ûræ) Ê.iÐAg 9 if,kclrvteG

¡

enrcssoru f

Solution Domain - No down time

! A sorftrvare error in one process is best detected in another
process

tr Fa¡lure of one processor is best detected by another
processor

tr Frequently rrue uant to be able to abort all the processes in
a transaction if one of them fails for some reason

Eis¡AB 10Aclrrl,JFCb2@ mkc\ früË

+

I

5 a-?

ER|CS5ON #

Solution I)omain - No down time
Design Decisions:
n Create a concept of a "linK' between processes. lf a

process fails, a special message (a signal) is sent to all the
processes to which it has links.

tr Default action of a process receiving a signal indicating
failure of a process is to "die" and send on the signal to
all linked processes.

n By setting a specialflag, (fap_exit) a processor can
ovenide the default behaviour and receive the signal as an
ordinary message.

I Links are bi-direc'tional- (maybe a design mistake?)

Âcr¡LþF*z@ EüglAB 11 Mkcì/ìf,lrrc

enrcssoru f

Solution Domain - No down time
Design Decisions:
¡ T\,vo cases:

tr Seruer r¡/ith a lot of dients. lf a dient fails sever needs to take
conec{ive adion

¡ A lot of processes in a tnansaction tr if one fails, all strould fail.

¡ Link and Signal mechanism uorks across processor
boundaries.
U lf a processor fails, signals wil¡ be sent to dl processes whicl¡ hane

links to processes in the failing processor.

n Error handling philosophy: "Let it crash" and let other
processes clear up the mess.

EisrAB 12AC¡vluF*2@g l/¡kolrlfi.ß

(-F

ER¡CS5ON ã

Solution l)omain - No down time

! Gommon design paradigm:
! Let all adivetransactions be represented by groups of linked

processes

tr Store inactive (steady state) tnansactions in reflicated robr¡st
database (Mnesia)

n Let resources needed by transactions be allocated by rcsource
allocator processes which tnap-exits and free up resources fncm
failing tnansactions

ü Supervisor processes wfi¡ch tnap_exits restart failing application on
g¡itaHe processors. Data for these applications is the configumtion
data needed and the data fortnansac{ions in a $eady state. (same
mechanisrn used for reflacing processors).

AcMtþF*@ Ei.sAB 13 t/ikc\lì/üms

rnrcssoru f I

Solution Domain - No down time
Design DecisÍons:
! Des¡gn the virtual machine so newcode can be loaded

and processes can migrate to the newcode.
¡ Abil¡ty to detect processes running old code.
tr Design the strandard design patterns (part of OTp) so that

they can convert dat¡a to a newformat if needed.

tr Appl¡cation sofhnrare needs to be aware of possible
sofhnare updating and failure recovery, but with
Erlang/OTP support the impact is minimised

Acl|¡ t-þpob2.f(5Fo Erhsî AB 14 lfkcltìtrrrs

7 -7

ERICS5ON ã

Problem l)omain - Ease of programming
(reminder)
n Highly "erpressive" programming language
n Easy portability betvveen processor architectures
n Large scale development (tens or even hundreds of

programmers)

I lncremental and erploratory programming

! Debugging and tracing - even in systems running at
customer sites

! Easy to fix bugs (patches) and upgrade at ail phases of
design - even in systems running at customer sites

ÂClltþaUæ EdsrAB 15 fl/[kcllìE¡rc

enrcssoru f

Problem l)omain - Ease of programming
Design Decisions:
tr Use high levelfunctional language with automatic memory

handling and garbage collection
! Use execution of intermediate code by virtual machine to

obtain easy portability betvteen processor arch itectures
! Simple non/hierarchical module system
n Erhng shellallows testing of functions direcilywithout any

specialtest programs

n Virtual machine supportfor debugging and fault tracing
! Dynamic code replacement also very usefulwhile

developing / testing sofhn¡are

E|ñAB 16Ácfútþp*2@ l/lkcllìffrrs

8 &

ERtCssoN á

Comments

! We have frightened some people otr by using:
! A funclional language
! A non O-O language
tr Recurs¡on, single assignment etc
! A virtual machine

I l.e. ue have diverged a long vray from industry
mainstream. We are changing very many parameters at
the same time.
tr Attitude changes in "mainstream" is possible (rememberwfrat

people said about Garbage Collection before Java?)

ACÂlUppoh@ ÊriglÂEÌ 17 ùlkc\,lf&¡rls

enrcssonr f I

Comments

n The use of Erlang is accelerating, the critical mass will
soon be reached!

AC¡vlU[Ffaæ EÈsn AB lA IlfikcVl/üans

9 +

Yet Another Web GUI Framework

Göran Båge, Johan Blom

L

2

, Provides Messaging & Presence products to
Mobile Network Operators

. Officc in Stockholm and London

o References in Europe

. Founded 200f by a teåm of rnobile telecom e¡çerB wiü¡
octensirc operience from developrnent and standardisation of
GSM/UMTS/PDC/PCS plaüorms and apptications, such as
, HL& MSC/VLR, SSF, SCF, WAP-Gttf, MLC

, PrePakl Systems, Uniñed Messaghg SysÞms

o www.ûþbileaftS.Se

Mobile Arts

iWcb;;e

1

3

r GUI for an Alteon/Noltel Product
, Beautiful& powerful

, Never releæed?

, Client required Erlang and GTK

. CLI and GUI for Mobile Arts products
, Web based GUI

Background

iVìc; i: iir¡

4

. Using a graphics environment, e.g GTK, Java
+ Powerft¡l
+ Dffi¡led lalout

Client box need spechlsoftware

. Web based GUI
+ Everyone has a browser
+ No need to installsæcialclient sofrware

Only polling

Browser differences
Limited þyout conbol

Some observations

FIivic;:;ie ¡\Ar:s

L

5

. but reality rules
, Frames

, Javascrþt

o Messy result
, Browser deændencies (supært Nebcape 4, 7 and IE) in

Javascript and CSS

. Many pages with similar functionality and layout

¡./ì.-,f-irå

o

lqglggrgellptr]n0,"
, Standard HTlvlL only
, Nofrancs
, css

O

6

Template based GUI

. Separate different views
, Static stn¡cture and layout
, Dynamic content - interface to application

. button actions

. table content and options

. paraneter checks

, Help texts

. XML like template notation

3
1

How it works

IIRLa
a aaa/xxx a

a entry

xlcx.gul

pørse tree

ìF-' gui_Iib.js

þITTVTL
code lib.erl

xmerl

gui-lib.erlJ etsn

code_ge

)00cÅui.erl

1

fi le:///homdgoranllVf obileArrs/gui_talk/doc/modif _page_example.htm

FI
'fr"+$ r.t ùn ì t ss ¡È\ & r-ft *r Modify rpârator tesÉ

rrïffi i:

Password:

Name:

Email:

Description:

input fields

Áar€ r eslare

aDqgrqer

iË

Copyright' @ 2002-2003 liobiJ.eå¡ts

5

zz

zz
zz

Template source

Static/structure

modify_page_example . gu1 . txt

for "modify_page_examp1e"

part

<page

(section name="alI' >
<button name=t'close"
(section name="datat'

(section layout:"2"
(text) Password:

name:"operaÈor_modify" sty1e="command-page"
import= " us e r_modi f y_grui_lib'
j s lib= " ope raEo r_c f iãnt_gui_lib "
size:"500r' >

title:ttClosett actíon:ttclose" />
style="command-areat' layout="L" >

<,/text> <passhrord name="pwd' síze--rr2}r,
/>

/>
(text) Name: </text> <input name:ttnamet' síze="1x2 0t'

(text) Email: </text> <input name="email" size="1x20

(text) Description: <,/text> <input name="descr" síze="3x30

<wrapper name=ttservicett >
(text) Service: <,/text> (select name:"servicer, />

</wrapper>
<hrrapper name="timeout ")(text name="timeout text"> cLr/Gur inactivity timeout:

(selectL name="timeoutr, />
</wrapper)

</section>
<button name="savet' title="Savett />(section)

(button name:"resettt title:"Reset" action="reset",/)(text) input fields <,/text>
(/sect.ion>

(/section>
(ref a]-ias="a]-]-:close" />

</section>

</page>

ll

It />

</text>

Dlmamic part part

name: " operator_modify"
title="modify_tít1e ($action, $add_op: operatoï: name,

/>

zz
%z
g?
(code

Sida 1-

("

modify_page_example . grul . txt

rsçrç- "1¡¡sd iry-loc n, u "3ll3il'3ä"3i#:i::; ; :ï:3::åi","ro, r,, >(local name="action" value="grri_Iib: get_õperation O "- />(locaI na¡ne="js_action" value="operation js ($action) " /><l-ocal name=ttoperator"
value:"get_operator ($action, $add_op: operatoï: name,

$operator_op:select:operator) " />
(section name:"alltt >

<script tag':"passü¡ord" name:"data :pv¡d"
onchange="check_password (^data : pwd) " / >(eval name="data:name" default:"get_name ($data:name, $operator

)' />
(eva1 name:"data: email" default:"get_emai1 ($data: email, $operator) "

/>
<script tag:'ittnot" name:"data : email"

onctrange:"check_emaí1 (^data: email) r, />(eval name="data : descr" default="g,et_descr ($data : descr, $operator) "
/>

(eval naÍre="data: service: " gþs¡¡-'rgþow service ($action) " />(eval name="data: service : service "

value:"operator_gui_1ib: service_options ($data: service : service) "tlpe="service select tlæe O " />(eva1 na¡ne="d.ata : tiñeout '' ãhó!r¡:"show_timeout ($action, $operator)"
/>

(eval name="data: timeout : tímeout "
value="timeout_options ($data:Èimeout : timeout) " />(script tag:"""tectLE name="data : timeout : timeout"

onclick="check _ask_va1ue (^data : timeout : timeout, 5, I posi
ntt)"
/>

<eval name="data : savet'
action="do save data(Soperator, $data:pwd, $data:nanne,

$data:emai1, $data:descr,
$data : service : service,
$data:tÍmeout:timeout) " /><sCript tag:"5uaton" name:"data: SAve"

onclick="check _user_data ($ j s_action, ^data: pwd) ,, />(/section>

</code>

¡l

I

\

1

I

I

z%

zz
zz

HeJ-p text part

<he1p name:'roperator modify">
<info name:"a]-l : clõse">

Sida 2

7

modify3age_exa¡nple . grul . txt

<hint> Close page </hint>
<message) Press button to close and remove page (/message)

</info>
<info name:"all : data : save">

<hint> Save operator data <,/hint>
<message) Press button to save data and remove page (/message)

</info>
<info name="aII : data : reset "><hint> Reset input fields

</hint>
<message>

Press button to reset alJ- input fields to original values.
</message>

<,/info>
<info name:"aII : data : pwd'r)

<hínt> Enter (new) password <,/hint>
<message>

Enter (new) passl.¡ord here. You wi]-l be asked to verify this
password

before the (new) operator state is saved.
</message>

</info>
<info name:"al1 : data : name ")

<hint> Enter ner^r or edit operator nane </hínt>
<message>

Enter new or edit oId operator name j-nfor¡natÍon. Note that t
tre
name

is not the same as the operator (logín) id.
(/message)

</info>
<info name="all : data : emai1">

<hint> Enter new or edit operator emair address <,/hint>
<message) Enter nehr or edit old operator email address. (/mess

age>
</info>
<info name="a11 : data : descr">

<hint> Enter new or edit operator description </hint>
<message) Enter nel.r or edit old operator description. <,/messag

e>
</info>
<info name="all: data: service : service")

<hint> Se1ect service </hint>
<messagre) Select service for this operator. (/message>

</info>
<info name="a11: data: timeout : timeout ")<hint) set crr and GUr inactivity timeout (min) <,/rrint>

<message>
Set an inactivity time limit in minutes for Ct¡I and GUI. If

the
user is

inactive longer Èhat the gíven time ttre operator will be 1og

B

Sida 3

9ed
out.

</message)
< / i.nfo>

</he]-p>

modify_page_exatnple . guÌ . txt

7

Sida 4

modify_page_example merge. txt

ZZ The tree parts are mergied using the na¡re (and t.g) attributes
<page name="operator_modify" style:'rcommand-page" . . .>

(section name=ttalltt >

(sectíon name:"d.ata" style="command-area" layout="lrr >(sectíon layout:"2t' >
(text) Password: <,/text> <pass$¡ord name="pwd" size="20" /

(text) Name: </text> <input ¡tame:"name" size="Lx2Ott /

</text>

<wrapper name=t'service" >(text) Service: <,/text) (select name:"service,, />(/wrapper>
<hrrapper name=t'tiü.eout ")(fext name="timeout text"> cI,r,/Gur inactivity timeout:

(selectL name="timeoutr, />(/wrapper)
</section>
(button name:"savett title:"Save" />

(/section>

(/section>

< /page>

zz
zz
åå

Dlmamic part part
(code nane="operator_modify"

ata t

ft

(sectÍon name="aIl" >
?å -Add onchange handler to password clause tpwdt in section rd

ZZ (in ¡allr)
<script tag:"passu¡ord" name="d.ata :pwd"

onchange="check_password (^data :pwd) r, />zz set defaurt value of ínput clause Inamer in section 'datar(eval name="data:name" defaul¡="get_Dame ($daÈa:name, $operator
/>

zz show wrapper combo all:data:service if conditíon evaluatesto
true

ZZ (not visible in example(eva1 name:"data: service : "

I-o

page)
sþe1¡¡-trsSow_service ($action) " / >

Sida t

eout

tt

modi f y_page_example_me rge . txt

åå Add computed options to selectl- clause all:data:timeout:tim
(eva]. name:"data: timeout : timeout "

value="timeout_options ($data:timeout :timeout) " />

83 Add action code to button aI1:data:save(eval name="data : save"
action="do save data($operator, $data:pwd, $data!îêmê¡

/>
?å .Eldd onlick handler to button alI:d.ata:save
<script tag:"5oaton" name:"d.ata : save"

onclick:"check _user_data ($ j s_action, ^d.ata: pwd) ', / >(/section>

</code>

zz
?? Help text part
Z9o

<help name: "operator_modify">

<info name="a11:data:save") ZZ Button rsave' in sect 'data' in s
ect
fallr

<hint> Save operator data <,/hint>
<message> Press button to save data and remove page </message

</info>

<info name="all : data : pwd")
<hint> Enter (new) password </hint>
(rnessagie)

Enter (new) pass!üord here. You wi]-]. be asked. to verify thís
password

before ttre (new) operator state is saved.(/uessage)
</info>

</heJ-p>

LL
Sida 2

modi f y_pa ge_exampl e_vars . txÈ

å? Varj-ables/parameters are form-ínput values passed from ca1ler (
may
be
ZZ the calling frame/page or this page)
1e
ZZ identifiers start with $ (va]-ue of)

or local variables. Variab

or ^ (reference)

3g Static/structure part
zz
<page name="operator_modify" style="command-page "import:"user_modify_gri_lib' >

(section name=ttalltt >

/>

(section name="data" style="command-area" layout:rr1" >(section layout="2" >
(text) Password: </text> <password. name="pwd" síze:rr2}',

</section>
<button name:ttsavett títle=ttSave" />

(/section>

(/section>

</page>

zz
ZZ Ðlmamic part part
zz
ZZ The title attribute is computed by calling
ZZ user modífy_guí lib:modífy títle
åB with pãrarnetãrã
åE $action value of]-ocaI parameter
?z $add_op:operator:naae value of name entered in input clauseZZ add._op:operator:name in calling frame
ZZ $operator-op:selecÈ:operaEor value of selected optión in cla
use
Z_Z operator_op:select:operator in calJ-ing
trame
(code name:"operator_modify"

title="modify_tít]-e ($action, $add_op: operatoï: name,
$operator_op : SeIect : operator) "lock="modify_lock ($action, $oFerator_op: sèlect : operator) " >

ZZ The local variable action is set to tñe current aétion, i.e.
the

value
ZZ of the cal]-ing button id ("add" or "mod")<Iocal nane:"action" rr"1r¡s:'rglri_Iib: get_operation O " />
BA The actíon converted to a ja-ascript-string ('adê,' or 'mod')

Tz
Sida 1

mod

nodi f y_pa ge_exanFle_vars . txt

(loca]- narne="js_action" value:"operation js ($action) r¡ />
(section name:t'alltt >

3å when the buÈton is pressed the javascript funcÈion
Zeo check user data is called wíth the current action ('add' or

and a reference to the passlrord input object corresponding
to the clause al-l:data:pwd

Cript tag:"bttton" name="data : SAve"
onclick="check _user_data ($j s_actíon, ^da.ta :pwd),, / >

</section>

</ cø&e>

Iz

)

å
z
s

z
z

Sida 2

EAB/UPD/S Ulf Wiger 2003-09-23

snressoru ff

GyberAthletics

Open Source and the Age of Vr/iretess

Re PAI 2m3.O9¿3 I EAB/UPD/S Urwlær

æ*rcssor* S

Problem

. Athletics events are difficult to administer

. They are also difficult to follow

. The Swedish Athletics Federation would like some
software that supports event administration, statistics
reporting and continuous results service to the audience.

. ...but the Federation has no money

Rov PA1 2æ3{9+3 2 EAB/UPD/S U[Wgor

1Rev PA1

EAB/UPD/S Ulf Wiger 2003-09-23

s;txess*ni s

Existing alternatives

. A few companies have their own softrare as part of a
package deal - expensive, and only an altemative at big
events.

. A few people have written their own software - ofren
incomplete, not extensible, and with no long-term support.

. Administering a "small" event is about as difficult
as administering a fairly'big" event,
but there is no money in it.

R6v PAl 2æ3{$23 3 EABruPD/S Uf Wlger

rmrcss*r* S

The Open Source alternative

. Athletics in Sweden is a non-profit popular Movement
('folkrörelse"). So is Open Source softrare development

' The soft¡vare can be made available for free to all clubs in
the country

. Maintenance/improvements can be free/spontaneous or
paid for in preparation for important events

. Gommercial players can build strategic add-ons on top of
the Open Source base, and charge for it (e.g. custom
adaptations for televised events)

ROV PA1 2æ{}0-23 ¡l EAAruPD/S Uf Wlgor

2Rev PA1

EAB/UPD/S Ulf Wiger 2003-09-23

fna':SSúru ff

The Mission

. Create an Open Source project aimed at developing
sofhrare for Athletics events.

. Try to tap into the pool of lT professionals devoting their
spare time to Athletics (there are lots of them)

. Try to involve universities

. Try to get commercial players to'plug in" proprietary
features for high-profile events (TV adaptation, custom
telemetry, custom presentation, ...)

Rov PA'l 2m3{9-23 5 EABruPD/S Ullwþer

i
i

:

ì

t_.

unrcssoru $

Not a New ldea

. We talked about doing this in 1985, but

- \Mrdess networks didn't exist
and pulling coa¡< cable across the stadium seemed problematic

- Computerswere slow, clumsy and expensive

- Freevr¡are exis{ed (GNU siarted in 19&4),
bú nobody (at lea$ not l) knalwtrat it was

- The World \Mde Web revolution was years away
. We conducted sorne experiments and then

shelved the idea... until now

Rev PAI 2ü3{)9-23 6 EABruPD/S UüWlsor

3Rev PAl

EAB/UPD/S Ulf Wiger 2003-09-23

r*;css*r* s

The Vision
Statistiqs
Server and
Events Calendar

i'ffii.

