. Erlang User Conterence 2003 ' Sida 1 avl

9th International Erlang/OTP
User Conference

Stockholm, November 18, 2003

Proceedings

EUC2003 http://www.erlang.se/euc/03/

Ericsson AB

P.O. Box 1505

SE-125 25 Alvsj6 Stockholm

Sweden N
ERL A N G

file://C:\Mina%20dokument\ET1IC'2003\nroc. html 2003-11-12

LuUv Luvud - rFTOgramme Sidalav1

Erlang/OTP User Conference 2003
Conference Programme _ —=) J,

— —
— e —

Applications I

08.30 Registration.

09.00 Why we designed Erlang.
Mike Williams, Ericsson.

09.25 Yet Another Web Gui Framework.
Géran Bége and Johan Blom, Mobile Arts,

09.50 3D Video Game Development in Erlang.

Mickaél Rémond.
10.30 Coffee.
Applications IT
11.00 How we utilized Erlang to Develop a Banking System and Financial Transaction
Switches.
Danie Schutte, Teba Bank.

11.30 CyberActhletics - Open Source and the Age of Wireless.
Ulf Wiger, Ericsson.

12.00 Talking LDAP and Radius from Erlang.
Torbjém Témkvist, Nortel.

12.30 Lunch.

Technology I

14.00 Getting Erlang to Talk to C and C++ (or from ei to UBF).
Hal Snyder, Vail, and Leon Smith, Case Western Reserve University.

14.30 Erlang/Quick Check.
Thomas Atts, IT-university, and John Hughes, Chalmers.

15.00 Performance Analysis using Model Checking.
Thomas Arts, IT -university, and Juan José Sanchez Penas, University of Corunha.

15.30 Coffee.

L i Technology I ”

16.00 All you wanted to know about HiPE (and might have been afraid to ask).
K. Sagonas, M. Pettersson, R. Carlsson, P. Gustafsson and T. Lindahl, Uppsala University .

16.30 Profile-driven Inlining for Erlang.
Thomas Lindgren.

17.00 What's new in R9C.
Kenneth Lundin, FEricsson.

17.30 Close (and pub evening).

I Demonstrations (during intermissions)

Mickaél Rémond demonstrates the 3D Video Game.
Torbjém Tomkvist demonstrates the Ticket Tracker.

file://C:\Mina%?20dokument\EI 1C'2003\Proeramme html 2003-11-12

|
ERICSSON =

Why did we create Erlang?

Mike Williams
Ericsson AB
Stockholm
Sweden

mike@erix.ericsson.se

ACM Uppsain 20030829 Ericsson AB 1 Mike Wikams

ERICSSON 2

Maybe it didn’t happen exactly this way, but this
is the way I think it should have happened

ACM Uppsaia 20030829 Ericsson AB 2 Mike Wilkams

ERICSSON Z

Problem Domain - Highly concurrent and
distributed systems

O Thousands of simultaneous transactions
O Light weight transactions

0 Greatest CPU load is implementing concurrency and
communication not computation

O Many computers

O different types (Bigendians, Littleendians, Intel, Sparc, PowerPC
etc)

O share nothing (no shared memory, different communication
mechanisms (Ethemet, ATM, Proprietary))

0 Many OS’s
O Solaris, VxWorks, Windows, pSOS, Linux, etc

ACM Uppenia 20000625 Ericsson AB 3 Mike Wikams

ERICSSON Z

Problem Domain - No down time

O Not aliowed to have any planned or unplanned downtime

O Acceptance criterion: five nines = 99.999% uptime or 5 minutes
down time per year

O Recovery from software errors

0 Large systems will have software bugs
O Recovery from hardware failure

O Network failure, processor failure

U Enable adding / deleting computers and other hardware at
run time

O Update code in running systems

ACM Uppsala 200006259 Efcson A8 4 Mike Wikams

Z

ERICSSON Z

Problem Domain - Ease of programming

[0 Highly "expressive" programming language
O Easy portability between processor architectures

0 Large scale development (tens or even hundreds of
programmers)

O Incremental and exploratory programming

O Debugging and tracing - even in systems running at
customer sites

O Easy to fix bugs (patches) and upgrade at all phases of
design O even in systems running at customer sites

ACM Uppaaia 20000825 EfcssonAB S Mike Wiliams

ERICSSON Z

Solution Domain - Concurrency

O No existing industry quality OS or language offers light
weight enough threads / processes
O Processes must be independent
O No shared resources
O One process must not be able to destroy another process
O Reduce event/state matrix by selective message reception

ACM Uppsala 20000820 EricssonAB 6 Mike WREams

ERICSSON 2

Solution Domain - Concurrency & Distribution

O As we didn’t want to modify or create and new OS,

implementation of light weight processes needed to be
done in “middleware”, |.e. on top of the OS.

O Making processes independent requires either control of
the MMU or a language without pointers (or with safe
pointers)

O Reducing the event/state matrix makes the signal / state
model undesirable.
O The signal state model requires a thread only suspending at the

top level, not in a function/subroutine. This makes proper RPC’s
impossible

ACM Uppsala 20060606 Ercsn AB 7 Mike Wiliams

ERICSSON 2]

Solution Domain - Concurrency & Distribution:
Design decisions

O Implement concurrency in a virtual machine on top of
operating system.
O Use a language without explicit pointers.