Spectator
Service

Statistics
upload &
queries

rtf
&+;@'--ì.-r

s---><-
Admin.
Glient

Database &
Event logic
Server

. U,LAN suitable for a stadium. GPRST3G an alternative or comp¡ement. Spectator gets tfte same kind of
¡nformat¡on as ¡f hershe u,gre at
home ¡n front of tñe Tv. The athleb Gan go honre at night
and viewthe current statbt¡cs onl¡ne. Loûs of poss¡ble newfeaü¡reo

ROV PAI 2(xt3{¡3Q3 7 EA8/UPD/S UltWtgor

earcssozu $

The Prototype

. Erlang-based server (so far 3.4 KLOC) for event logic

. Java-based client (so far 6.5 KLOC) for pDAs/laptops

. Client-server protocol spec¡f¡ed using UBF

. Two user modes:'spectator' and'administratof

Rry PAI 2dr3a9-23 I EABruPO/S U[Wþ€r

4Rev PA1

EAB/UPD/S Utf Wiger
2003-09-23

Cna,;SS*ru ffi

. Ubf - for protocol specification

. Mnesia/Rdbms - for database integrity. Builder - for boot script support
' "packages" - for name space handring (& evaruation)

Server components

Râv PAí
EABruPDÆ Uf W¡gsr

2æ3{19¿3 I

enrcssoru $

. Wonderful for client-server programming

. Quite stable

. Elegant transport format - easy to read/debug. All type-checking code is automated _ bliss!. We had to add some stuff
- OTPframeuork and packaging of the UBF code
- Java-based UBF parser

- Contract-tohrl file generator

UBF

Rd PAí
EABruPD/S Uf wlger

2(I'3{r9€3 to

5
Rev PA1

EAB/UPD/S Ulf Wiger 2003-09-23

anrcssan $

UBF Example

cathglugin.con (U BF contract)

cath_plugin.hrl (Erlang source)

ubf: corzhrl (

"cathjlugin. con",

-record(athi-ete, {athletê id,
name,
boln,
geader,
club,
infoi) .

[{outfile, ". . . /caÈhjlugia.h!1,, i]) .

aÈhIete_id ()

entry_nuûber ()
born ()
athLète ()

= constant O ;
= iar0;
= ínt0;
= {athlete, athletè_id0, nameO,

bornO, genderO, cl_ubO, info());

RT PA,I 2q¡3{re¿3 f EABruPD/S UÍwlgor

EH¡CSs0zu #

Mnesia/Rdbms

. Rdbms automates referential integrity checks for mnesia
(e.9. "when deleting a club, also delete all its athletes,')

. <TabName>.<Contest> nam¡ng scheme - a new set of
tables for each contest (some tables have global scope)

. Prepared for physical separation of administrator and
spectator access ('writer' cop¡es and 'reader' copies)

- unsure whether this will be needed even for big events.
. Making full use of Mnesia's transaction support

Rry PA1 2dt3.09-23 12 EAB TPD/S U[Wlgsr

6Rev PA1

EAB/UPD/S Ulf Wiger 2003-09-23

an*cssar* $

Packages

. Someone needed to evaluate it...

. Nice to get rid of the namespace problem

. You get used to the deep directory structure

. I had to add some patches to OTP in order
to get'builder'to work

. I would use it again cath server - rules runnlng

jumpingclient gs

Rov PAI 2æ3{9-23 t3 EAB/uPD/S UIWþer

enrcss*ru $

The future

. Goal: to run this at some major event late next year
(afrer adding more features and running some field trials)

. Need to figure out how to best get universities to
cooperate with Open Source projects

. Start tying in commercial interests

. Demonstrate to foreign Athletics federations

. Try to attract an active developer community

Rev PA1 2qþ{9¿3 11 EABruPD/ìS Uf Wlger

7Rev PA1

EAB/UPD/S Ulf Wiger 2003-09-23

anrcsscau $

Possible new features

. Mdeo on demand, event camera, replays, etc.

. Audio channel, expert commentary per event

. Chat, possibly also including the athletes

. lntegrate electronic timing, wind measurements, etc.

. Statistics queries on-line
(includes the central statistics server, not yet started)

. XMLQuery filters for media

. Using e.g. ErlGuten to generate snazzy hardcopy reports

Rd PAI 2qa.{}eas ls EABruPD/S UrWþ6r

IRev PA1

i i-].,Ìri) ;¿li,i iilrdiii$ ii"r-)r"n Tl,'¡-ti),Tt

Torbjörn Tömkvist

tobbe@nortelnetworks. com

1 ¿r J i ..-{
| ;, .1 tL ; \ i
{ !¡,¡i\¡.ti-

NgRTEI.
NETWORKS

. LDAP provides direclory access, a centralized

database of ir¡formalion about people, groups

and other enlities.

. Defned as a set of protocol operations against
servers.

What is LDAF ?

IÐAP Sewer(s)

Slidc2

Cliert

NþRTEt
NËTWORI(5

. Assumes one (or more) servers whicfr joinlly
provide access to lhe DIT (Directory

lnformation Tree)

. Protoæl described in ASN.1

L

îhe D¡rectary inf*rræatlon Tree {D¡T}

The DIT is made up of entrles.

E¡rtrles havs names consistlng of
one (or more) attrlbute values.

The concatenatlon ofthe entr¡r
names form a path, tûe
Dlstlngulshed Name (DN), whlch
unlquely ldentlflæ an enlr¡r.

IiN. ìril-l(ùh,.,n-lLi{)t-.,trì-1,¡r¡ar"r¡t,rI:-,ir¡r

dpblùr.il,d.-o¡ì

t.)

NT?RTEt
NET\â/ORKS

Slloè 3

(l\4aln) Frotocol CIperations

. Authertlcate the cllent (the blnd.operaüon)

Slide

. AddlDelete/Modlfyentrles.

. Search the DIT (retrelvlng lnfo)

NþRTEt
NETWORKS

0A

Fxarnple. fnom the ErlanE shel!
I> {-S} = cldap:opcn(Í t92.t68.t2E.47,1, ßr.
1dc{.30.Þl
Þ cldap:*implc_bird(S,"trToò¡n Tqnkvist cFUrcrsdc"òludait dmm','qwcl23").
ok
Þ Bar = {basc, "d.Êófr¡ctaildF@m,1.
I bær,'dcFbluctaildmm'l
Þ Sclpc = {þpc, cldap:wholcSubrcd)}.
{sdpc,wholcsubtlc}
Þ lÌha = {fi¡ær, c¡dap:cqua¡iqril{dchfsÂMÁccontl.tamc', lobbc')} .

lfi ha,lcqual¡tyM:tcb{'/1¡r¡ibuæValuc^Âçnim,,'slM^eontNuc","tobbe,} I }
6> S.arh = [Bæc, ScopÊ, Fiha].
I tbõc,"dc+luÉrail,¿em"],
{copc,wholcSuboæ},
{fi¡È¡,{cqu¿¡ttyMdct!l

^u¡ibueValuc^srtim,,,si\M^mftNm¿',"robbc'}
} lI

Þc¡dap:mh(S, Ssæh).
{dq {cldap_s@dr_Elç[{cbap_ñûy,

'ClÊToùjm TomIvi4CN-Uss,DC=ùlucøil,DC¡cm",
il'mmbc¡Of",
['gN=Tcdcmup2,C1l¡-UmqDc"b¡Eta¡lDCÆm",
"CN=Tæ6mup,CN=UmÐCdluclail,D€æom",
"ClË?¡çWù¡dom 20@ C¡mpdib¡c

^ess,Cï=Bu¡hir¡I
,C-blwt¿¡l,DC{om"

"CN=SdÊr Optrdo¡ncN=Buihin Dc-btucnailDCrmt),
l'6',lTübjom Tomkvist"l l,
I "smpæ)r',f '^ltÊm Wcb 5)6rrß'l l,
{'ß¡¡",Itobbc@bluÊf s¡l.sn'l],
("givmNæ',[Tûbjom'l],
{'imønæT¡acl,al },
{.bsrlrgpfl,t"0"l},
f "lætbgon*,['t271 I 9t0'376267 tß"lr,

Slidù 5

{'logor¡Cort',[...1],
{ "mNPi\llowDialin'1...),
t...1t...t)t,

[f
.ldap/Uuctail.æÍr/CN'{dfi gEdiqlDc+luctait DCu'Jl I }

NËRTEI
NETWORKS

BulH a gen_sewer/supervisor åarness around the ê¡dap llbrary when
lncorporating lt lnto your system.

By uslng the option: {ssl, true} you will use the ssl application to sêtup an
SSL tunnel (LDAPS). (ilafte curc fo also set thê rrltt to 636)

The eldailtest dltcctory confains fpsf code, and examptes on how b sefirp
an OpenLDAP seruer.

Eldap has been tæted wtdt OpenLDAP, Iptanet and AcüveDírectoryr LDAp-
serveñr.

Some eÍdap notes...

S,¡def

N(?RTEt
NËlwORt(S

3

A protocol to carry authentlcatlon, authorlzaüon, and conflguraüon
lnfo¡matlon between a l,lgtTvork Access sewer, whlch deslrcs to at¡thentlcate
Its llnks, and a sharsd Authentlcatlon soriver.

Transactions cllenUserver a¡e authenücated through the uge of a shared
secret whlch also is used to sncrypt any user password sent over ttre
network

lnformatlon ls sent as Attrlbute-Length-value 3.tuples, where new attrlbutes
(e.g vendor speclf,c) easlly can be added wllhout dlsturblng exlstlng
lmplementatlons of the protoco¡.

RAD¡US
(Renrote Asther¡t¡sat¡on Oiai.ln User Service)

Sliúè 7

NTSRTET
NETWORKg

A real exarnple: th¡e Nontel $SL-VPh¡

l. tho user contaet the Webcite and
ls preseded wlth a login page.

2, A Radius Access.Requeat is sent
from the SSL-VPN to the Radlus
Sefivor.

3. The Radlus soryer retums an
Access-Accept wlth adhorÞatlon
lnfo.

4. The user acce*s€s the lntranet vla
the SSL-VPN portal.

SldÞ I

it.

)
l.

J.

NSRTEL
N€TI''/ORKs

4

Attrlbute d ictionanies {FreeRad lus}.

I 7 o b b è

F¡amed-IP-Address

S¡¡dê9

ATTRIBUTE
ATTRIBUTE
ATTRIBUlE
ATIRIBUÏE
ATTRIBUIE
ATTRIBUTE
ATTRIBUTE
AÏIRIBI.IIE

Usa-Name
User-Password
CIIAP-Password
NA$.IP-Add¡ess
NAS-Po¡t
Service-Tlpe
Framed-P¡otocol

1 string
2 sting encqpt:l
3 octets
4 ipaddr
5 integer
6 i:rteger
7 iarþEer
8 ipaddr

NÍ3RTEI.
NETWORKS

!,

I

Vendor specific attribute dicticnaries

Slidê10

VENDOR Alt€@ 1872

NþRTEI.
NElwOf¡K5

VALUE Alæon-Søvice-Type dt¡66¡-lda¡lmin
VALLJE Alæon-Service.Type Alteon-Slbadmin

26 integer,{læon
I string Altoon
2 string Alæon
3 string Alæon

250
25t

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

Alteon-ServicÞT)æe
Alæon-Xnet-Group
Alteon-ASA-Audit-Trail
AIteon-ASA-Audit-Source

5

Dictionaries and eraCius

. 4l dlstlonariee laken ftom FreeRadlus 0.g.1 are stored ln
eradius/prlvldistionaries,

' These dic'tionarles ara parsed and transformed lnto the corræponding fitæ
contalnlng Erlang records, as well as Erlang lnclude flles.

. Gode that uses eradfus can choooe which dlcüonarles to load.

Slldè 11

NFRTEL
NÊÏWORK5

Exannple: an Erlang program
go(IP, Us,Iàsrwd, Sbøred, Nå$IP) ->

TrôæF6 = fmLEStr¡rSÊ) .>
io:fqna(Str ¡1¡gs),
¡¡o:nl0

m4
E =#er¿diE{ærcrs = I[Il), lgt2, Sþ¡cdll,

m-Us,
pwd=hw4
tuccfun=TæFr4
m_ip addr€$-NælP),

êradiKtaf(I
ædiutrldd_tabl6([.disrioE4¡,

'dictioE¡y_altcôr¡.,
'dictidtsry_*rîd"D,

pdm_mu(cradiwruth@)).

prií_Ëuqlæpr,
^ürih¡¡6ì

) >
io:ñma('Got îæcpt' wirh æibqrã: -p-n.,f^lribuhlt
p6(^trib¡¡t s)i

p¡irü_Hq{Ejec!
^ûibtÍrs})

->
io:6nú¿{'Cst R.jæd wiò ribfi æ -?^û",[^üih¡!ãlI
pa(tu¡¡burcs);

prùü_Esul(RÃ)>
io:fqrE('cæ -?-n",[R6l).

p6([{Kv} l^s])>
6Ê cEdi8 dicÈlokup(K) of

[^] >
a = ^¡n',[Âl*raribuæ.nærc,

b_tir(V, Á*biburc.typ.)D:

iofqn¡(' <tú foDd i¡ dicricE¡'à -!¡-ni,

Slldo 12

o

o

NþRTEt
NËTWORKS

6

Example:,..the output...

2> er:go(1192,168,128,1], "supporr', passwd. passrvd, lt92,t6g,l2g3}}).
sending Rr{DfUS request for s¡¡ppqt to { { 192,16g,12g,l }, lg 12}
gc RA,DIUS rcply Acc€pt fo(suppcr with auibures: [{ {529,194},

<<0,0,0,72>>),

{ {1872,1},

cot ,Ac¡.Dd wirh arrib{¡res, tt orãr'üi:liti¡T'r!y:'
{ {t872,1},<<t r5,l t6,97,102,10>>}l

Ascend_Maximr¡m_Tiue = 72
Altc@_Xtrct_Group ='staff

ùue

Slldê1J

o

@

NþRTEt
NËTI4/ORKS

!

I

t.
i

Extends the use of Radius to cover dellvery of accourfing
lnformallon.

. Clþnt ssnds Accountlng.Requeot contalnlng attrlbutes.

. Sewer replles wlth Accou¡¡ting{lesponse.

Radius AccountinE

Slidel4

NSRTEt
NEI}VORKS

7

Types of Accounting-Requests.

Sl¡d€ 15

NgRlËt.
NETWORKS

Accountlng OnlOff.

StartlStop accountlng lnfo for a rrser.

lnterlm-Update accountlng lnfo for a usar

Exarnple of L¡se: the Nortel SSL-VFN

. Sends lnfo about how long time a user was logged on and what
the lermlnatþn cause wag.

. Used for audlt trall logging, l,e logglng of operator lrssued CLI
commands.

Sllde 16

NþRTE¡.
NÉTWORKS

I

Ëxarnple: an Erlang prCIgram
-includ{'tictiomry_alæm}rl).

æ0->
cadius:sør(!
cndius_æ:na¡(I
cadiucload_tabla{['dictioru/,

'd¡criqa¡y_a¡têon,l I
Uscr= "tobbc",
Sæionld =42,
R = æc_¡a¡t(Usc¡, Scsionld\
I¡gn = R#ad_æcC login_riæ,
slæp(l0I
Vñû\Îüs = [(?^!Eo(L I l?Â]æon_i\$1_Âudit_Tni!

Thh h atrst!"llll,
æ_Wdat{UG, Sffi ioqId' Vcnd^rnl
slæp(to}
æ_*op(Us, Ss¡ion[4 l¡gin,

?RE^SON_LOCOUT).

@ æ_sl¿'l(Us.r, S*Id) >
SNs-rad¿æt_smñ(l
NsIP= m_ip_ad&c{}

^
= ædiu8_¡cc:rEv(I

R=sct_sio_id(
*t_us(
ñÊt_sæcn{
sct_rc_ip_adde{

sa_login_dm(^l
Næ¡PI

SrysI
U$¿rI

Sc$IdI
6adiuß_æ:a€_sta(R}
È

Slldê 1?

N&RTEL
NETWORKS

¿l

i;i
'1.

Example: the Radius accounting log

MonNov l0 l4:¡5O72003
Âer-Star-Typc = 5p

^et-S6in-T¡nc
-20

^et-S6ioÞId-'42'@ Aet-Tminac{arse - UmRcqucs
Umltf¡nc- tobbc'
N^s-IP-^dúÊss - 19'¿.1æ.12&32
Clicú-IP-^ddm - larbluelail.ffi
ôcr-UniqFsc$im-Id ='000b40c l3fil3cfla"
TimcsanP- ¡¡6¡479¡¡7

MonNov l0 l4tl4t472û3
Âat-St¡¡¡sTy¡c = Sta¡t

^r.r-SæioÞtrd
= '42'

Us-Nam-tobbC
N^S.IP-^dôqs - 192. l6t. 12832
Clicr!-lP-^ddrÉs - tre¿bllaail.m

^c{f-UniqFs.si*Id
-'ü!0b40c l3fd3cfla.

luncaanp- ¡35947637

MonNov l0 14:14:5?2(þ3

^æt-Stú¡ß-Typc
-^livc

^æt-SæioÞId='42'UçNme='tobbc'
NÂS.IP-^ddras = 192. 16f.128 32

^læon^S^-^udit-Tnil
= This h a rat!"

Clicd-IP-^dd¡rss - trmbh¡cail.cm

^et-UnìqÞSæion-Id
= "000b40c l3fd3cfl a'

Timcsarp= 106&4?@97

Slidþ 18

o

N(?RTEt
NETWORKS

?

A¡ticles iu Li¡ux Journat luly-Stp 2003,

Available via the sornceforge jungerl cvs:

Recommsnded Refere,lrces:

R¡dbs: RFC-28652866,'Ìadint'' (OReilly),

S¡loe 19

htþ://sounefo¡geneú/proJecrtdJmgerl/

N*3RTEt
NETWORKS

Lo

Getting Erlang to talk to C and G++
from ei to UBF

Hal Snyder
VailSys{ems, lnc.
hal@vailsys.com

Rick Pettit
Vail Systems, lnc.

rpettit@vailsys.com

¡

what this talk is about
. current platform at Vail Systems

. the problem: C/C++ and Erlang

. first approach: ad hoc

. second approach: ei, G nodes

. third approach: UBF

. conclusions

I

1

L

Vail Systems
. computer telephony applications service provider

. voice over lP (SlP)

. custom IVR and VoiceXML

. 2 sites, 3 million calls /day

. OTP for distributed services: LCR, CDR, Rl\ll, stiats

the problem: CIC++ and Erlang

'
ffiË'ng

systems in separate camps: C/C++ and

. conlecting the two has been eryensive in the
past

. ne.w apps: which way to go? unpleasant
either/or

. orJe_ goqLÇ/C++ cârrlp using mnesia with
minimal Erlang

1

L

first approach: ad hoc

. description

o reasons

. results

ad hoc. description

three tiers
l. c++ app
2. OTP request broker same host as C++ app
3. remoteOTP node

. ad hoc protocol - uænt through trno majorversions

request: <Id><slmclaslmclhandoff> <frFlA>
reply: <Id><reply data>

a adds I thread for heartbeat
C++, he.avy use d STL, fancy OO rarappers (functors) for callbacks

3
-L

ad hoc: reasons

. C++/STUthreads trusted

. TCP and ad hoc protocols trusted

. OTP... I'isky

ad hoc: results

. initial use: least cost routing of outbound calls

. 5 months to write and test

. 1274lines C++ source, 1521 line regression test. I year in production

. 48 million requests

. 0 enors

. 0 downtime

2.

second approach: ei, C nodes

. description

. reasons

. results

e¡, C nodes: description
tuo tiers
f . C++ dientcalling Mod,Func,Arg
2. rernote OTP node

a OTP resources already in use, d knovm "intentional" DNS names

softr¡¡are stack on C++ dient
1. C++app
2. C++ ddverwith appspecific objects
3. our C driver, generic - heartbeat, reply ndchup
4. Ericsson's ei_rpc

a each application thread calls M,F,A, r¡¡aits for response

5

f

-+-

ei, C nodes: reasons

. greater confidence in OTp

. incidental: shared lib for ad hoc method
developed build problems

. didn't want to vwite another app-specific driver

. ei_rpc uses proven protocol - OTp transport

. Ericsson wrote a lot of code for us
- OTP seruer code - erts

- C client code - ei
. no change to existing OTp seruices

ei, C nodes: results (1 of 3)
. ERL_TIcK => pthreads hell (again)
. working transactions afrer two days of coding. memory management - terms, messages,

queues
. still finding thread-related problems 4 weeks

later
. message seguencing - feels like rewriting TCp

every time we do one of these

mantra of concurrency: no shared data

¿

4

e¡, C nodes: results (2 of 3)
message sequencing with ei_rpc

setrver:
addl(Num) -) ti-uer:s]-eep(2000), Num + 1.
client:
>. /ei_rpc_c1i
coruaected to no'delGfafner.vail fd=3
0+1=?ERLTB4EOIII
l-+1=?
2+7=1
3+!=2
4+1=?
5+1=4
6+1=3
7+1=5
8+1=?