D Use copying message passing as only interprocess
communication mechanism.

O Implement selective message reception.

O Make communication between processes on different
machines identical to communication between processes
on same machine.

O Type information retained at runtime enables automatic conversion
of Erlang terms to an external format.

ACM Uppssla 20020825 Ercgsson AB 8 . Mike Wikams

ERICSSON ?’

Solution Domain - No down time

O Principle for error detection: It is unsafe to allow the failing
part of the system to detect and correct failures itself

No ability to crash

The observer
Faili rt of Failfire
ailing part o --~clist e
the system Observer
ACM Uppsain 200000829 EricssonAB 9 Mike Willlams

ERICSSON Z

Solution Domain - No down time

O A software error in one process is best detected in another
process

O Failure of one processor is best detected by another
processor

O Frequently we want to be able to abort all the processes in
a transaction if one of them fails for some reason

ACM Uppsaia 20020829 Ericsson AB 10 Mike Wikams

ERICSSON ?|

Solution Domain - No down time

Design Decisions:

O Create a concept of a link” between processes. If a
process fails, a special message (a signal) is sent to all the
processes to which it has links.

O Default action of a process receiving a signal indicating

failure of a process is to ”die” and send on the signal to
all linked processes.

O By setting a special flag, (trap_exit) a processor can
override the default behaviour and receive the signal as an
ordinary message.

O Links are bi-directional - (maybe a design mistake?)

ACM Uppsain 200C0ES Ericson AB 11 Mike Wiliams

ERICSSON §|

Solution Domain - No down time

Design Decisions:
O Two cases:

O Server with a lot of dlients. If a dient fails sever needs to take
corrective action

O A lot of processes in a transaction O if one fails, all should fail.
O Link and Signal mechanism works across processor
boundaries.

O If a processor fails, signals will be sent to all processes which have
links to processes in the failing processor.
O Error handling philosophy: “Let it crash” and let other
processes clear up the mess.

ACM Uppseala 20000528 ErcssonAB 12 Mike Wiiams

ERICSSON Z

Solution Domain - No down time

0O Common design paradigm:

0 Let all active transactions be represented by groups of linked
processes

0 Store inactive (steady state) transactions in replicated robust
database (Mnesia)

O Let resources needed by transactions be allocated by resource
allocator processes which trap_exits and free up resources from
failing transactions

O Supervisor processes which trap_exits restart failing application on
suitable processors. Data for these applications is the configuration
data needed and the data for transactions in a steady state. (same
mechanism used for replacing processors).

ACM Uppsala 20000820 Ericsson AB 13 Mike Willams

ERICSSON Z

Solution Domain - No down time

Design Decisions:

0O Design the virtual machine so new code can be loaded
and processes can migrate to the new code.

O Ability to detect processes running old code.

O Design the standard design patterns (part of OTP) so that
they can convert data to a new format if needed.

O Application software needs to be aware of possible
software updating and failure recovery, but with
Erlang/OTP support the impact is minimised

ACM Uppsala 20020620 Ericsson AB 14 Mike Wiiems

ERICSSON Z

Problem Domain - Ease of programming
(reminder)

O Highly "expressive" programming language

O Easy portability between processor architectures

O Large scale development (tens or even hundreds of
programmers)

O Incremental and exploratory programming

O Debugging and tracing - even in systems running at
customer sites

O Easy to fix bugs (patches) and upgrade at all phases of
design - even in systems running at customer sites

ACM Uppsaia 200600629 Ericsson AB 15 Mike Wiltiams

ERICSSON 2

Problem Domain - Ease of programming
Design Decisions:

O Use high level functional language with automatic memory
handling and garbage collection

O Use execution of intermediate code by virtual machine to
obtain easy portability between processor architectures
O Simple non/hierarchical module system

O Erlang shell allows testing of functions directly without any
special test programs

O Virtual machine support for debugging and fault tracing

0 Dynamic code replacement also very useful while
developing / testing software

ACM Uppemia 20030820 Ericsson AB 16 Mike Wikams

ERICSSON Z

Comments

O We have frightened some people off by using:
O A functional language
O A non O-O language
0 Recursion, single assignment etc
O A virtual machine
D l.e. we have diverged a long way from industry
mainstream. We are changing very many parameters at
the same time.

O Attitude changes in "mainstream” is possible (remember what
peopie said about Garbage Collection before Java?)

ACM Uppsaia 200306829 Ericsgon AB 17 Mike Wiliams

ERICSSON Z

Comments

0 The use of Erlang is accelerating, the critical mass will
soon be reached!

ACM Uppsala 20020820 Ercsson AB 18 Mike Williams.