ERI TD,ÍEOUT

ERt TIMEOIIT

ERL_TTì4EOIIT

.:,.'. _Ì*'-:
I

i

I

e¡, C nodes: results (3 of 3)
. message sequenc¡ng with ei_rpc

. OTP uses PlDs as transaction lDs

. C nodes don't have real PlDs

. work-around: in ei_connect.c, delete
self->ntfrrr : fd;

from ei_reg_sendQ and ei_rpc_toQ

f,
/-

+

ei, C nodes: results (concluded)

. initial use: C++ call control engine
- OTP resource for call setup info
- integration in progress

. all interface code
- 5 weeks, so far, still debugging G
- C shim 2698 lines, 1S7l line test
- C++ app interface 433 line,T7 lines test

third approach: UBF
. description

. reasons

o rest¡lts

-€-

UBF: description
I tu¡o tiers

1. C++ server doing telephony control
2. OTP dient coordinating raork requests, resource management

a C++ server
- lots of threads for telephony RTp streams etc.
- one thread itenative TCP UBF serverforr¡ork requests

a OTP client
- r¡æb etc. distrihIed resource for command and Satus

'i'

l

!

UBF: reasons
. let us write apps in OTP instead dthreaded G++

. better security than ei_rpc

. allowvaried endpoints, e.g. Java client, C++ server

. selfdocumenting protocol, contrac{ checker

7

UBF: results (1 of 3)

initial use: call bridg¡ng engine
- OTP gets work requests from outside,

tracks resources
- C++ does outdial, patches calls

together

UBF: resutts (2 of 3)

all work so far is on C++ server
- UBF(B) grammar - 1hour

- Erlang simulator plugin - 3 hours

- flex grammar - 4 hours

- bison grammar - 8 hours

- hooks to threaded C++ app - weeks

Io
s

UBF: results (3 of 3)
UBF experience so far
' want to separate contract checkerand uBF seruer. backward lists unfriendly to pipelines - [a b c]alternative?

' simirarry' shourd semant¡c tag precede wrue it modifies?. allow altemative radix on integers _ On 1æ?

some payoff already. UBF(B) grammar/contraci is checkable/executable. Erlang simulator also heþs validate design

t

conclus¡ons
. C++/OTP interface needed, must appeal to non_OTP-zealots

. ad hoc TCp prolgco!.was very reliable, but greatinertia to repiicãi¡ng iñä;pp-roacn

' gt-lp.g SoFe inlRtementation surprises, added totoolkit but not dèrniei Cri
---'

.
.UBf - very helpful in design and earlv
imptemeniarion... rö be-ððii¡ñüðoï.''

l! -.9

links
Joe Arrns{rong's UBF site:
http: /,/www. sics. se/-i oe/vbf/ site,/home.htm]-

"DisüiMion by andrer means" ütread on erlangquest¡ons
http :,/ /wuiur. erlang. orq/ml--archive/erlano-

ERLANGS EXTERML FORIIíAT and disùihfion protocol
otp_src_R9C-0/erts/emulator,/internal doc/erl ext dÍst . txt
follorup and codeforthis pesentalion will be at
http: /Â¡¡¡w. d¡xvz zv . o rc¡,/ euc2 0 0 3

Thosc who ignore Erlang arc doonrcd to rcpcat iL

TL
10

WlartdQuickCheck

Thomas Arts, IT University

John Hugheso Chalmers University

Gothenburg

A little set theory

. RecallthatXUY:YUX?

¿{

+. i:rf':'! ir:.:r.... . :$

tt
1.

i'

:i.:

I

A little set theory...

. RecallthatXUY:YUX?

. Erlang has a sets library. Does this hold?

A little set theory

. RecallthatXUY:YUX?

. Erlang has a sets library. Does this hold?

. Property: XUY:YUX

2

A little set theory...

. RecallthatXUY:YUX?

. Erlang has a sets library. Does this hold?

. Propefy: VX.VY. XUY:YUX

A liftle set theory...

. RecallthatXUY:YUX?

. Erlang has a sets library. Does this hold?

. Property: VX:Set. VY:Set. X U Y: Y U X

3

:

I

,
I
¡.
,

A liule set theory...

. RecallthatXUY:YUX?

. Erlang has a sets library. Does this hold?

. Property: VX:Set. VY:Set. X U Y:Y U X

. In Erlang/QuickCheck:

?ronlu (x, set() ,

?roR¡t-r-(v, setO ,

sets: union(x,Y) == s€ts : union(v,x)))

A little set theory...

. RecallthatXUY:YUX?

. Erlang has a sets library. Does this hold?

. Property: VX:Set. VY:Set. X U Y:Y U X

. In Erlang/QuickCheck:
prop-union-commutesO >

?poRel.l. (x, setO ,

?romu(v, setO ,

sets : union(x,v) == s€ts: union(v,x))) .

4

Veriffing the property

12> qc:quickcheck(
setsspec : p rop-uni on-commutes O) .

Veriffing the property

12> qc:qujckcheck(
setsspec : p rop_uni on_commutes O) .

ralsffiable, after 45 successful tests:

{'@',sets, from-'list, I 17,7 rL,-4, 11, -7]]]
ok

-function c¿ll" These sets are a

couff€r€xafiple.

5

Fixing the Property

. Sets are not represented uniquely by the sets library

. ulrion builds two different representations of the
same set

equal (s1,s2) >
'l i sts : sort(sets: to_l i st(sl)) ==
I i sts : sort(sets : to_l i st(s2)) .

prop-union-commutesO >
?ponnu-(x, setO ,

?pomll(y, setO ,
equal (sets: union(x,y), sets : union(y,x)))) .

Checking the fixed property

15> qc:quickcheck(
setsspec : p rop_uni on_commutes O) .

oK, passed 100 tests
ok

6

What is QuickChesk?

. A language for stating properties of
programs (implemented as a library of
functions and macros).

. A tool for testing properties in randomly
generated cases.

Properties

. Boolean expressions + ?FoRALL + ?rMpLrrs.

prop-positive-squaresO >

?ponltl(x, intO ,x*>o=O) .

prop-1arger-squaresO >

?roml¡- (x, i nt O ,

?rMPLrEs(x>1,
x*px)).

Apreconditíon

7

What are intQ and setQ?

. Tlpes?

What are int0 and setQ?

. Types? NO!!!

. Test data generators.

- Define a set of values for test data.. .

- ...plus aprobability distribution over that set.

. Test datagenerators are defined by the
programmer.

8

Defining generators

. 'We
often want to define one generator in

terms of another , €.9. squares of ints.
. But we cannot do this by writing

N = intO, N*N

Refu¡ns atest
datageirerator,
not an integer.

Result shouldbe
a gen€ratof, not

an integer.

¡.

!

Defining generators

. 'We often want to define on€ generator in
terms of anothe\ ê.g.squares of ints.

. But \ile cannot do this by writing
N = into, N*N

. 'We
define a generator language to handle

generators as an ADT.
?ler(n, intO, return(N"N))

Bind a name to the Convart a y¿lue to a
vahæ generated. canstantgenerator.

9

How can we genetate sets?

. An ADT can only be generated using the
ADT operations.

. Choose randomly between all ways of
creating a set.

A generator for sets

setO -> frequency([
{6, ?lsr(1,I ist(inrO) ,

return({' @', sets, from_1 i st, [l]]))],
{6, ?ler(s, setO, ?ler(g, jntO,

return({'@', sets, add_e'lement, [E, s]])))],
{1, ?ler(R, function(bool O), ?ler(s, setO ,

¡.eturn({'@', sets, filter, [p,s]])))],
...1) .

weþhts ?rORru-l performs a catl
when it sees '@'

t0

A problem with random generation

. How do we know we tested a reasonable
range of cases, when we don't seethem?

A problem \Mith random generation

. How do we know we tested a reasonable
range of cases, when we don't see them?

. Simple approach: collect statistics on test
cases, so we see a summary of the test data.

. (A simple way to measure test coverage,
which is a tangled topic in its o\iln righÐ.

11

il

An instrumented property

prop-union-commutesO >

?roneu-(x, setO ,

?ronell(y, setO ,

co'l'lect(sets : size(sets : union(x, y)),
equal (sets: uni on(x, Y) ,

sets:union(v,x))))).

C-oll€ct statistics on
tfusizes sfthe
rezulting sets.

Ouþut: the distribution of set sizes

27> qc:quickcheck(
setsspec: Brop-uni on-comnutes O) .

oK, passed 100 tests
L6% 3
L736 4
vÁ2
æ66
896L

7%

6%

5%

4%

3%

7 3%L6
L2 3% L4

2%9
2%O
L96 20
u6 L0
t% 22

u6 2L
1g 18
ok13

8
L7

3% tL
3%5
n6 24

1 2

Testing concrurent programs

A simple resource allocator:
. stârtO - starts the server

. claimO - claims the resource

. freeO - releases the resource
in the client

These functions are called for their effect, not
their result. How can \Ã/e write QuickCheck
properties for them?

j

i
1¡.

i.
ç..''.i ,:,:

¿.- '

). I

i- I -:"
I

I ':,': '

L
t

Traces

. Concurrent programs generate traces of
events.

. 'TV'e
can write properties of traces - they are

lists!

13

Testing the resource allocator

clientO -> c]aimO, freeO, clientO.
cl ients(n) - spawns n clients.
system(t't) -> startO, cìients(N).

?ronnll(N,natO,
?pomll(T, ?TRAcE(3, system(n)) ,

... property of r ...))

The trace recorder

Rrmning
system

Events Trace
recorder

. 'What
should the recorded events be?

. How should we capture them?

t4

Random traces: a problem

. lVhat does ttris print?

test-spawnO >

spawn(i o, format, f "â"]),
spawn(i o, format, ["b"]) ,

Random traces: a problem

. 'What
does this print?

test-spawnO >

spawn(ìo, format, ["â"]),
spawn(i o, format, f"b"l) .

. ab - every time!

¡f

I
'l

I 5

Random traces: a problem

. 'What does this print?

test-spawnO >

spawn(i o, format, ["â"]),
spawn(i o, fornat, ["b"]) ,

. ab - every time!

. But ba should also be a possible trace - the
Erlang scheduler is too predictable!

Solution: simulate a random
scheduler

. Insert calls of event(event) in code under
test.

- Sends Event to trace recorder

- Waits for a reply, sent in randomorder
. Allows the trace recorder to simulate a

random scheduler.
. Answers question: which events should be

recorded?

I6

Simple example revisited

do(e) -> event(spawned), event(e).

?ronntt (r,
?rmcr(3 , begi n spawn(?MoDuLE, do, [a]) ,

spawn (?uoDULE, do, [b])
end) ,

co] I ect(rename_pi ds(nowai ts(r)), true)))

Simple example revisited

oKr passed 100 tests
18% [{exit, {pid,1},normal}, L$l [{exit,{pid,1},norma'l},

tevent, {pi d,2} , sparvned} , {event, {pid r 2} ,sparvned} ,

{event,{pid,3},sparuned}, {event,tpid,3},spawned},
{event,{pid,2},a}, {event,{pid,3},b},
{exit, {pid,2},normal}, \r,- {exit, {pid, 3},normal},
{event,{pid,3},b},7r\{event,{pid,2},a},
{exitn{pid,3},normal}, {exit,{pid,2},norma1},timeoutl timeoutl

T7

Simple example revisited

OK, passed 100 tests
18{ [{exit, {pid,1},normal }, tg% [{exit, {pid,1},normal},

{event,!pt{,2},spawned}, {event,tpid,Z},lpawned},'
{event,lpld,3},sparr¡ned}, {eyent,{pìd,3},sparvned},
{event,{pid,2},a}, i -{event,{pid,¡},¡}.{exit,{pid,2},nornal}, \¿,' {exit, tpid, 3},áonäa1},
{event, {pi d, 3} , b} , ,/\ {"t ent , {pi d , Zi , a} ,{exit,{pid,3},nonnal}, {exit,{pid,2},nornal},tineoutl tìmeouil

- -Pids,æoçenamed
- .- for collecting

statistþs

Trace¡ecorder times
out if no eveds happen

frran¡hrlle

A surprise!

Pid=spaun(fun0 ->
t96 l{event, {pid, 1}, spawn},

{event, tpid, 2}, spawned},
{event, tpid,2}, ok},
tevent, tpid, 1], ki'l I],
{exit, {pid, 2},ki I led},
{exit, tpid,2}, noproc},
{exit, {pid,1}, nornal },
ti rneoutl

),

event(spailn),
exit(pid,kil l),
eve*t(kilI)

No doubt there is a good reason...

I 8

Trace properties

. The resource allocator guarantees exclusion

. Instrumented code:

clientO >
event(request),
claimO,
event (c'lai med) ,
event(freeing),
freeO,
c'lient0.

Trace properties

. The resource allocator guarantees exclusion

?ronx-l(N, nat O ,
?ronnl-l(T, ?TRAcE(3, system(N)) ,
sati sfi es(t,
al ways (timpl i es (ã4ATcHEs ({event, -, cl ai med}),

next(unti I (?MArc¡rEs ({eveht, -, freeing}),
tnot(?unrcxEs({event, -, c'l ai med})))))))))

t9

Trace properties

. The resource allocator guarantees exclusion

?r'onru-l(tr¡, natO ,
?ponel-l(T, ?TRAcE(3, system(t)),
satisfi es(t,
alwa; 's(timpl i es(?MArcues({everìr,_, clainred}) ,

ne: runti I (?unrcgEs(tevent, _, freej ng]) ,''(?ulrcnes({event,_,c1aimed})))))))))

The trace T satisfies...

Trace properties

. The resource allocator guarantees exclusion

?ponru-l(N, natO ,
?rom¡-l(r, ?rRtcr(3, system(n)) ,
sati sfi es(r,
always(timpl ies(?u¡rcnrs({event,_, claimed}),

ne 't(unti I (?unrcxes({event, _, f reei ng}) ,: t (?unrcHes({event, _, claj med})))))))))

. ..it's always tnre that...

20

Trace properties

. The resource allocator guarantees exclusion

?pon*l(u, natO ,
?pon*l(T, ?TRAcE(3, system(ru)),
satisfies(t,
always(timpl ì es(?u¡rcnes({event, -, cl aimed}),

next(unti I (?mrcnes ('event,-, freeing]),
tnot(?uercnes(tever cl aimed])))))))))

...ifthe current event is claimed...

Trace properties

. The resource allocator guarantees exclusion

?ponnl-l(trt, natO ,

?FoRALL (r, ?rnace(3, system(r,¡)) ,
sati sfi es (t,
aìways (tìmpl ies(?uercxes({eveht, -, claimed}) ,

next(unti 1 (?utrcxes({event, -, freeing}),
tno i (zuarcres(tevent, _, cl ai med])))))))))

...then after this event...

I2

Trace properties

. The resource allocator guarantees exclusion

?ronRtl(ru, natO ,
?ron¡l-l(T, ?TRAcE(3, system(¡¡)) ,
sati sf ies(r,
always(t'inpl i es(?uercues ({eveñt, _, cl ajmed}),

next (unti I (?r.nrcnes({event, _, fr€ei ng}),
tnot(?MArcHEs({event c't ai med})))))))))

...¡¡ntil a &eeing event happenrs....

Trace properties

. The resource allocator guarantees exclusion

?ronatl-(n,natO,
Zronrul(r, ?rRlcr(3, system(N)),
satisfies(r,
always(ti rnBl ies(?üATcHEs ({event, -, cl ai med}),

next(unti I (?uerclles ({event, _, freei ng}),
tnot(?unrcxes({event t_, c'l aimed})})))))))

',.'.&er€"will be no åxther claimsd event.

22

Trace property language

. Based on linear temporal logtc

- Logicaloperations:
tand, tor, tnot, ?tluetles.

- Temporal operations:
always, ev€ntua1ly, next, untiì,

- Event matching operations:
?untcHts, ?AFTER, ?ttow.

A failing propefty

. The resourc,€ is always eventually granted.

prop-eventual1y_granted(N) >
?ponqll(r, ?rRlce(3, system(z)) ,

sati sfi es(t,
always(?arrrn({event, pi d, request} ,

eventual I y(n ,

tor(?t'low({event, pid2, c'l ained} ,
pi d==pi dZ) ,

?uerorgs (more))))))) .

23

A failing property

. The resor¡rce is always eventually granted. Failing fraæof 23

strysfound after

prop-eventually-granted(N) >
?ronnu(Tn ?TRAcE(3, system(2)) ,
satisfies(r,
al ways(?tprr n ({event ..

p* . .

&1 at most t{ steps

eventually(n,
tor(?ttow({event, pi d2, cl ai med},

p'id==pid2),

Endofrþ ?r4Arcxes(more))))))).

recorded trace

In progress

. Testing generic leader election behaviour

. Properties

- Eventualþ a leader is elected" even in the
presence of failures

- There is always at most one elected leader

24

Experience

. There are as many bugs in properties as in
programs!

- QuickCheck checks for consístencybetweenthe two,
helps improve understanding

. Random testing is effective at finding errors.

. Changes our perspective on testing

- Not "tvhât cases should I test?"

- But "whatproperties ought to hold?'

QuickCheck is Fun!

Try it out!

\ryww.cs. chalmers.se/^t' mhlErlangQc

25

References

. Erlang/QuickCheck is based on a Haskelloriginal
by Claessen and Hughes.

- fuiclûheck: A Lightyveight Toolþr Random Testing of
Haskell Progrøms, ICFP 2000.

- TestingMonadic Codewith Qaickcheck, Had<€ll
Workshop 2002.

- þecificøtion Based Testing with Quícl{heck,inFun of
Programing o P algrave, 2003.

- Testing and Trøcing Ftnctional Programs, in
Adr¡anced Functional Programming Surnnrer School,
Springer-Verlag LNCS, 20A2.

Questions?

L6

Answers

(The remaining slides may be used to answer
specific questions).

Random functions sre pure
functions!

b r = {ci gen(gc: f,unction(qc: natO), trO) .

#runcgc, 46 . L469i.SClr
2> e(1). Im¡okessgeilÊmio¡
8
3> e(2)
g Randoo¡csuhs

4> F(3).
3

5> r(1) Butooosistentones

I

27

Controlling sizes

c Test cases are regenerated w.r.t. a size
pørameter, which increases during testing.

prop-union_conmutesO >
?srzgo(x, resize (5o.¡1, ...))

Resetthesize
pammeta

. Set sizes no\¡/ range up to 135 elefnents.

28

^t

I

Performance Analysis with Model checking*
Extract Íng p erformance Ínforrrtat Íon from

Erlang source code

Juan José Sánchez Penas
LFCIA, University of Corunha, Spain

j uanj o@If cia . org

Thomas Arts
lT-university, Göteborg, Sweden

thomas . arts@ituniv . se

EUC 2003. Stockholm, l8th November

work partially supported by MCyT, spain, project Tlc 2002-02859
>k

¡-.

INPUT

General Approach Overview

. Given a real distributed system:

Functional requirements
Design and implementation of the system
Performa nce req u i rements

o Using techniques from formal methods:

Erlang to process algebra compiler
Process algebra tools
Model checking and graph analysis algorithms

. We want to find and fix:

Functional problems
Performance problems
Design problems (maintainability, flexibility)

1

TOOLS

OIJTPTJT

(^)

Case Study: VoDKA Server The project

. Hierarchical distributed multimedia server (LFCIA, last 3 years)

. Funded by an European Project and R, a Cable Telecommunications Com-
pa ny

I Classical VoD server requirements: Huge storage capacity, high bandwidth,
predictable (low) response tiffi€, support for a great amount of concurrent
users a nd fa u lt tolera nce

. special requirements for the VoDKA project:
downwards), adaptability and low cost

Scalability (upwards and

o Hardware: Adaptation of Beowulf Cluster architecture

o Software: Flexible distributed architecture based in Erlang/OTP platform

2

Storage

Group

Storage

Driver
(HTTP)

Monitor

Monitor

Storage

Driver
(TAPE)

Storage

Group
Storage

Sched

Storage
Driver
(File)

VODKA slave

Cache
Driver
(File)

Cache

Group

Cache

Sched

VODKA slave

Cache
Driver
(File)

Streaming

Sched

VODKA_slave

VODKA

HTTP
Streame¡

H'ITP
Frontend

HTTP
Frontend

Stream

Group

H.263

Monitor

RTP

Case Study: Hierarchical Flexible Architecture

n cache
levels

o Flexible architecture based on a hierarchy of spec¡alized levels
. Each level is composed by distributed Erlang processes

o Extensive use of generic server and supervision tree Erlang behaviours

3
EUC 2003

Case Study: Hierarchical Flexible Architecture (ll)

t¡

Agent

Storage

Group

Storage

Driver
(H]-rP)

(TAPE)

Storage

Drivcr

Storage

Gloup

Observer

Monitor

Storage

Driver
(File)

Storage

Sched

VODKA slave

Streaming

Sched

VODKA_slave

VODKA

HTTP
Streamer

SERVLETS

XSLT

HTTP
Frontend

HTTP
Frotrtend

H'ITP

Stream

Group

H.263

Monitor

RTP

Requestl
Rcqucst2(lvl())

Video On Demand Kernel Architecture

Smimoff

Moi
DD2i

MO
DDI

lookrip
lookupÂns1À)

lookup
klrkup,AnslA.t

looku¡r

ÌookupÀns(A,lì.C;

kx:kup
I

lookup,A.nst A)
f(State,MO)={DS I ,DD2 }

loukup
kroku¡r.{ns{ C)

f(State,Mo)=DS2 A) rs(ll)

N,t0

Vidôo Strqrìm
¡¡r¡r¡t¡r¡Lr¡¡-

STREAM I/O
STORAGE I/O

DSIDDI

PIPE

DS2DD2

Management Data (MO)lìes¡lonse I

HTTP SERVER

Consults

VODKA Relevant Data

Crr¡¡sults

4

1Þ.J

EUC 2003

o\

Case Study: Distributed Scheduling

o Com pletely d istributed sched u ling su bsystem :

no global state, no global decision

o Each process in the scheduling subsystem can implement:

Restrictions (nrmber of connections, maximum bandw¡dth)
Scheduling function (filtering, cache algorithms, admission policy)
Cost (state of the component and resources still available)

o We want to analyse the system:

lnformation for the 'user' of the system (R) - capacity of the system
lnformation for the designer of the system how to improve it (bottle-
necks)

5
EUC 2003

The Goal: What do we mean by performance analysis?

User point of view

o Black-box evaluation (r.quirements oriented)

System ca pacity
Com ponent ca pacity
Scenario checking

N

Developer poínt
of view

. Architecture and protocol analysis (internal de-
sign oriented)

Fi nd i ng/checki ng bortlenecks
Bottleneck summary from the program graph
Extracting/checking message protocol and archi-
tectu re
Finding required capacity for a new component

6
EUC 2OO3

OO

The Goal: Problem Explanation by Example

. Goal: Given a confíguration for the server (the processes, the storage
devices, all the restrictions, scheduling functions, and costs):

How can we extract performance information from the source code
of the system?

. We want to be able to answer questions like:

What is the maximum number of users in the system?
What is the minimum number of users such that serving any MO is not possible?
What is the minimum number of users such that serving MO1 is not possible?
How many people can watch MO at the same time? (best case)
How many people can watch MOL such that the system can still serve M02?
How many people can watch MOl such that serving MO2 is guaranteed?
Would it be better to move Mo from storagel to stora ge2?

Where should we move MO1 for being able to serve it to N users?
Why (bottleneck) MO cannot be served to N users at the same time
What are the minimum requirements for a new component

7
EUC 2003

The Proposed Tool: A Prototype (l)

sl0Rftôl r¡tL

Lo$rsr û[l bùic[ss

l¡,({w PI,¡YS

r¡x rw p$vi ¡r¡*

oòneral for¡ulâ.

Sún8rio ¡¡êly9ts

Sçsnâr1o rnaìy9i!

ll¡ts¡

0iâ3nosl ii

0ìê¡nosl 1C

0leEn0stlç

lr,i'ii;ii."".-*-

l. Tt::.-l'. I

Û iâe0oêtlr.

Sto¡agc Edlt

i il'qi li.s
',!

Ylt¡

allrt¡ lplåy(rl) pl¡y(¡1Ì

Chrcl

thort

c¡eci<

ohrcl

cân hspp¿n:

theck

\o

tõ¡o

,!po

Íax. coon€clioû9

Hâx. bandyloth

c091

Bodl ry
i Canc.l

I

a

ìyP¡

H¡r. conrgclfonS

cßt

NåIt

!ùdily ¿?ncsì

llo.J"ã

ttrröutr¡rt¡u¡

rllpìa

fEËI

rq0

B¡

t¡ü

r¡0u

i¡iõT--
r0ù0 :

611tChecl propgYlÊ! aodaìor¡otâtor tod.t

EUC 2003

The Proposed Tool: A Prototype (ll)

h\a

ti

-
:'

IEUC 2003

Í-l
l.\

The Proposed Methodology

Erlang

Source Code of the System

. Generating the full state space of the system from its configuration
o Starting directly from the Erlang source code of the system (easier with design patterns)
. The source code is already an abstraction of the real one (only the scheduling subsystem

and no resources are released)

' ¡¿CRL as intermediate step (efficient tools for generating state space). Semantics similar
to Erla ng

' A high level GUI separates the theoretical details from the users of the methodology

High Level
Performance Questions

Global Properties
Grapl'r

Analysis
(Mod. Check)

mCRL to
State Space

Configuration
(levels, devices, restrictions,...)

mCRL File tetaSErlang to

mCRL

Graphical User Interface

EUC 2003
10

Step One: Erlang to ¡,I,CRL

Configuration
(levels, devices, restrictions,.

.erl

rnodifiers

,' t,

.erl

.erl

f'-\
I-s

Erlang Source Code

with a mCRL like structure
rnCRL code with

deterministic behavior
mCRL code with

non-cleterminism in
the user processOriginal Erlang Source Code

. Compiler developed before (Thomas Arts and Clara Benac, STTT2003)

. Sytbolically evaluates the supervision tree and gener¡c servers for a g¡ven set of arguments
o Difterences between Erlang and pCRL:

pCRL has no asynchronous communication mechanism: buflers

¡ICRL has strict separation of communication and computation (without any side efflect): call-stack
¡^I,CRL has no higher-order functions, records, list-comprehension: translate to simpler code

o Clients are modeled as non-deterministic users process for avoiding state explos¡on
o &CRL has tools like a confluence analyzer that can be used to reduce the final state space

(reduction of LA-20%)

non-det.
user pfocess

builcler

etomcrl

compiler

.erl mCRI

MO List and

bandwidth

etoe

compiler

Graphical User Interface

EUC 2003
L1

Step Two: Generating State Space from pCRL

The nodes of the graphs
are the states of the system
and the transitions are

the mCRL actions
Fliding and lcduction rules

mCRL code with
non-determinism in

the user process

Whole graph of the
system behavior

Graph of the systern
with user-flicndly transitions

Reduced high-level
behavioral graph

l-\
C^)

o Standard tools for ¡^oCRL (mcrl tools developed at CWI) are used to generate the state
space

Cæsar/Aldébaran tool set is used for hiding and renaming labels, and for reducing theo

gra ph

' (For some propert¡es) we hide the internal detaits of the system, because they are not
going to be used in the next step

' Example: the state space of a two level configuration, without cache, with four devices in the storage level
and all the possible combination of MOs distributed over the devices in two different qualities, contains up
to a few million states. lts generation takes some hours and it is reduced to about one thousand states

F'

Õ

CADP
reduction

tools

transitions
rewriter

mcrl tools
instantiator

Graphical User Interface

EUC 2003
L2

Step Two: Example of a Simple Reduced Graph

l)

. Two linear levels: streaming level

and massive storage level

o Two storage devices:

Ta pe with 20M Bit/s, no si-
multaneous access

CD with 30MBit/s, 2 simulta-
neous access

. No extra restrictions than the
trivial cost functions

. Abstract a pproach for the M Os
(r1 in both, m2 and m3 in one
of them)

. Two possible qualities: L0120
M Bits/s

o Original state space of 2S4T
states and 2747 transitions, the
reduction results in the B states
and 48 transitions

¡-\

È

ID

r)

EUC 2003

,2)

13

Step Three: Extracting Performance tnformation

. Verifying global properties with a black-box approach

o Extracting the architecture from the messages

o Extracting bottleneck information

f.\
ûì o Calculating resources for a new component

EUC 2003
L4

Step Three: Verifying Global Properties (black-box)

l-\
ù\

High level properties are converted to mu-Calculus expressions

Countere-xample with performance
infor¡nation about the system

Performance measurcment of the

analyzed systern

Reduced high-level
behavioral graph Yes/No answer about a possible

scenario

o Counter-example based:

'the worst case scenar¡o in which the system reaches its maximum load':
[true,r] (not 'f ail . * ')true
'the maximum number of simultaneous users after which a next user always can be
served': [true,r] (<'fail. *')true\/<true> [,fail. *,] false)

o Existential and eventually existential
<'p1ay(.*,ü1, .*), .,play(.*, il1, .*),,,play(.*,ilS, .x),>true

o Feedback information

. lmportance of the user interface

Counter-example based

model checkine (CADP)

Graphical User Interface

logarithmic search alg.

model checking (CADP)

scenario based

model checking (CADP)

EUC 2003
15

¡--\
ì<

Step Three: Architecture from the Messages

o Can we extract the process f component architecture and the protocol of the
messages they exchange, from the analysis of the source code?

o ln the generic servers: source process, destination process, and message are
easy to extract from the analysis of the code

o We can build this kind of graphs:

{Lookup, ml, 1}
{Lookup, ml,2l

{Lookup, ml, I }
{Lookup, ml,2l

lookupAns, fail,lnl, I
lookupAns, fail, ml,2

{Lookup, ml, 1}
{Lookup, ml,2)

{lookupAns, ok, ml, l, serverl }

{ IookupAns, fail, ml, 2l

{lookupAns, ok, ml, I }
{lookupAns, fail, ml, 2}

)

Ì

SERVER 1

SERVER 2

GATEWAYUSER

EUC 2OO3
16

¡--\
fts

Step Three: Bottleneck information

o lnternal independent bottleneck: first place were we can see a fail in the
system, in any of the possible execution paths,

Stoppíng the graph generation when a fail occurs

o External/user independent bottleneck: the point in the architecture that
makes the first fails to be answered to a user request.

Graph analysis of the fails in the top level

o lnternal relative bottleneck: the part of the system where a fail in a

component is too far away from a fail in a difFerent component.

Model checkíng with formulae talking about the distance between fails

For all of them, using graph analysis tools, we can extract the table summary
with statistic information about the bottlenecks in the system.

EUC 2003 L7

f\\q

Step Three: Calculating resources for a new component

. We want to know the resources needed in order to avoid a new component
added to a system to be the bottleneck point in the architecture

o We can use the same methodology, adding to the system architecture the
new component without any resource restriction

. We compute the system capacity in the execution graph, and we extract by
graph analysis the information about the maximum number of times that
the new component is asked

o The new component can be designed in order to be able to serve all
the possible req uests that is going to receive, th us avoid ing it to be the
bottleneck

EUC 2OO3
18

)tsa

Conclusions

o We can get performance information from the source code

Case study: VoDKA, a distributed functional VoD server
We use formal methods techniques for extracting information

o We use the fact that the systems are built on top of OTP modules
and design principles in order to be able to handle complex systems with
model checking

o The methodology can be used in other distributed systems

o Some advantages against testing, tracing and simulation

EUC 2003 19

All you wanted to know about the H|PE compiler
(but might have been afraid to ask)

K. Sagonas, M. Pettersson, R. Carlsson, P. Gustafsson, T. Lindahl
lnformation Technology Department, Uppsala University, Sweden

hipe@csd.uu.se

ABSTRACT
We present a r¡ser-oriented description offeatures a¡rd char-
acteristics of the High Perforr¡ra¡rce En¡,eNc (HiPE) native
code compiler, which nowadays is part of Erlang/OTP. In
particular, we describe conrponents a¡rd recent additions to
the conrpiler that improve its perforurance a¡rd exteld its
functionality. Ilr addition, we atteurpt to give sorte recort-
urendations on how users caü get the best out of HiPE,s
perfonnance.

I.. INTRODUCTION
Duúng the last few yeârs, we l¡ave beel developing HiPE,

a high-performance uative code courpiler for En¡,¡,N<;. HiPE
ofiers fle:<ible, ûne.grained integratiol l¡etv¡een interpreted
and native code, and efrciently supports features crucial for
EN,ANG's applicatiou domain such as liglrt-weigirt concur-
rency, HiPE exists as a üew component (currently about
80,000 lines of En¿rxc code and 15,0O0 Lines of C a¡d as-
sembly code) whidr nowadays is fully integrateci with Eric-
sson's Erlang/OTP implementation; in fact, HiPE is avail-
able by default in the open-sou¡ce version of R9. The HiPE
compiler currently has back-ends for UItTaSPARC machines
running Solaris a¡d I¡tel x86 rrachines running Linux or
Solaris.

The a¡chitecture a¡rd desigu decisions of HiPE's SPARC
aud x86 back-ends have bee¡r previousþ described in [5]
aud [11] respectively. A brief history of HiPE's develop
ment appears in [6]. As perforrrance evaluations in these
reports shov¡, HiPE considerably improves the perforrnamce
cl¡a¡acteristics of En¡,¡Nc programs, a¡rd on srnall sequen-
tial progra.urs ruakes Erla.ng/OTP corrpetitive i¡r speed to
implenentations of other 'si¡nila¡' functio¡¡a.l languages sucir
as Bigloo Scheme [13] or CML (Concurrent SML/NJ [12]).

Perfor¡nauce evaluatiou aside, all the above r¡reutioned r+
ports address quite technical compiler a¡rd runti¡ne system
implementatiol issues wlúch rnost probably a¡e not so infor,
mative for En¡,¡Nc prograrnmersi who are simply interested
in using HiPE for their everyday application developnrent.

Per¡nission to make digiøI or hard ccpies of all o¡ pat of this wo¡k fo¡
personal o¡ classroom usc is granted without fec providcd thât copies a¡e
not made or distribuæd for profit or commercial advaatage and that copies
bear tlris notice a¡d the firll citatio¡ on the frs page. To corpy otherwise, ø
rcpublish, to post otr serv€ts or to r€disFibutc to lists, requires prior specifc
peimission and/or a fec.
Erlang Workshop'03 29/081203,\Jppsala, Swedcn
Copy¡ishr 2m3 ACM I-58113-772-9 /03/08 ...$5.00.

To arneliorate this situation, the currerrt paper is targeted
towa¡ds HiPE users. Its aiurs are to:

1. descriÌrc features - a¡rd so¡netir¡res secrets - of tire
HiPE conpiler that a¡e of inte¡est to its users;

2. introduce recent and planned additions to the HiPE
conrpiler in a way that focuses on how these ¡rew fea-
tu¡es affect users (i.e., without obfuscating their pre.
seltation by getting deep into tecl¡nical details); a^nd

3. give recornrrrerrdations orr how users can get the best
out of HiPE's performa^uce.

To rna.lre the paper relatively self-contained and provide
suficient co¡rtext for the rest of its conterts, Section 2 be
gils by overviewilg HiPE's current ¿¡¡chif,eçf,¡¡¡s, thel dç
scribes basic usage, courpiler options a¡¡d recent iruprove
ments, a.ud finalÌy presents soûte extensions to HiPE's func-
tiorraJity which a¡e currently underway arld will rnost prob.
ably be included i¡r release R9C. Section 3 offers advise on
HiPE's use, followed by Section 4 vr¡hich revea.ls a¡d doc-
u¡nents lirnitations and the few irrcornpatibilities that cu¡-
rently exist between the BEAM a¡rd the HiPE compiler.
Filaliy Sectio¡ 5 briefly wr¿ps up.

We warn the reader that the nature of certain ite¡ns d+
scril¡ed irr this paper is volatile. Some of thern a¡e des-
tined to cha.nge; hopefrrlly for the better. HiPE's homepagel
might contain a more uptedate version of this document.

2. HIPE COMPILER: A USER-ORIENTEI)
O\rERVIEW

2.1 IIiPE's architectur€
The overall structure of the HiPE system is shown in

Fig. 1. The Ertarg/OTP compiler frst performs maßro pre-
processing, parsing, ald so¡ne de-sugariag (e.g., expanding
uses ofthe record synta:<) ofthe Enr,tNc source code. Afber
that, the code is rewritten into Core Erl".g [2, 1]. Various
optiruizations such as constâ^rt folrìir¡g, and (optiolat) func-
tion inlining, a.re performed o¡r the Core Erìang level. After
this, the code is again rewritten into BEAM virtuat marchine
code, a,nd soure further optimizatiols a¡e done. (The BEAM
is the de facto standard virtual machine for En¡,¡t¡c, devel-
oped by Erlalg/OTP. It is a very efrciently implemented
register machine, vaguely reminiscent of the WAM [14].)

The I{iPE compiler has traditionally startat from the
BEAM virtual uacldne code generated by the ErIang/OTP

!_

t http://www.csd. uu.se/projects/hipe/

u¡l¡ng

BEAM
BJ¡tecode

BEAM
t)âtã

Native
he

Frerrd l|c sNbô¡À

CoR Erhng

8UM

SAÍtboU.
BEATI

Icode

RTL

SPÁRC xa6

ErlanglOfP Conpilu HiPECoæ Erhng Coûpib¡

Memoty
BEAT

HTPE
,-@.hÌ

ErlnglOTP Runllnefi#n H1PEhnpiÞr

Figure 1: Structr¡¡e of a HiPÞenabled Erlang/OTp
system,

courpiler. The BEAM code for a single fiurction is fi¡st
translated to lCode, al assembly-like la^uguage witir a high-
level fulctio¡rai seura¡rtics. After optinrizations, the ICode is
tra¡rsiated to RIL ("register-transfer language ') , a low-level
RiSGlike a.ssembly lauguage. It is during this translation
that ¡r¡ost Erla,ng operatio¡rs a¡e tra¡slated to rrrachin+Ievel
operations. After optimizations, the RIL code is tra¡rslated
by the backeud to actual machine code. It is during this
tra¡slation that the rrrâ,ûy teutporaÐ¡ variables used in the
RTL code a.re mappal to the hardware registers and the
runtirne stack. Finally, tl¡e code is loaded i¡rto the ru¡ltime
systerr.

The Erle¡g/OTP runtime system has been extended to
associate ¡rative code witir fuuctious a¡d clasures. At aly
given poilt, â process is executing either i¡r BEAM code
or in ¡rative code: we call this tlrc mode of the process. A
mode suitch, occurs whenever control transfe¡s from code in
oue mode to code in the other rnode, for instance when a
BEAM-code function calls a nativ+code function, or when
the nativ+code fu¡rction returns to its BEAM-code caller.
The runti¡¡re systeur ha¡rdles this tra.nsparerrtl¡ so it is ¡rot
visible to users, except that the native code generally exe-
cutes faster.

A r¡ew featu¡e, described ñ¡rther below, is that the IIiPE
compiler can compile directly from Co¡e Erla.ng. When used
in this way, the courpiler courpiles a \¡/hoje urodule at, a tilre,
and performs global analyses and optimizations which a¡e
signiûcantly nore difrcult to perfonn (and thus not avail-
able) in the tra¡litional ¡node.

22 Basic usage
The normal v/ay of usûìg tl¡e IIiPE native code compiler is

via the ordinary En¡,¡,N<; compiler interface, by adding the
single compilation option rative. Flom the Enr,amc shell,
using the c shell ñurction, this looks as follows:

1> c(ny-nodu1e, [native]).
This will cornpile the flle ny-nodule. erl to native code a¡<I
Ioad the code into utemory, following the nornral ¡noduie
versioning se¡nantics of En¡¡xc.

CaJiing the sta¡lda¡d compiler fu¡rction coupile:f i1el2
(which by default does not load the resulting code) will pre

duce a .beam file that co¡rtai¡rs l¡oth the rrative code a.ntl tlrc
nonnal BEAM code for the conpiled nrodule; e.g.:

coarpile :f ile(ny-moduIe, [native])

produces a file ny-module.beam which can be loaded later.
Wre¡r a .bean flle is loaded, the loader will f¡st attenrpt
to load native code, if the f.le contai¡s native code that is
suital¡ìe for the iocal systen, a¡d only if this fâils is the
BEAM code loaded. In other worcls, the .beam files rnay
be "fat", containing code for a.ny nurrber ofdifferent target
¡nachines.

The compiler cal also be called frorr the o<ternal prograilt
erlc (wbich indirectly ca.lis the conpile:f i1el2 functiou).
E.g., from a UND(co¡nrnand li¡re shell or ¡na&e.flle:

erlc +trative ny_noduIe.erl

produciug a fi.le ny-module . bean.
Additiona.l compiler options uray be given between the

erlc co¡nurand a¡d the file ¡anrs by prefixing them with +.
Quoting may be recessary to avoid expansion by the shell,
a.s for exampie in:

erlc hative +, {hipe , [verbose]] , ny_rnodule . erl
Generatiltg native code an<I ioarling it on-the-fly into the

systerr is possible eve¡r in ca.ses when the En¡,AN<; source
code is not available but the .bea¡n file (corrtainirrg BEAM
bytecode) exists. This carr be dorre for whole modules using:

hipe : c (ny-¡odule)

or even for individual functions {U,r,A} using:

hipe:c({M,F,Á}).

The functio¡r hipe:c/2 can also be used, which takes the list
of the HiPE conpiler options as its second argument.

Finall¡ sbould you forget everythi.g else, you can always
type the following from tl¡e En¡,¡,¡.rc; shell:

2> hipe:helpo.

which will display a sÌÌort user's guide to the HiPE compiler.

23 IIiPE compiler options
For the âverage user, iå should not be necessary to give

any extra i¡rformation to the compiler tha¡ described in the
previous sectiot- However, i¡r some cases it nray be useful
or eveü necessâxy to control the l¡ehavior of the native code
corrpilation. To pass options to the IIiPE cornpiler via the
nonnal En¡.lN<; cornpiler interface, these must be wrapped
i¡r a ter¡n ihipe, . . .). For s¡¡mple:

3> c(ny-moduì-e, [native, {hipe, lverUose, o3]}l).
will p¡+s the flags ve¡bose a¡rd o3 to the HiPE compiler.
Note that if only a single option is givel, it does üot hâve
to be wrapped in a list, as in e.g.:

c(ny-nodule, [native, {hipe, verbose}J).

The urain useful options are the followilg:

o0 , o1 , o2, o3 Selects the optinizatiorr level, o0 being the
Iowest. The default is o2. Upper case versions ofthese
options also exist, i.e., 02 is an alias for o2, etc.

A

verbose Enables HiPE conpiler verbosity. Useful if you
wa¡rt to see what is going ou, iderrtify fuuctions whose
native code compilation is possibly a bottleneck, or
just check that the native code compiler is running.

If a module takes too long tirre to courpile, try using a
lower optimization level sucl¡ as o1. You ca¡ aiso try keep
ing the curreut optirnization level, but speciûcally select the
faster but less precise lineor s<:a¡t algorithm for register al-
locatior¡ [7]. (Register aJlocatio¡r is one of the urajor bottle-
necks in the optimiziug native code compilers.) This is done
by adding the option {regalLoc,linear-scan}, as in:

c (ny-nodule, l{Aipe , [{regalloc , linear-scan}J }l) .

If you wish to always use certain HiPE compiler options
for some particular rnodule, you caJr place them in a cornpile
directive i¡r the source fiie, as in the folìowing line:

-conpJ.Ie({hipe, to11 }) .

Noúe: options early in the Iist (i.e., further to the left)
take precedelce over later options. Thus, ifyou specifu e.g.

{hipe, [o3, {regalloc,linear-scan}J}
the o3 option will over¡ide the regalloc option with the
more adva¡rced (a^nd more dem¿¡¡rling corrpilation-tirne wise)
olievel iterated coalesci.g register allocator. The correct
way would be:

{lipe, t{rega1Ioc,linear-scan}, o3J}

wlúch specifies o3-levei optinizatiors but with fast register
allocator.

More infonnation on the options that the HiPE compiler
accepts carr be obtaí.ed by:

hipe:help_oprions O .

2.4 Recent improvements

2.4.1 Local tlpe propagator
Enr,.a,tc, þsing å, dyna.mically typed language, often pro

vides the deveìoper with freedo¡¡¡ to experinent with data
structu¡es whose haudlilg is possibly still incomplete, a.nd
rapidly prototype applicatiorrs. However, this also mea¡rs
that a lot of run tiure is spent iu perforurùrg type tests (thât
usually succeed) to ensure that the operations performed are
ureaningful, e.9., thât â progrâ¡n does not accidentally suc-
ceed i¡r dividiug a float by a list or taling the ûfth element
of a process ide¡rtiûer.

Orre of the recent a¡lditio¡rs to the HiPE cou:piler is a locnL
tgpe propagator wlúch tries to discover âs nuch ofthe avail-
abie (per-function) type information as possible at compiie
tir¡re. This informatio¡r is then propagated throughout the
code of the fu¡rction to eliminate redunda¡rt type tests and
to tra¡sform polyurorphic primitive operations that operate
orr generai types i.uto faster operations that are specialized
to tire type of operauds actually being used.

Si¡rce the type propagator is a recelt artditio¡r that is still
un<ìer development and fu¡ther extersions of its ful.ctiorral-
ity are underway, we have not yet co¡lducted a proper eval-
uå,tión of tÌre time performancè improvements th¿t one c¿¡
expect frour it in practice. However, preliminary nurnbers
indicate that the size of the ¡rative code is noticeably re
duced, sornething which in turn has positive effects on the

later optirnizatiorr passes, ofte¡r resulti¡rg in courpile tirnes
even shorter tha¡r those of the HiPE conrpiler i¡r RgB.

The type propagator is enabled by default at the rror¡nal
optirnization level o2 (or higher).

2.4.2 Handling offloats
I¡r the rur¡time system, ator¡ric En¡,¡t{c values are repre-

sented as taggal 32bit words; see [10]. Whenever a tagged
vaJue is too big to fit into ole r¡rachine word the va.lue is
boxed" i.e., put on the heap with a he¿der word preceeding
it which is pofuted to by the tagge<ì value. Floatilg point
¡¡urrbers have 64bit precisiou a¡rd are therefore typically
boxed. This ¡nea¡s that whenever they need to be used as
operalds to a floating poilt operation, they need to be u¡r-
troxe<l, and after the operation is perfonned the result rnust
ther¡ be boxed and stored back on the heap.

Tìo avoid this overhead, starting frour RgB, the BEAM
has l¡een enhanced with special floating point instructions
that operate directly on ultagge<Ì values. This has sped up
the handliug of floats corsiderabiy since the nu¡rber of box-
ing/unboxing operatiors a¡e ¡educed. However, si¡rce the
BEAM code is interpreted, floating point arithmetic is still
not taking advantage of features available at the floating
poirrt unit (FPU) of the target architecture, such as rna.
clúne registers. More specificall¡ the operands a.re put into
the FPU, the operation is perforrned, a¡r<i then the result is
taken out a¡rd stored in urernory.

In the HiPE compiler, floating point values are mapped
to tl¡e FPU a¡rd a¡e kept there for as long as possible, elirni-
nating even ¡nore overhead frour floating point calculations.
In [8] we have described i¡r detail the two back-end specifc
schemes used i¡r the rnappilg. Our perforrnance courpari-
son shows that HiPF-compiled floating point iatensive code
ca¡r l¡e colsiderably faster than floating-point aware BEAM
bytecode. Table 1 gives a.u idea of tÌ¡e perforrnance improve
r¡rents that can be expected across â ra¡ge ofprogr¡.rns ¡¡¿-
rripulating floats.

To rnaxi¡nize the gain of the floating point instruction the
user is encouraged to use âppropriate isJloat/l gua¡ds
that currently cour¡¡rur¡icate to the BEAM conpiler the float-
irg point type ilformatiou2 ancl to try to keep floating point
arith¡netic instructions together iu blocks, i.e., lot sptit them
up by inserting other instructions that ca.n just as well be
perforned before or after the ca^lcr¡latio¡rs.

The ¡nore eftcient, ta,rget-speciûc compilatiol of floating
point arithmetic is enal¡led by default starting at optimiza.
tio¡r level o1.

2.4.3 Handling of binaries
Proper support for the bit syntax [9] was introduced into

ErIang/OTP in R8B. Initially, the HiPE compiler used a
rather naiVe compilation sclÌe¡rre: binary matching instruc-
tions of the BEAM were tra¡¡slated into calls to C fr¡nctions
whicll were part of the interpreter's supporting routhes. As
a result, the HiPE-compiled code was actually slightly slower
tha¡l the BEAM code because of costs i¡r switching l¡etween
native a¡rd interpreted code (cf. also Section 3). To remedy
thìs, we proposed a.nd irnplerrented a scherne that relies o¡¡
a purtial tnn¿slutàon of binary nratching operatioas. This
$cheme ideltifes special "cotrturon" câse$ of binary match-
2E*pli"itly writing such guards will become uanecessar¡r when
the giobaì tl¡pe ana.lysis gets fully integrated in HiPE; see Sec-
tion 2.5.2.

3

Table 1: Performo-ce of BEAM and IIiPE in R9B on prograÍrs manipulating floats (tirrres in rrs)

Belch¡¡ra¡k lJt;AM ÈliPE speedup
tloat-bm
ba¡nes-hut
ft
wings
faytfacer
pseudoknot

14800
10250
t6740
8310
9i10
3110

4040
4280
8890
7370
8500
L440

3.66
2.39
1.88
t.L2
1.07
2.16

(a) Perfonnance on SPARC.

ings and tra¡slates these corrpletely into native code, while
the renraining 'ilücourmon" cases still call C fu¡rctio¡¡s in
order to avoitl extersive code bloat. The implerrentatiorr of
this courpilation scherne is described in [4] ald is include<l
i¡r the HiPE conrpiler as of the R9B release of Erlang/OTP.

The perforura.nce of this scl¡eme o¡r severa.l different bench-
rna¡ks involvilg binaries is sllowrr i¡r Table 2. The first
three benchmarks test the speed of binary matching: the
bsextract benclrrna¡k ta&es a binary contaiuing a GTP_C
message â.s input, extracts the iufonnatio¡¡ from the u¡es-
sage header, and returns it. The bsdecode benchnark is
si¡nila¡ but rather tha¡¡ simply extracting a binary, it also
translates the enti¡e message ilto a record. TI¡e ber_decode
benchmark, generated by the ASN.I compiler, pars€s a bi-
nâry, The iast two benchmarks, bsencode and ber_encode,
test the speed of binary creation rather than ruatching.

As expected, speedups âxe obtaired wherr there is infor-
matio¡r available at conpile time to identify cases u¡hicl¡ ca¡t
be conrpiled fully to uative code. Such, for exa.rrple, is the
c¿se when the binary segurent sizes â,re coûstant or wher¡ it
is possible to deten¡rine statically that a segrnent of a bi
rra.ry starts at a byte boundary. Irr otÌ¡er words, to achieve
best tinre perfonnalce, it might be a¡lvisable to use so¡¡re
extra space to guaJautee that each eìement starts at a byte
boundary. For exarnple, if one wa¡ts to use bi¡laries to de
uote 16 integers where each integer needs 7 bits it is possible
to pack them so thai they orùy take up 14 bytes. If each
integer is put a byte boundary, tire binary will ta&e up rrore
space (16 bytes), but the binary matching operations will.
be perforrned faster.

The HiPE courpiler option inline-bs e¡labies native code
compilation of the bit synta:<. This option is selected by
default at optiurization level o1 or higher, and the only rea,
sons for a user to disable it is either to test its perforrnamce
effects or if code size is a serious concern.

2.5 Planned extens¡ons for the near future

2.5.1 Better translation of binaries
The cornpilation sche¡¡¡e introduced in RgB rnarle binary

matching faster, but r¡rore work has since bee¡r done to ¡nake
it even faster. I¡r the upcoming R9C release, a rew scheûÌe
for compiìing binary rnatching will be included. Iìather than
relying on a partial translation and havhg BEAM be in con-
trol, the errtire bina^ry uratching operatior wiil fali in ttre
ha¡ds of the ¡rative code compiler. This has made it possi-
bie to avoid several unrrecessary mode switches. With this
sche¡le rrlost binâry rrlâtching code will ¡na^ke no calls to the
C functions which a¡e used strictly as a last resort whe¡r a

Ber¡ch¡na¡k lJ.blAM ¡tiPE speedup
tloat-bm
barnes-hut
ft
w¡ngs
faytracef
pseudoknot

1930
1510
2830
1160
1200
380

2.57
2.57

1.95
1.36
7.12
2.7r

750
600

1450
850

1070
140

(b) Perforura"nce orr x86.

single operatiorr becoures very cornplex.
Irr additio¡t to tiris a new scherre to conrpiie binary cre-

ation has been deveioped. It is developed in a sirrila¡ fashion
to th.e binary rratching scherre by changing c¿Ìls to C fu¡rc-
tions into specialized ve¡sio¡rs of these fu¡rctior¡s that a¡e
theu trauslated into native code.

As seeu in Tabie 3, the perfonnânce of HiPE compiled
code has been improved substantially. The speedup for the
rnatching berrcluna¡ks ranges frorr 1.14 tirnes comparaì to
BEAM. Tire speedup for be¡rchrna¡ks that create bi¡laries
is rrore tiran 2 tiures on x86 arrl more tha¡l 1.5 tirrres o¡r
SPARC.

In con¡rection witÌ¡ the effort to courpile directly from Core
Erlang to ¡¡ative code a project has started to further im-
prove the cornpilation of birrary rnatching as new possibil-
ities open up when the structure of the matchi¡rg becornes
visible to the corrpiler. The result of this project will likeiy
be availal¡le i¡l tl¡e R10 release.

2.5.2 Global type analysis
As described in Section 2.4.1, the HiPE compiler now in-

cludes a local type propagator which works on individual
functions. However, if no a,ssumptiorrs can be rrade about
the a^rgurnents to the functions, only the most basic type
infonnation ca¡ be found. We have therefore inplemented
a global type onaJyzer which processes a whole module ¿t a
tirne. It can generally find ¡nuch more delailed type infor-
mâtiorr, but the precision depends to a large exte¡rt o¡r the
prograrnming style ofthe a.lalyzed code. Sitce an exported
function can potentialiy be called fronr a¡ywhere outside the
ûrodule and lrith any inputs, it is not possible to ma,ke any
assumptions about the types of the a^rguments to exported
functious. The best precisiou is arhieved when oniy the nec-
essary interface fuirctio¡rs are exported, antl the code does all
or rrost of its work within the sa¡¡re module. When module
boundaries are crosseti, type information is lost. For urost
built-in functions, however, we cårt know what types of data
they accept ås input a¡rd what types they return,

We are currently working on how to take advantage of
the gathered type itforrnatiorr (in combiration with the Io-
cal type propagator). First of all, we a.re often able to re-
urove uünecessary type checks f¡out the code. Second, it is
sometimes possible to avoid repeatedly tagging and untag-
ging values (cf. Section 2.4.2). Third, giobal type analysis
¡na&es it possibie to avoid creating tuples for retuming mul-
tiple values from a function, wh.en the result of the function
is always immediately unpacked - ùrstead, multiple values
cau be passed directly in registers or on the stack.

Note tlrat the globat type analysis ts not a type checleer

IJencluna¡k BEAM IIÍPE speedup
bsextract
bsdecode
ber-decode
bsencode
ber-encode

13380
26060
13980
16960
18150

4060
27110

5720
11070
9510

3.30
7.23
2.44
1.53
1.91

(a) Performance o¡r SPARC.

or t'ype ànÍereruæ sgstem, i.e., the user is ¡rot aÌ:le to spec-
ify types (because the user ca¡rnot be conrpletely trusted),
and furtl¡ermore, the fact that an input pa.rameter is always
usal as e.g. ân iateger does not mea¡r that the passed value
wüi aJways Ûe a.n integer at rulti¡ne. Indeed, the curre¡rt
inrpleruentation does not even give a warning to the user if
it detects a type error il the prograrn, but just generates
code to produce a runtime type error. This might change
in the future, to ma.ke the type a,nalyzer useful also as a
progr¡m¡¡i¡g ¡oo1.

2.5.3 Cornpílation frorn Core Erlang
A new featu¡e of the IIiPE compiler is the ability to cour-

pile to native code directly from the En¡,ntc source code,
(i.e., instearl of starting with the BEAM virtual ¡uachine
code, which wa,s previousiy tire onìy way). This is dor¡e
by generating IIiPE's i¡rtenuediate lCode representatio¡r di-
rectly from the Core Erla.ng code which is produced by the
Erialg/OTP conrpiler. No BEAM code ¡reeds to have been
previously gelerated. The advantages of this âre better con-
trol over the geuerated code, and greater ability to ûrake use
of metadata al¡out the prograrn gathered on the source level,
such as global type analysis i¡¡fon¡ratio¡r.

Currentl¡ the way to do this is to add an extra option
core when courpiling to native code:

c(ny-¡oduIe, [¡ative, core]).

However, this rnetirod of courpiling is not yet fully functiotal
in the coming R9C relea.se, in that sorne progr¡mning con-
structs a¡e not yet hatdled properly. We intend to have
cornpilation frorn source code courpletely iurplerrented in
release RLO.

We expect that il the future, cornpilation frour source
code will be the default metliod of the IIiPE compiler. The
compilatior from BEAM will however stili be available, for
those cases whe¡r the source code is ¡rot available, or it is for
other reâsons not possible to recourpile frorn the sources.

Bencl¡r¡a¡k lJ¡lAM HiPll speedup
bsextract
bsdecode
ber-decode
bsencode
be¡-encode

r4500
13490
16500
fi54A
21870

7350
1297A
9200

16030
17420

1.97
7.04
7.79
1.09
1,.26

ISelchm¿¡k BEAM I{iPE speedup
bsextract
bsdecode
ber-decode
bsencode
ber-encode

r4700
13670
i5610
16790
22564

3560
778A
6070
7290

10860

4.13
1.76
2.57
2.30
2.08

(b) Perforura.nce o¡r x86.

3. RECOMMENDATIONS ON HIPE'S USE

3.1 Improving performance from native code

o If your application spends most of its time in know¡r
parts of gour code, and the size of those pa.rts is rrot
too iarge, then compiìing those parts to native code
will maximize performance.

r La"rgish sslf-sonfai.ed ûrodules with narrow external
ilterfaces a,llow the compiler to perfonü useful urodul+
global type analysis and fu¡rction inlining, whel corn-
piling via Core Erlang.

o Wbile very deep recursions axe not recommended, they
a¡e u¡uch more efficient in ¡rative code tÌ¡a¡¡ in BEAM
code. This is because the IIiPE runtirne system in-
cludes speciûc optiurizatiorrs (generutional sfutt* s<nn-
ning [3,11]) for this case.

o Monomorphic functions, frurctions that are l¡rown to
operate oo ¿ sirrgl€ type of data, are more likely to be
tra¡rslated to good code tha¡r polymorphic fu¡rctions.
This cau be achieved by haviug gua.rds ir¡ the func-
tion hearls, or by avoÍding to export the fu¡rctions a¡rd
always calling the¡n with para.ureters of a single type,
known through guards or other type tests.

. Wlrer using floating poilt arithrretic, collect the a¡ith-
metic operations in a block and try to avoid breaking
it up with other operalions; it particula^r try to avoid
calling other functions. Help the analysis by using the
guard isJloat/l. You night still beneût from this
even if you do not ma,nage to keep the operations in a
block; the risk of losing performance is pirrim¿1.

o Order function and case ciâuses so that the cases that
â¡e more frequent at runtiÍle precde those ihat a¡e
less frequent. This ca¡r help reduce the number of type
tests at ru¡rtime.

Thble 2: Performo.ce of BEAM and HiPE in R,9B on progra¡ns mÐnipulating binaries (times in ms).

Be¡rchrna¡k IJ¡ìAM HiPE speedu
bsextract
bsdecode
ber-decode
bsencode
ber-encode

15540
27070
14350
t42ro
ß72A

8450
26860
9130

15870
16280

1.84
1.01
1Ê'

0.90
i.15

(a) Perfonrnnce on SPARC. (b) Perfonna^nce on x86.

Table 3: Perform¡nce of BEAM a¡rd HiPE in a pre.release of RgC on progra¡¡rs manipulating bina¡ies. ¡Ü

5

3.2 Avoiding performance losses in native code

e If the rnost frequently executed cocle irr your appiica.
tion is too large, thel compiling to uative code rnay
give only a sn¡all or even rregative speedup. This is
because native code is larger that BEAM code, and in
tlris case uray suffer fro¡n excessive cache r¿isses due
to the small caches most processors have.

¡ Avoid calliug BEAM-code ñ¡rctions frorn nativecode
functions. Doing so causes at least two mode switches
(one at the call, a.nd one at the ¡eturn poilt), and these
a¡e relativeþ expensive. You should rrative-corrpile
¿Il code in the rnost frequentiy executed parts, includ-
ing Erla^ng libraries you call, otherwise excessive mode
switching may cancel the perforurance irnproveurents
in the nativçcourpiled parts.

¡ Do not use the -conpile (export_aLI) directive. This
reduces the likelihood of fu¡ctions beiug inlined, and
rnakes useful type analysis iurpossible.

o Avoid crossing module bounda¡ies too often (rna.king
¡emote calls), since the compiler ca¡not ma^ke any âs-
srnptions about the ñuctions being callal. Creative
use of tlte pre-processor's -include a¡ltl -d.efine tli-
rectives may alìow you to cornbine perfonnance a.nd
rnodular code.

o Avoid using 32-bit floats when using the bit synta>c,
since they always require a mode sc¡itch. It is a^lso

costly to ¡natch out a biuary that does not start at â
byte bouadary, mainly because this requires that all
the data of the binary is copied to a new location. If
on the other hand a binary starting at a byte bou¡rd-
ary is matched, a suLbinary which only contâi¡s a
poiüter to the data is created. Wre¡r variable segrnent
lengths are used it is beneficial to have a unit that is
divisible by 8, because this mea¡s that byte bouldary
alignment information can be propagated.

33 Cases rvhen native code does not help

¡ Be awa¡e that a.lmost all BIF calls end up as calls to
C functions, even in native code. If your application
spends most of its ti¡ne in BIFs, for irstance âccessing
ETS tables, then ¡rativçcornpiling your code will have
little impact o¡r overall perfonnauce.

o Sinila¡ly, code that simply sends and receives r¡r+
sages without performing signiûcant â,¡nou[ts of co¡n-
putatiou does not beneût frour compilation to ¡¡ative
code; again, this is because the ti¡¡e is ruostly spent in
the runtime system.

4. THE TRUTH, TITF'WHOLE TRUTH,
AI\D NOTHING BUT THE TRUTII

Signiûcant work has been put into ma.king HiPE a ro-
bust, "conmercial-quality" compiler.3 As a r¡ratter of fact,
we Ìrave rnostiy tried to follow BEAM's decisiors in order
to preserve the observable behavior of En¡,¡.r{c ptogrâ,ürs,

3At th" time of this writing, July 2ft)3, we are not aware of any
outstanding bugs.

eve¡r if that occasionally rneant possibly reduced speedups
in performance. Still, a couple of small difrerences witir code
produced by BEAM exist, ald the user should be awa¡e of
so¡ne lirritatio¡rs. We docunrent thern below.

4.1 Incompatibilities with the BEAM comp¡ler

o Detailed stack ba¿ktraces are currently not gerrerated
from exceptions in native code; however, where possi-
ble, the stack tr¿ce cout¡ins at least the functiou where
the er¡or occu¡red. Performing pettenr matching ol
stack backtraces is r¡ot recornr¡rended in gerreral, re
ga¡dless of the compile¡ þsing used.

o The old-f¿shioned syntax Fun = {M,F}, Fr¡¡(. . .) for
higher-order cells is rrot supported in HiPE. 11 ou¡
opilion, it causes too ma.ny complications, including
code bloat. Proper funs should be used ilsteari, or
explicit calls I{:F(. . .).

¡ On the x86, floating-point computations may give dif-
ferent (rnore precise) results in lative code tha¡r in
BEAM. This is because the x86 floating-point unit
internally uses higher precision than the 64bit IEEE
format used for boxed floats, and HiPE often keeps
floats i¡r the floating-point u¡rit when BEAM would
store then irr meurory; see [8].

42 Current limitations

o Once i¡serted into the runtir¡re systetrr, native code is
¡reve¡ freed. Evel if a ilewer verÉ¡ioü of tl¡e code is
loadal, the okl code is also kept a¡ound.

o The HiPE corrpiler recoglizes literals (consta.ut terms)
and places the¡n in a special literals ¿re¿. Due to a¡-
chitectu¡al limitatious of the current B¡]ang/OTp run-
time system, this is a single area of a fxed size deter-
mined when the ru¡rtime system is compiled. Loading
a lot of native code that has urany coustant terurs will
eventualiy cause tlÌe literals a,rea to fill up, at which
point the ru¡rtit¡re systen is termi¡rated. A short-terrn
fix is to e<tit hipe_bifO.c a¡d expìicitly rnake the lit-
erals a^rea larger.

5. CONCLUDING REMARKS
We have preseltal a r¡ser-oriented description of featu¡es

arìd châ¡acteristics of the HiPE native code compiler, which
rowadays is integrated in Erlang/OTP aud easily usable by
Enr.lwc application developers a¡rd aficionados. We hold
that HiPE has a lot to offer to its users. Some of its beneûts
a¡e described in this paper. Others, perhaps more exciting
oues, await their discovery.

One finaì v¡ord of advice: HiPE, like any compiler, ca.n
of course be treated as a "blark-box", but we generally rec-
ommend to creatively ocplore its options and flexibility and
a¡ld color to your life!

6. ACKNO1VLEDGMENTS
The IIiPE compiler would not have been possible without

the prior involvement of Erik "Happi" Ste¡ur¡al (forrnerly
Johausson) in the project. Its integration in Ertang/OTp

6

would still be a drea¡n without close coilaboration with ¡ne¡n-
bers of the Erlang/OTP group at Ericsso¡r (Björn Gustavs-
sorr, Kenneth Lundin, and Patrik Nyblolr), a¡rd tl¡e active
e¡rcourâgerrerrt of Bjarte Däcker. HiPE's deveìopment has
been supported in part by tire ASTEC (Advarrced Softwa¡e
Technolory) competence center with rnatching funds by Er-
icsson Utvecklinç AB.

7. REFERENCES
[1] R. Ca,rlsson. An introduction to Core Eriang. In

Prcceedings o! the PLI'01 Erlang Workshop, Sept.
2001.

[2] R. Cartssou, B. Gustavsson, E. Jo]ra^usson,
T. Lildgreu, S.-O. Nyström, M. Pettersson, and
R. Virdùrg. Core Erla.rrg 1.0 lauguage specification.
Teclurical Report 030, Infonnation Teclurologr
Departurent, Uppsala Universit¡ Nov. 2000.

[3] P. Cireng, R. Ha.rper, a¡<I P. Lee. Generatio¡ral stack
collectio¡r and proûle.driven pretenuring. Iu
Prrxnalings of the ACM SIGPLAN Conferen<n on
Ptogrcrnming Lungauge Design and Irnplementution,
PLDI'99, pages 162-173. ACM Press, 1998.

[4] P. Gustafsson and K. Sagonas. Native code
corrrpilation of Erlang's bit syntax. Itr PxxrøÌ:ings of
ACM SIGPLAN Erlang Workshop, pages 6-15. ACM
Press, Nov. 2002.

[5] E. Jo]ransson, M. Pettersson, a.ud K. Sagonas. HiPE:
A High Performa,nce Erlang system. In Procezd:ings of
the ACM SIGPLAN Conferent:e on Princi,ples øncl
Proctice of Declarutiue Programming, pages 32-43.
ACM Press, Sept. 2000.

[6] E. Johansson, M. Pettersson, K. Sagonas, antl
T. Lindgreu. The development of the HiPE systeur:
I)esigrr a,rrd e.xperie.ne,e report.,Sþríng er Internati on al
Journal oJ Softwore Tools tor Technoktgg Trønster,
2003. To appeâx.

[7] E. Jo]ra"nssorr arr<ì K. Sagonas. Lirrear scam register
allocation irr a Ìrigh perfonnarrce Erlang coutpiler. In
Practiatl Appliaúiorc of Declurøtiae Languages :
Pnrcædings of the PADL'2002 Sgmposi,urn, number
2257 h LNCS, pages 299-317. Springer, Ja* 2002.

[8] T. Lirdahl a¡rd K. Sagouas. Urrboxed courpilation of
floating point a^rithnretic in a dynaurically typed
lauguage errviron¡ne¡rt. I¡¡ R. Peña arrd T. Arts,
editors, Impletnentati,tsn of Functional Langt ages :
Prccen<li,ngs of the llth Internøtàonal Worltshop,
nu¡nber 2670 in LNCS, pages 1,34-149- Springer, Sept
2002.

[9] P. Nyblorr. The bit syntax - the released version. I¡i
Proceeùings of the Sirth Inten¿ati,onal Erlang/OTP
User Conferencq Oct.2000. Avaüable at
http://www.erlang.æ / euc I @ / .

[10] M. Pettersson. A staged tag scheme for Erlang.
Tþchüicâ.ì Report 029, Infonnatiol Technologr
Department, Uppsala Universit¡ Nov. 2000.

[11] M. Pettersson, K. Sagouas, a¡rd E. Johanssou. The
IIiPE/x86 Erlaug corupiler: Systern description a^ud

performa^uce evaluation. In Z. Hu a¡rd
M. Rodríguez-Artalejo, editors, Prvæ:l:ings of the
Sirth Interna,tionoJ Syrnposium on Functional untJ
Logic Progrumrning, nutnber 2441 in LNCS, pages
228-244. Springer, Sept. 2002.

[12] J. H. Reppy. CML: A higher-order co¡rcurrent
language. ht ACM SIGPLAN Conferentn on
Prcgramming Longuage Design and Implernentatior4
pages 293-305. ACM Press, June 1991.

[13] M. Serrano a¡d P. Weis. Bigloo: a portâ.ble â.nd
optirnizing compiler for strict functional la.nguages. In
A. Mycroft, ditor, Proæed:ings of the Second Stølic
Analysis Sgrtptosiumr. ¡ruu¡bcr 983 irr LNCS, pages
3ð6-381. Sprilger, Sept. 1995.

[14j D. H. D. Warre¡r. Ar abstract Prolog instmctior set,
Teclurical Report 309, SRI International, Menlo Park,
U.S.A., Oct. 1983.

t, r:
tr ''

Y

Atl you \\¡anted to know about
the HiPE compiler

(but might have been afraid to ask)

K. Sagonâs, M. PettersÍion, R. Carlsson,
P. Gustafsson, T. Lindahl

The High-Performance Erlang Group

Computing Science Department

Uppsala llniversity, Sweden

1

Contents

Þ Brief overview of HiPE's architecture.

Þ Recent improvements.

Þ Planned extensions.

Þ HiPE do's and dont's.

Þ (The few) Known incompatibilities and limitations.

H PE ch t t eruce
o

tarS
)t

I

x86

SYMBOLIC

BEAM

ICODE

RTI-

TYPDANALYSIS

TRANSFORMS

INLINING

SPÀRC

IIIPE
LOADER

BDAM
DISASSEMBLER

FR,ONT-END

COREERLANG

BEAM

BEAM

BYTECODE

DATA

NÀTIVE

CODE

ERLANG

SOURCE

BEAM
Interpreter

Erlang Runtíme System

3

HiPE-HO\7r/TO

Simply add the native flag to the usual BEAM compilation tools!

1> c (Module, [native]) .

compile and load interactively

2> compile: f ile (Uodule, [native]) .

compile to . beam file with both BEAM and native code; native

code in a . beam file is automatically enabled at load-time

erlc *native Module. er1

in a lJnix shell or Makefile

HiPE-HO\MTO, corltinued

For HiPE-specific options, add {nipeoOptionlist} to the list of
options (in addition to native):

c (Module , [nat ive , {hipe , [o3]]l) .

erlc *native '+{hipe, [o3]]' Module . er1
-compile ({rripe , [o3]]) .

o o0, 01, 02, o3 Choose optimisation level. o2 is default.

o {regalloc ,linear-scan} Specify the use of a specific register

allocator. coalescing is default on x86 (and SPARC at o3), but
it can be slo\ry on large functions.

b

...'|"."'..':'..1'

': .:,.:

HiPE-HOWTO, continued

To find out what options there are and what they do, use

hipe :helpO, hipe :help-options O, and

hipe : help-opt ion (Opt ion) . For example:

hipe:he1p-option(rega1loc) tells you what register allocators you

can choose from.

hipe:heIp-option(o3) tells you what internal compiler options o3

enables.

6

Recent irnprovements

Bit syntäx

Þ In RgB, HiPE recognised special-cases of BEAM,s bit-syntax
instructions, and implemented them with native code. Other
cases became calls to C functions. Speedrp over BEAM generally
between 1.0-2.0.

Þ In RgC, HiPE identifies the entire block of BEAM instructions
for a binary matching or creation expression, and compiles it as asingle unit' This results in better code and fewer calls to C
functions. speedup over BEAM in the r.5_4.0 range.

7

t $yntäx $peeclups in RüffBÍ

speedup

x86

4.13

7.76

2.57

2.30

2.09

speedup

SPARC

3.30

L.23

2.44

1.53

1.91

Benchmark

bsextract

bsdecode

ber-decode

bsencode

ber-encode

Recent i*provements

F l*atÍng*p*int arithmetic

Þ A single f.p. operation becomes: type test, move value from heap
to FPIJ, do operation, allocate heap, move value from FPU to
heap, tag pointer.

and uses ner',v instructions for unboxed f.p. arithmetic. BEAM
now skips the allocate, store, tag, test, load sequence bet\l¡een
pairs of f.p. operations.

Þ HiPE goes further and keeps intermediate f.p. values in the FPU
rather than in memory "registerst'. This reduces memory traffic
and delays between f.p. instructions.

I
't' f

Flnating*pnint krenchrnark $peËclHps

speedup

x86

2.57

2.5L

1 .95

1.36

1.r2

2.7L

speedup

SPARC

3.66

2.39

1.88

L.L2

r.07

2.L6

Benchmark

float-bm

barnes-hut

ffr

wings

raytracer

pseudoknot

l/\

Recent improvements

tocal t)rpe analysis

that yield known types.

Þ Works on a single function at a time.

Þ Specialise overloaded operations (..g. +) when types are known.

Þ No performance results yet, but code size is reduced, which also

makes remaining compiler passes faster.

L1

Recent improvements

Misccllan*ûu,$

Þ Apply (u: r (. . .) calls) is now implemented natively. Major
speedup in apply-intensive code. Also improves "generic server".

Þ Mailbox operations in receives are now inlined. 10-15%

improvement in receive f timer-intensive benchmarks.

Þ Compile-time literals are merged, reducing their space usage.

Þ A source of excessive compile-times has been fixed.

lar

Planned extensions

MrrJnle*gl*hal type analy$ís

Extends the local type analysis with information about actual

parameters and return values from function calls.

Þ More opportunities for type check removal and specialising

overloaded operations.

Þ füples can be returned in registers or on the stack.

The precision of the analysis depends the amount of code it sees at a
time, the size of the external interfaces, and on programming style.

1_3

Planned extensions

Module*gl*ï:al cürrrpilatirn frorn $ourctr

Instead of compiling a function at a time, via its BEAM code, we are
working on compiling from Erlang source, via Core Erlang.

Þ Type analysis is potentially more precise when done at a level
closer to normal Erlang.

Þ Easier to utilise high-level meta-data (*.g. types) for things like
function inlining and optimised calling conventions.

Þ Avoiding BEAM code gives us better control over constructs like
pattern-matching and bit syntax operations.

Do's and l)ontts

Þ Basic fact #L, Compiling Erlang code to native code makes it
run faster, but doesn't change anything else.

Þ Basic fact #2: Switching modes (from native to BEAM and vice

versa) is more expensive than a simple function call.

15

I)o's and f)ont's, continued

Do compile your code if it performs a lot of computations.

Þ Thaditional functional code with lots of function calls, data
construction, and pattern matching, clearly benefits from being
compiled to native code.

Deep recursions are several times faster in native code due to
explicit garbage collection support for deep native stacks.

native code.

Þ Blocks of floating-point operations may be several times faster in
native code.

1A

f)o's and l)ont's, continued

Helping the compiler:

Þ Bit-syntax optimisations rely on segments being 8-bit aligned.
Variable-length segments should use a multiple-of-8 unit.

32-bit floats in binaries aren't handled efficiently.

code. IJsing guards, e.g., is-f loat /t, may help the compiler
detect and utilise relevant type restrictions.

Þ Order clauses so that more likely cases precede less tikely cases.

L7

I)o's and Ï)ont's, continued

Helping the compiler, continued:

Þ Largish self-contained modules with narrow external interfaces

help type analysis and inlining decisions.

The -compile (export-aIl) directive makes the external

interface wide-open, which limits the precision of type analysis

and makes inlining less likely to occur.

At a remote call, the compile cannot in general make any

assumptions about the called function or what it will return.

1R

I)o's and l)ont's, continued

While in native code, avoid leaving it.

Þ Ensure that Erlang libraries you use frequently are compiled to
native code. This includes standard libraries.

Þ If you call function closures in native code, ensure that they also

come from native code.

Þ lt's best to first profile the application, and then compile the
most frequently used parts to native code.

1.9

I)o's and Dont's, continued

Don't compile your code if time is mostly spent elsewhere.

Þ Some applications are "BIF bound", being mostly glue around
things like ETS tables or drivers.

and receive agents that don't do much actual computation.

Compiling these can only yield limited performance improvements.

Ðrì

Kno\ rn incompatibilities

Þ Stack dumps at exceptions are less detailed than in BEAM.
Assume bug(X) >

{badarith, []]
if bug/ I is in native code, but

{badarith, [{Modulê,bug,1}, . . .] }
if bug/1 is in BEAM code.

> Fun = {M, F} , Fun O is not supported. IJse proper funs or

M:FO calls instead.

Þ Floating-point on x86 uses higher precision for intermediate

values and calculations than BEAM does, so HiPE may deliver

slightly different (more accurate) results.

2L

.-.*,,4:-,-,.,- I ". :-:*T{.:-,:a'Ì::.'
'L j¡,_

t: , , :

Current limitations

þ lt[ative code is never freed. Repeatedly loading newer versions of
the code leads to a (bounded) space leak.

Fixing this requires a redesign of the HiPE object code loader.

Þ There is a s'ingle global area for compile-time constant terms, and

this area may overflow if large amounts of native code is loaded.

This is a consequence of the design of ErlanglOTP's memory

management system. We are hoping that R10 will fix this.

22

a

PROFILE-DRIVEN II\LII\TI}IG FOR
ERLAI\TG

Thoma^s Lindgren
e-mail: thonasl-erlang@yahoo . com

Abgtract
Inlining of function calls is a common optimization for high-level laa-

grrages. \{hile súøtic ialining has been described for functional languages,
prcfiJe-driaen inliniug of functional prograürs has to ou¡ knowledge not been
orplored. In this paper, we describe a sinple and ponerfrrl algorithm for
fuaction inlini¡g usiag profile data a¡d give some tentative performaoce data.

INTRODUCTION
Inlining is a sbraightforward, common and useful optimization for functiond, objectr
oriented and imperative languages. Inlinins a ñrnction call f(Xl,. . . ,Xn), or call sáte

means replacing the caII with a copy of the function body of f/n and binding the
formal para,meters to the actual para,meters Xl, . .., Xn.

Doing so enablæ the follon¡ing optimizations:

¡ The cost of the ftrnction call can be removed.

r Duplicating the fu¡cbion body mert's the code can be specialized with regard
to the acbuat para,meters. For exa,mple, operations on consta¡t para,meters
can be simpliûed.

¡ Compiler optimizations often work only on a single function at a time, so
enlarging the fu¡ction may help.

o Native code optimizations such as code motion, instrucbion schedutins aûd
register allocation work better with larger sections of code.

Unlimited inlining would yield too large program, negating all performance ad-
vantage by increasing cache miss€sr or would not terminate at all. For reasonable
performance, the ialining algoritbm has to decide which call sites to attack, and
when to stop. The interesting issue with inlining, then, is what heu¡isbics a¡e used.

There a¡e two m¡in methods of doing this: static ialining, which ora,mines
the progra,m structure to decide (e.g., inlining only calls to small ñrnctions), and
dyna.mic or profile'driven inlining, which uses profiling information to focus inlining
on the frequently executed, hot, regions ofcode.

The BEAM compiler already performs i¡lining of some code, in R9C0 using a
static algorithm proposed by Wadetl and Dybvig fo¡ Scheme [5] and redeveloped for
Erlang by Richa,rd Carlsson. The performance improvements on application code
are, however, so far slight [2].

For functional languagæ, research has focussed on static idining, in particr:lar
connected tre higher-order frrnctions; the author is at the time of writing unas'a¡e of
any previous work on profile-guided inlining ofñrnctional languages. In this paper,
we introduce a simple profile'driven algorithm for cross-module inlining of Erlang.

1

INLINING ALGORITHM
An example

We begia by describing the intuition of our algorithm with an exa,mple. Consider
the following oca,mple prograrn, where eaclr function is annotated with the number
of times it wa.s orecuted, and each call site is annotated with the nr¡mber of times
it was visited during profiling.

We assume that there is no code size restriction, but that call sites must be
visited at least 20L times to be considered for inlining.

LT, tlt called 1000 tines
f({a,X}) -> g(X) i IT, visited 700 tines
f({b,X}) -> h(X) . y& visited 300 tines

I"l, g/t called 700 ti-ues
g({c,Y}) -> g1(Y); I'L visíted 500 times
g({d,Y}) -> h1(Y) . '.l,L vísíted 200 rimes

'l,il, hlt called 300 tines
h(te,Z]) -> gL(Z)i L'L vísíted 2OO times
h({f,Z}) -> hl(Z). %7. visited 100 times

LL gLlt called 500+200 times
El(yes) -) true;
g1(-) -> false.

'L'L hVt ca].led 200+100 tiues
hl(no) -> true;
h1(-) -> false.

we want to inline the most frequently visited fi¡nction calls. we begin by or-
dering all of the call sites by number of visits, then consider each entry in priority
order.

glI ín fllt 700
gt/L in g/1: 500
h/7 ín flLz 300
h1l1 in g/1.2 2OO

9l/L ít h/!z 2OO

We begin by inlining g/1 in f/1, which yields

f({a,x}) ->
case X, of

{c, Y} -> g1(Y);
{d, Y} -> h1(Y)

end;
f(tb,xÌ) -> h(x).

Note that two new call sites have appeared: g1/1 in f/1 and hl/t in f/1. What
a¡e their call frequencies? In general, we catr only esbimate this nalue, which we do
by taking the ratio of the call site visits divided by the total function visits in the
original function. This is then multiplied with the number of visits to the call site.

2

(i,nternal ælI si,te aisits / f uncnion aí,sits) * cahl sí,te uisíts

In this case, the first ratio is (500/700) for gL/l in gf 1, meaning the ratio is
0.714. We then multiply the actual number of visits to the call site (700 calls), to
yield 500. (Not zuch a coincidence, since only f./l calls g/1.) So the call site g1/1
in f/1 gets priority 500. In the sa,me vein, h1/1 in f/l gets priority 200.

gt/L
gllL
hlL

huL
gLlL
b,t/t

g/1: 500
f/l: 500
f/1:300
g/1.2 2OO

h/L: 200
tltz 200

Ln
in
in
ia
in
in

{a,X})f(

Two sites have the same priority 500, so we use a tiebreaker to select the next
site. Let us assume it is g1/1 in g/1; we inline it to yield:

g({c,Y}) ->
case Y of

yes -> true;
- -> false

end;
g({d,Y}) -> hl(Y) , I'/, vísited 200 tines

No new call sit€s appea¡, so we proceed to the next site, g1/1 in f/1, which
yields:

case X

{c, Y} ->
case Y of

yes -> true;
- -> false

e¡d;
{d, Y} -> h1(Y)

end;
f({b,x}) -> h(x).

Again, no new call sites appear. We then inline h/l in f/L:

f({a,I}) ->
case X, of

{c, Y} ->
case T of

yes -> true;
- -> false

end;
{d, Y} -> h1(Y)

end;
f({b,x}) ->

case I of
{e, Z} -> gL(Z);
{r, z} -> hl(z)

e¡d.

of

3

In h/l there a¡e two call sites: g1/1 and h1/1, which have the ratios 213 añ
1/3 respectively. The inlined call site h/l in f.lL haÅ priority 300, so the ne$' call
sites get priority 200 and 100, respectively. The new priority queue looks like:

ht/L ís g/* 2A0
gIlt ín fllz 200
gUL ín h/7: 2OQ

(1) h1l1 ia f/1: 200
(2) b,UL in f/1: 100

Note that there now a¡e two difierent calls to h1/1 tux f/1, which have been

distinguished by an index. At this poiat, however, no call site has a priority of 201

or more, so inlining stops.

The algorithm
We now want to implement the intuitive algorithm of the ena¡nple. This is done in
three parts.

1. A preproccssing step that computes call site ratios and function sizes.

2. A loop over a priority queue to decide which cali sites to iniine.

3. A code generation step that acbually performs the inlining.

Preprocessing. 'lVe trarærse each fi¡nction to yield a mapping enJl-si,tes from
MÐ{, to (Call-site, R"atio), where R¿tio is a r¡alue 0 < Rnti,o < L. This denotes the
ratio of how many times call site c in function f is visited compa,rd to how many

times f itself is visited. This initial ratio is then adjusted downwards to get rid of
some unfortunate special cases, yielding a ûnal ratio.

First, consider the funcbion f O -> gO. The call to g/0 would have a ratio of
L.0 since it is always invoked when f/0 is executed. We adiusb such call sites to a
lesser value, currently 0.99.

For a heavily erecuted loop, the recursive call will have a ratio of nea,rly 1.0'

which means it lvill be inlined heavily. (In one case, we saw our system unroll a
recursiræ loop 68 times.) However, this is seldom productive and overstates the
benefit of inlining a recursive calt. We heuristically senle ilown the ratios of such

call sites by a farbor 0.5.
Hence, for each call site in /, we now have a ratio indicating how often the call

site on average witl be executed when / is e¡recrrted. For function .f with call sites

clr.. . rcn with associated ratios ¡, .. . rrnt we deûne:

col,I -sites(Í) : {(cr, rr), . . ., (cn,r,)}

Inlining must also restrict code growth, since the beneûts of inlining would
otherwise be cancelied by worse cache performance. We therefore also estimate
the code size of each firnction as a mapping size(l) ûom MFA to integers, always

yielding a code size greater than or equal to one.

Priority-bassd inlining. The data strucbure to keep track of ç'¡¿tr, inlinings to
do is an intine forcst. Each funcbion is represented by a tree in the forest. The tree
originally consists of the firnction node and its immediate call sites. The nodes and
leaves of every tree a¡e call sites, annotated with the estimated number of visits.

We deûne a function eopørzd(c,n) which, given a call site c and priority n to c'
yields a tist of call sites with associated priorities.

4

erryrùd(e.n) : [(", rn)l (c,r) + æJl-si,tes(f undi,onof (c))]

Now for the algoritbm, shown below in pseudocode. The main loop ocanines
each call site in priority order, and decides whether to inline it. A call site is inlined
if it (a) has snffiçis¡tr priorit¡ a¡rd if (b) inlining it does not break a predefined code
growth limit.

If inlined, the corresponding node in the inline tree is extended with its call sites
as new leaves, and the new call sites are added to the priority queue.

compute size(c) for all functione nfa;
conpute erpand(crn) for all fr¡¡ctioas mfa;
seed inline forest ¡rith all functions;
initialize priority queue yith initial cal-l sites;
currsize := (estimated total size);
naxsize := currsize * <predefiued value>;
ninprio := (predefi-ned value>;

¡¡hil-e priority queue non-êqFty
let (c,n) be the cal.l site c r¡ith highest priority n;
if (¡ < .oinprio) then stop;
if (size(ca11ed-fr¡¡ction(c)) + currsize > maxsize) then <skip call site>
elee <expand call site, update inline forest aad priority queue>

end

retr¡rl inli¿e f orest;

Note that the call sites may include recursir¡e calls. Recursie¡ 6sans the inline
t¡ee can potentially be orbended infinitely say, by ialining a recursive call repeat-
edly. Our algorithm overcomes this problem, as follows. Expanding a site with
priority n always yields call sites with lower priorities n' <n, due to the definition
of ratias, eventually gloÌving smaller than minprio. Since size(c)) 1, currsize
firrthermore always increases, eventually approaching maxsize. Hence, the alge
rithm terminates.

Code generaüion. The ûnal code generation phase is straightforward. We have
a forest of iniine trees, each of which will generate one function. (An ec<a-ple inline
tree is shown in the Appendix.)

We traverse each tree recursinely from ¡oot to leaves. For a node / with chiìd¡s¡
gL¡ . . . ¡gnt we ûrst generate code for sach child g¿, which yields a fun Àr. We then
substitute e¿ for the function at the proper call site, converting g¿(ø) into À¿(ø).
When all children of / have been inlined into the body of /, vre convert f into a
fr¡n À and return À. On ¡ef¿¡ning to the root of the tree, code generation for the
corresponding fu¡ction is ffnished.

Each fi¡nction is then simpliûed heuristically; in particular, the inlined code has
a number of fi¡¡:s applied to known arguments. These are simpliûed using beta
reduction, which ideally opens up fi¡rther possibilities for simpliûcation.

The simplified functions are then collected into modules, compiled and executed.

5

l
..\

A short example. Here is a short eo<a,mple of the mecbanics of inlining a single

firnction. The initial function is this:

ui¡i¡n¡m-octets (0, Acc) ->
Acc;

miniur¡n-octets (Val'Acc) ->
mini¡r¡m-octets(Va} bsr 8, [Val band 255lAcc]) ' 'lr'1, gite 1,

Let us assume minimum -ad,etsl2is ca.üed 1000 times and that call site 1 is called

g00 times. The ratio for site 1 is thä 0.9. The size of minimr¡m -oú,etsf 2is estim¿ted

by considering that it has some pattern matching, two a¡ithmetic operations and

u UJ
"oo"Ut,i"tioo.

(The precise estimated r¡alue is not interæting; our current

method is fairly naive.)
The inliner subsequently decides to inüne call site 1 (that is, "unrolling the

loop' by one iteration). This is done by converting the called firnction into a firn

and substituting it for the called function'
Here is the fun:

(fu¡ (0,-S-Acc) ->

-5-Acc;
(-5-Va1,-s-Àcc) ->

ninirt¡m-octetE(-S-Val bEr 8, t-5-Va1 band 2551-S-Accl)

end)

We substitute the fun for the function call to minimum-octets/2' The inlined

but unsimpliûed code is then the followíng:

minimrm-octets (0,Acc) ->
Acc;

minimum-octets (Val,Acc) ->
(fr¡¡ (0,-5-Acc) ->

-5-Acc;
(-S-Val,-5-Acc) ->

uinnr¡n-octets(-5-Va1 bsr 8, t-5-Va1 ba¡d 2551-5-Accl)

end)(Val bgr 8,[Val ba¡d 255lAcc])'

Our system then simplifies the code into the following:'

Ir'/, aftæ sirylifY:
uinimr¡m-octets (0,Acc) ->

Acc;
mi¡imr¡m-octets (Val rÀcc) ->

case tVal bsr 8,[Val band 2551Àcc]] of
{0,-S-Acc} ->

-5-Acc;
t-5-Va1,-5-AccÌ ->

miaimr¡m-octets(-S-Val bsr 8, t-s-Val ba¡d 2551-5-Accl)

end.

The BEAM compiler can norñ¡ perform firrther optimizations' In the compiled

code, shown below, we ca,n see tba,t most of the potential overhead has disappea'red'

{fnnction, minimr¡n-octets, 2, 2l'
{label,1}.

{fr¡nc-inf o, {atom, oct}, {atonrnini¡r¡m-octets}' 2}'
{label,2}.

6

{test, is-eq_exact, {f , 3}, [{x, 0}, {Ínteger, 0}J } .

{nove , {r, 1} , {x, 0}} .

{'%live',1}.
return.

{label,3}.
{test-heap ,2,2} .

{bif ,,bsr t,{f , 0}, [{x, 0}, {iuteger, 8}J, {x, 2}} .

{bif ,' baad,, {f , 0}, [tx, 0], {i¡teger, 2S5}J, tx, 0}} .

{put-list , {x , 0} , {x , 1} , {x, 0}} .

{test, is_eq_exact, {f , 4}, [{x, 2}, {integer, O}J } .
retun.

ûabel,4].
{test-heap ,2,3}.
{bif ,' bsr,, tf , 0}, [{x, 2}, tinteger, B}J, {x, B}} .

{bif ,' ba¡d t, {f , 0}, [{x, 2}, {i-uteger, 255}1, {x, 2}} .

{put-Iist,{x, 2}, {x, 0},{x, 1}}.
{move, {x,B}, {xr0}}.
{'%live',2}.
{call-onty ,2,{f ,2}}.

EVALUATION
We h¿ræ er¡aluated fþs inrining algorithm on four benchma¡ks taken from oTp,
simila¡ to those ¡û R€f [4]. lVhile the workload and interface ¡smains the same
in this paÞerr the older paper used Erla'g version R782, while this paper u¡res
Erla¡S 4,9C0. There a¡e substa¡¡tial difierences in implementation between the tv¡o
versions, including the underþing code of the benchmarks, and the results are thus
not comparable for these purposes. Fì¡rúhermore, the current progrôm in general
selects more modules for optimization thal¡ in the previous paper.

In a prevíous paper [4], we described a nunber of techniques to improve cross-
module inlining opportunities: apply optimizationr outlining and moduie merging.
For clarity, none of these eÐrtra optimizations were performed on the applications
in this paper. Howener, we here ¿¡ssume that module mergmg is done a,fter intining
(cf. F\rture Work below for a further discussion on this issue).

The er¡aluation was performed on an athlon rB00+ Pc with 512 MB memory
runniag Erlang R9CO. lþs inlini¡g algorithm per se was implemented in 4t60lines of
Erlang, though that number srcludes a substantial support library. The benchmarks
were executed ten times each, and the fa^stest results used for comparison. Speedup
for each benchma¡k was computed as:

SPe.eduP: Tor¿c/Topt

We used the following applications:

r ldapv2. Generating and parsing ASN.I data for the LDAPv2 protocol.

o gen-tcp. Socket communication using short and long messages.

o bea,m. BEAM compiler working on a number of source files.

¡ mnesia. Mnesia simulating simple IILR-like trafrc.

The applications can be su--a¡ized by neasuringthe number of modules, func-
tions and call sites. The number of local call sites are those accessible to a per-
module algorithm. We also measured the number of call sites that were visited
during profiling; only visited call sites were even considered for inlining.

7

rt,
i

i
Ë

Application Modules tr\¡nctions 0all sites Local sitæ Visited sites
gen-tcp
ldapv2
bea^m

mnesla

13
Ð

51
63

658
32L

2347
4207

r546
1038
9669

13390

989
616

7594
84:¡5

202
140

2653
984

Local call sites a¡e ñYo to 78% of the total; the remainder a¡e remote call sites
and higher-order funstion calls.

It is interesbing to note that only 7% (mnesia) to 27Yo (beam) of all call sites
are evìer visited during profiling. This suggests that profiling can eliminate large
numbers of functions from being considered fe¡ iflining.

Performance results. We have only very preliminary performance results at the
time of writing. The two larger benchmarks could not be executed, due to bugs
in the code emitted by the inliner. Of the tars ¡smaining prograru¡, the gen_tcp
benchmark yields a small speedup of 4To at a size cost of l%; ora¡nination shows
that the inliner chose just to inline three functions in primjnet. Ldaprr2 shows a
better speedup of 10% at a greater size cost.

In both benchmarks, we set the ma:cimum code growth to 50Vo, which was not
attained; our size estimation heuristic may be the culprit.

emu Size increase
gen-tcp
ldapv2

1.04
1.10

1.01
1.33

Finall¡ since native code compilation could hypotheticatly take grcater adr¡an-
tage of inlined code, we tried to mearrure native code performance of the bench-
marks. Unfortunatel¡ the native compiler choked and we were unable to complete
this task.

Our telrtative conclusion is that the inlining algorithm can provide some speedup
on a sizeable application. However, substa,ntial work remains to debug, tune and
snhencs ¡þs inlining algorithm. This is further discussed below.

CONCLUSION AND FUTURE \MORK
We have shown how to orploit profiling information to drive function i¡lining. Our
algorithm performs cross-module i{ining and recrr¡sive inlining. While ou¡ evalua-
tioo is incomplete, the inlined programs tentatively show reasonable speedups.

Cross-module intining must hândle Eriang's hot code loading featu¡e. One ap
proach to doing this at a near-zero runtime cost is described in Ref [3]: modules are
merged into ìarger units of code, and former cross-module catls inside the merged
entity are gua,rded to preserve the code loading semaJxtics.

In a previous article [4], we described how to form moihilc ogrygøtes by merging
the modules that called each other most frequently; inlining was then done inside
each aggregate. The current approacb to inlinÍng insteåd suggests post hoc module
aggregation, by first observing the actual cross-module inlinings, then merging the
modules where cross-module lniinings occu¡red. The details of this approach remain
to be worked out.

What hâs been presented he¡e is in some sense work in progress. We have, for
sxampl€1 conducted a very basic er¡aluation in this pape. When considering the
interactions between multiple i¡]ining parameters, multiple optimizations, multiple
benchmarks and multiple workloads, a more thorough performance etaluation seems
necessâ,ry. It is likely that suc,h ecperience would also lead to reûnements to the
heuristics described in this paper.

I

For instance, our heuristic of always choosing the mo,st visited call site unless
too large could be generalized to consider cost and benefit more erçlicitly [1], which
could le¿d to bebter results.

S'rocxuol,tr,t, OctoanR 2003

R,eferences

[1] M. Arnold, S. Fink, V. Sarkar, P. F. Sweeney. A compa,rative study of static
and profile.based heuristics for iallning. Proceerlings of the ACM SIGPLAN
workshop on Dyna,mic and adaptive compilation and optimization, ACM 2000.

[2] R. Carlsson, personal communication. October 2003.

[3] T. tind$æ. Moilule merying: aggressiae optímizøtion anil æile rcplacement
ôn hígúg-ouøiloble systems. Tecb¡ical r€port 154, Computing Science Deparb-
ment, Uppsala Universit¡ 1998.

[4] T. Lindgren. Cross-module optimization. In Proc. Seventh Erlang User Con-
ference. September 2001.

[5] O. Waddell, R. K. Dybvig. Fhst and Efiective Procedu¡e Inlining. In Proc.
Fburth International Symposium on Static Analysis (SAS '97), Springer LNCS
1302, 1997.

A Inline tree for mnesia
The inliner performs 802 inlines on the mnesia benchmark, where one of the core
activities is mnesia;dirty-witel2. lVe show the inline tree for that function here,
s'hich involves inlining aßross a total of eight modules. The originat version of
dirty-write/2 is two lines of code; the inlined version of dirty-write/2 is somewhat
nore tha¡ L000 lines of Erlang.

Many nested inlinings are done. Starting from the top, mnesia:dtfi-wnte/2
contains an inlined call to mnesia:do-dirty-write/3, which ss¡lains an inlined call
to mnesia-tm:dirty/2, ¡¡þiçþ se¡fains an inlined call to mnesia-tm:rec-dirty/2; one
inlined call to mnesia-tm:asyac-send-dirtyf 4; one to mnesira-tm:val/1, a¡d one to
mnesia-tm:prepa,rejtems/5. AU but one of which themselves contain inlined calls.

-.esia:dirty-vtíÌ"e/2
. -.es ia : do-dirty-rrrite/3
. .n¡esia-tm zdírBy/2
. . .tn esia_tn:rec_dirty/2
. . .unesia-tn : as¡rnc-send-dirty/4
. . . .-.esia-tn: as¡mc_send_dirty/6
.'n esia-tm: asJnrc_send_dirty/6
.mnesia-tn:as¡nc-send_dirty/6

.nnesia_tu: do_dirty/2

. .u¿esia-tn : do_comit/2

. . .omesia-tn: do-couit/3

. . . .nrnesia_ün: do_update/4

. . . .Dnesia-tn:do-update/4

. . . .u¡resia-to:do-update/4

. . . .mnesia-1r.¿e_snql!/2

. . . .rnnesia_dunper :u¡¡data/ 3

. .--egia_log: log/1

I

. . .m¡¡esia-d::nper : incr-1og-w'rites/0
. ¡nesia-lib : iucr-cor¡¡ter/2
nnesia-Iog: append/2

. . . .disk-log:a1og/2

.disk-log;notify/2

.disk-1og-server:get-1og-pids/1
. disk-log-server : do-get-log-pids/1

. . .n esia-moaitor:use-dir/0
.luresia-tn:do-dírty/2

. mnesia-tm: do-comit/2

. .nnesia-tn: do-comit/3
mnesia-tn : do-update/4
. ues ia-tm : do-update-op/3

unesia-lib:db-put/3
nnesia-tm : com'it-rrrite/6

. unesia-tn : do-update/4
. . . .nnesia-tu:do-update-op/3

.nnesia-Iib:db-put/3

. n¡resia-tm : coroit-¡rrite,/6
. . . u¡esia-tn: do-update/4

. mes ia-tm : do-update -op / 3
.unesia-tib:db-put/3
.rnñeEia-tm: comít-rrite/6

n¡esia-tn:do-snnp/2
nnes ia-dumper : update/3

.nnesia-logz1'.ogl1.

. . nnesia-dumper : incr-1og-rrites/0
. nnesia-lib : incr- cor¡¡ter/2

. . nnesia-log : append/2

. . .disk-logaJogl2

. . . .disk-log¡aotify/2

.disk-1og-server:get-log-pids/1

.disk-log-server:do-get-1og-pids/1

. . mnegia-monitor : use-dir/O
.'nnegia_tn:do-dirty/2
.lrnesia-ta:do-cow¡jri-/2

.nnesia-tm: do-comit/3
nnesia-tn : do-update/4
. mnee i a-tm : do-update/4

. . .mnesia-tn : do-update-op/3

. . . .r'-esia-lib :db-Put/3

. . . .nnesia-tm: comit-vrite/6

. . nnesia-tn : do-update/4
. mnes ia-tm : do-update/4
. @esia-tn : do-update-op/3

.. . .'n esia-lib:db-put/3

. . . .mnesia-tm: comit-rrite/6

. .n¡esia-t@ : do-update/

. . . nnesia-trn : do-update/4
mnes ia-tm : do-update-op/3
.nnesia-líb:db-put/3

. . . .nnesiLtD: comit-rrrite/6

. . mnesia-tm : do-srmp/2

. .unesia-dunper : update/3

L0

.mnesia_log:1og/1
.nnesia-dunpe¡ : i¡cr-1og-r¡rites/0
. .tn esia-lib : incr-cor¡¡ter /2
. naesia-log : append/2
. . disk-log zaLog/2
. . . disk-Iog ztotífy/2
. . . . disk-log-aerver : get-1og_pidE/1
. disk-log-server : do-get-1og_pids/1
. m-esia-uonitor : use-dir/O

. . .nnesia-tn:va1/1

. . . m-esia-tm : prepare-itens/S

. . . .n esia_tn:check_prep/2

. . . .mnesia-tn: do-prepa¡e-iüens./7

.'r esia-tmlprepare-nodes/5

.lrnesia-tn:prepa¡e-nodes/5
. nnesia-tm : pxepare-Dodes/5
. .onesia-tn : preptìre-node/S
. . ññegia-tn : pick-node/
. n- esia-tm : prepa¡e-uode/S
. . unesia-tn : prepare-n ode / 5
. tluesia-tu : pi ck-node/4

.rnnesia-tn:prepare-node/5
. m¡eE ia-tm : prepare-node/5
. . unesia-t¡n : plepare_[ode/5

.Enesia-tn:pick -r:ode/A

.nnesia-tn:prepare-snmp/T

. . . .nnesia-tn:va1/1

... .-.esia-tn:va-L/1
,j::r:
:

1.1

I

t

t¡t nll, \gua ùt,. ?9 e
krn ultL Lr,./o^

iq,;1¡..*iirlr
I' ,;L:;urÌ! :.:.
i ,.

l':'
t. - ..-,... j

What's new in Erlang/OTp RgC

This presentation will highlight some of the new and changed functions in the latest release.

Outfine of the presentation

.New and changed things

. ERTS

'Applications
. Misc

. lncompatible things

Aumal¡c tcsling: 1 Er¡csson AB, UKWK

enrcssoru f

New and Changed things (ERTS)

.Memory management improvements with a nurnber of ditferent
allocators which can be configured

. temp_alloc, eheap_alloc, binary_alloc, ets_alloc, sl_alloc,
ll_alloc, fix_alloc, sys_alloc, mseg_alloc

Changed flags for E-node start

erl +MB true +ME true +MEas aobf +r

.E:\Program\erlS.fu

. lmproved memory instrumentation

Aulmalic l6slingi 2 Eilcsson AB, UKH/K

enrcssou á

I

New and Changed things (ERTS)

'New! system flag +Bi starts an E-node which ignore break signals
(i.e cannot be terminated with CTRL-C)

. New! erlang:hibernate(Mod, Funcn ArgList),
reduce a process memory footprint as much as possible.
can be used instead of saving a process state in ets-tables

Note! erl +P 262144 (default 92769 number of Erlang processes)

. New! erlang:send/3 supersedes erlang:send_nosuspend

'New! support for lPv6 in the gen_tcp, gen_udp and inets modules.

Aúmalic tsling:3
Erlcsson AB, UKTUK

enrcsson f

New and Changed things (kernel/stdlib)
. New! integerJo_list(lnteger, Base)

3> erlang: integer_to_list (j_0, l-6) .

rAI

. New! list-to-integer(CharList, Base)

4> erlang:1ist_to_integer (";1,' , L6) .

l-0

. New format characters for io:formaU2 -b, -8, -X, -X, -+ and -#

. New format charaters for io:fread/2 -u, -- and -#

Aúfrat¡c tôsl¡ng: 4
Er¡csson AB, UKIUK

rnrcssou f

2

New and Ghanged things (stdlib)

. New! The Erlang shell enables the user to write functions which
can restrict the execution of certain funotions.

. New! The modules erl_tar and filelib are now doeumented and
suppofted

Autffit¡c têsling: 5 Er¡csson AB, UKFÍK

enrcssoru f

New and Changed things (compiler)

. Change!When updating a record the record tag and size is now
always checked.

. New! ln the bit syntax a size field can be bound during the same
matching

<<Size, B: Size /binary , Rest/binary>> =
<<2, "AB" ,3 , ttcDE',>>

Aúmal¡c læt¡ng: 6 Er¡csson AB, UKÍVK

enrcssoar f

3

New and Changed things (crypto/ssl)

. Change! Crypto requires dynamically linked OpenSSL libraries
that the user has to install (used via SNMP v3)

. Change! SSL is now based on OpenSSL

Adffiâtic losling: 7 Er¡csson AB, UKTUK

enrcssoru f

New and Changed things (applications)

. Change! IDL compiler: The CORBA stub/skeleton-files generated
are reduced in size and less dependent on the interface repository.

. New! ASN.I compiler have suppoñ for partial decode for BER
(can be used to improve performance depending on application)

Auhatic t6sting: I Êrlcsson AB, UKtüK

enrcssox f

4

New and Changed things (misc)

. New! Erlang Reference Manual

. New! crashdump*viewer for browsing Erlang crashdumps.

A(malic ical¡ng: 9 Erlcsson AB, UKIUK

enrcssoru f

New and Changed things (misc)

.New! Now possible to build Open Source Erlang also on Windows,
New lnstallation program for Windows

.H|PE improved performance for bit syntax matchings

. Erlang mode for EMACS now documented + bugs fixed + new
feature for aligning arrows,

. Cover
. new WebOover interface

. export and import of cover data

. multi node support

. analyse_to_file can produce nice htmloutput

Ericsson AB, UKTUKAulmatic t€stiñgr I 0

en¡csso¡r á

5

. HTML based tool for browsing Erlang crash dumps

. Displays any crashdump from OTP R7801 and newer

. Available in ERV vob now for OTP RBB and RgB.

. Warning if dump is truncated

. example of dump

Crashdump Viewer

Aulfralictost¡ng: 11 Ericsson AB, UKÍUK

enrcssoal f

)

i"

í
¡n,
i:"

Crashdump Viewer, general info

init teminating in do_boot Q

unknown

MonNov4 M:20:07 2002

Erlang @IAM emulator vcrsion 5.0.2.11.1

Compiled on Thu D ec 20 09:43:A 2001

321't

31

1l

0

General inform:rtion ¡rrbGen*al rnformation

Processes

Ports
ETS tables

Tisrers

Fun table

Atoms
Distibution info¡mation
Loaded modules

äntematTables
åMemory information
llDocmentâhôn

Auffiâlic tosting: l2 E icsson AB, UKFUK

ER¡C5SON á

6

Crashdump Viewer, process info

Sta.k¡hêmPirl Nmc fllæled as Srdtc Rednrtions NfsgO lenøh

<0.63.0> oesþ_lockr proc_libiah3/5 Reir¡g 40810',t7 0¿tt
<0.0.0> iûn oÞ_rirgo:stdt/2 Waitbe 40r'904 4181 0

<0.2 0> crl3rin_loader aþrim_loadcr:start_il4 Woitog 46479211 610 0

<0.4.0> mor_logger 4620161iw"irrgproc-lib:iút3/5 832040

<0.5.0> applicaúon_cottollcr ;T¡aiÉrgproc_lib:ioit_¡r/5 176517 258r'.

0

0

<0.?.0> proc_libinit3/5

<0.8.0> applicatiol_øær;stat_itl4

<0.9.0> kemcl-sup proc-libioit3rr5

m
0\¡¡aiti¡g

l¡IaitilE

l¡¡aitir¡B

45

29'752

113 ¿55

610

<0.10.0> fcx ltr/atng i 3911 0

<0. 1 1.0>

proc_libtuit3/5

proc_libioit3r/5 303615 m 0global-me_sær \¡/a¡ù¡g

<0.12.0> W.tnrg i '189 610 0

Process Information ge,þ

L^. ¡l

globalinit_$e_lo ckø/ I

142< a22

Aüffiticl*t¡nc 13 Edcsson AB, UKIüK

ERrcssoN
=

Crashdump Viewer, process details

iNue iprgc-liblgi¡pQ ,
:iu¿¡ia_lockø :i$þmrucd at

;iLast schedulcd in forlhfe .3wirg ,imcsia_lock6rchrck-curudj

rred
iNmbcr of heap Aegmuts iillcap hagnont ¿etl ri205 wordto¡knom

lvlsg quene length '10

Iút f<o.6o.o>'l

[uÊ!la_¡ocket, uês1a_locxer, 1¡18, [l]Qj.l:g!Þl I]],
(| çùcêsrolr' . [n.rlâ_hE¡è1._.uD,n.sIa_su9,l]grs3j.lÞl] l

t{ i¡iriql_c¡t¡ ¡, (rêrla_sD. 1¡1r_Droc,

EfS tables ovned bv thrs p¡ocess Tmas oned bs úis orocess

ãelp

Erlcsson AB, UKTUKAutffiåt¡clcsl¡ngÊ 14

ERtcss('N 4

7

lncompatibilities

' Erl-interface , internal and interface header files separated if internal header
files are used the application might not compile without changes.

. When updatíng records , tag and size are always checked

. The deprecated module unix is removed

. See the documentation

Aúffiat¡c t€sring: 15 Er¡csson AB, UKIUK

entcssor f

i,,t
i

8

þuv'¿uv' - raruolparrls Sida I av 4

Erlang/OTP User Conferen ce 2003 - Participants

,-\

t
a

at erix.eriosson.se

at erix.ericsson.se

Sweden

Sweden

Sweden

Chairman and
ohan Blom Arts Sweden ohan.blom at mobilearts.se

Arts Sweden at home.se

Carlsson Sweden osd.uu.se

Däcker Sweden arne

Gustafsson Sweden

ohn Sweden at cs.ohalmers.se

Lindahl sala Swede,n

Sweden com
Lundin Sweden at erix.eriosson.se

Pettersson sala Sweden at csd.uu.se

Rémond France at

sala Sweden

José Sánohez Penas of Corunha at dc.fi.udc.es

Schutte Bank South Afrioa SCHUTTE tebabank.com

ail USA com

öm Tömlvist ortel Sweden be bluetail.com

Sweden enosson.com

er Wilhelmsson Sweden at it.uu.se

Williams Sweden williams at eriosson.oom

ts
Andersson

Anderton

Arendt

/tFfr^¡^^^^lñ i , _t ô^^â 11 1â

EUC'2003 - Participants Sida2 av 4

s Sweden at sics.se

I',Q

Pub

Pub

Pub

Pub

ohan ortel Sweden bluetail.com

Bihari bihari at ericsson.oom

örklund ortel Sweden bluetail.com

scal Brisset France ascal.brisset at cellioium.oom

Bolinder Sweden

Çesarini &,

at eth.eriosson.se

Fredlund Sweden se

Fröb ortel Sweden at bluetail.com

Gorrie ortel Sweden at bluetail.com

Grandin Sweden

Grebenö Sweden at bluetail.com

Gudmundsson Sweden

Gustavsson Sweden enx.encsson.se

Gr¡thrie Soottish Network Scotland co.uk

Hallin Sweden se

Hansen Sweden

Hedeland

Horváth

ortel

se

Stocltolm, Sweden at

encsson.com

thomas.arts at ituniv.se

g.ask at telia.oom

qballro at cbe.eriosson.se

-Olof.Bauner at ericsson.com

cb47 at kent.ac.uk

er at se

Stockùolm, SwedenEricsson

of Kent

Sweden

Olof Bauner

Sweden

SwedenArts

Ask

Balla

Be,nao Earle

Bertil Karlsson

DlJw LvvJ - räI]lçrpants

Karlsson Creado

Sida 3 av 4

Sweden creado.com

(^)

Pub

Pub

Bengt.Kleb erg at ericsson.com

Sweden

at nortelnetworks.com

at com

corelatus.se

at eriosson.com

se

at eriosson.com

.nilsson enosson.com

Stoclûolm, Sweden

Sweden

Swedm

Sweden

Sweden

at eriosson.com

Watt

ScotlandNetworkScottish

N
Niskanen

at macs.hw.ac.uk

cbe.eriosson.se

eth.eriosson.se

Sweden

Scotland

Sweden

Sweden

ukC.Reinke at kent.ac.

stromme at telia.com

at bluetail.com

oomat

Stookholm, Sweden

ofKent

encsson.comvadkerti

Szabolos.Biro at eth.eriosson.se

S.J. ke,nt.ac.uk

Toth at eth.ericsson.se

walerud.comWalerud

Peter Toth

Vadkerti

Szabolcs

Simon

at bluetail.comSweden

chris.williams at ericsson.com

Canterbury, England

Sweden

Sweden

Sweden

Nortel

CellPoint AB
s

Manai

Mattsson

Ericsson

of Kent

se

Nortel

Sweden

ortel

Sweden

Larsson

Linder

Nilsson

Reinke

Tony Rogvall

Sebastian Strollo

Per Einar Strömme

Wikström

Williams

Gl t ^. / /ft. \ ì, ,f: ^ ^ O/ ô
^,1 ^7 ^,-

-
¿t Ttt rrrtô /r^ â \ -f¡ ^ /: - 2 _ ^ -- t - 1- t ^ - t

': - .:i - --' -'.i i*-E:9 '.

' r' ii, i-+

^^^^ rr r^

EUC'2003 - Participants Sida 4 av 4

2003-r l-12 o send a mail theu at u an

-Þ

!'¡Ûi ='i î ì F{siqf i¡ i f; ' írìí'ìí'ì._- _ - :1_
5¡åËU: l;i-¡i ie.ï i'¡i,¡ ¡i ,Ëjil åitui'i aiia,iÉiìbti