Yet Another Web GUI Framework

Goran Bage, Johan Blom

Mobile Arts

= Provides Messaging & Presence products to
Mobile Network Operators

+ Offices in Stockholm and London
+ References in Europe

« Founded 2001 by a team of mobile telecom experts with
extensive experience from development and standardisation of
GSM/UMTS/PDC/PCS platforms and applications, such as

» HLR, MSC/VLR, SSF, SCF, WAP-GW, MLC
» PrePaid Systems, Unified Messaging Systems

+ www.mobilearts.se

Background

+ GUI for an Alteon/Nortel Product
» Beautiful & powerful
> Never released?
» Client required Erlang and GTK

+ CLI and GUI for Mobile Arts products
> Web based GUI

Some observations

« Using a graphics environment, e.g GTK, Java
+ Powerful
+ Detailed layout
— Client box need special software

+ Web based GUI

+ Everyone has a browser
+ No need to install special client software

— Only polling
— Browser differences
— Limited layout control

Mobile Arts GUI, 1irst
Rl RO Bnpie

> Standard HTML only
> No frames
» CSS

+ but reality rules
> Frames
» Javascript

+ Messy result

» Browser dependencies (support Netscape 4, 7 and IE) in
Javascript and CSS

+ Many pages with similar functionality and layout

Template based GUI

+ XML like template notation

+ Separate different views
> Static structure and layout
> Dynamic content - interface to application
- button actions
. table content and options
. parameter checks

> Help texts

How 1t works

.

xmer|
xxx.gul
v
parse tree
v
Gode_lib.erl)—» code_gen
\ 4
-+ (xxx _gui.erl

URL: .../ﬁx:enhy
jnets <—(gui_lib.erl j
.
'HTML |

o

4—(gui_lib.fs ?

dify operator test file:///home/goran/MobileArts/gui_talk/doc/modify_page_example.htm

. . I . Modify operator test
Mobhlle oW Aros

. » |
Name Féﬂe Testare
Email: Waef
Description: g
Save

- input fields

Close E

Copyright ©® 2002-2003 MobileArts

modify page example.gul.txt

oo
oo

Template source for "modify page example"

Static/structure part

o oo

%
[)
k)

<page name="operator modify" style="command-page"
import="user modify gui 1lib"
jslib="operator client gui 1ib"
size="500" >

<section name="all" >
<button name="close" title="Close" action="close" />

<section name="data" style="command-area" layout="1" >
<section layout="2" >

<text> Password: </text> <password name="pwd" size="20"
/>
<text> Name: </text> <input name="name" size="1x20"
/>
<text> Email: </text> <input name="email" size="1x20
(1] />
<text> Description: </text> <input name="descr" size="3x30
" />
<wrapper name="service" >
<text> Service: </text> <select name="service" />
</wrapper>
<wrapper name="timeout">
<text name="timeout text"> CLI/GUI inactivity timeout:
</text>
<selectl name="timeout" />
</wrapper>
</section>
<button name="save" title="Save" />
<section>
<button name="reset" title="Reset" action="reset" />
<text> input fields </text>
</section>
</section>

<ref alias="all:close" />
</section>
</page>
Y
22 Dynamic part part

<code name="operator modify"
title="modify title($action, $add op:operator:name,

Sida 1 é

modify page example.gul.txt

$operator op:select:operator)”
lock="modify lock(Saction, Soperator op:select:operator)” >
<local name="action" value="gui_ lib:get_operation()" />
<local name="js_action" value="operation js($action)"™ />
<local name="operator”
value="get_ operator($action, $add op:operator:name,
$operator op:select:operator)" />

<section name="all" >
<script tag="password" name="data:pwd"
onchange="check password (~data:pwd)" />
<eval name="data:name" default="get name (Sdata:name, Soperator
)n />
<eval name="data:email" default="get email ($data:email, S$opera
tor)"
/>
<script tag="input" name="data:email"
onchange="check email (*data:email)” />
<eval name="data:descr" default="get_descr($data:descr, Sopera
tor)"
/>
<eval name="data:service:" show="show service($action)" />
<eval name="data:service:service”

value="operator_gui_lib:service_options($data:service:service)"
type="service_select type()" />
<eval name="data:timeout" show="show_ timeout ($action, $operato

r) ”
/>
<eval name="data:timeout:timeout”
value="timeout_ options ($data:timeout:timeout)" />
<script tag="selectl" name="data:timeout:timeout"
onclick="check ask value (“data:timeout:timeout, 5, 'posi
nt')" - -
/>
<eval name="data:save"
action="do_save data ($operator, Sdata:pwd, $data:name,
$data:email, $data:descr,
$data:service:service,
$data:timeout:timeout)” />
<script tag="button" name="data:save"
onclick="check user_ data($js_action, ~data:pwd)" />
</section>
</code>

Help text part

o0 o° oe
0% 0P o0

<help name="operator modify">
<info name="all:close">

Sida 2

-

modify page example.gul.txt

<hint> Close page </hint>
<message> Press button to close and remove page </message>
</info>
<info name="all:data:save">
<hint> Save operator data </hint>
<message> Press button to save data and remove page </message>
</info>
<info name="all:data:reset">
<hint> Reset input fields
</hint>
<message>
Press button to reset all input fields to original values.
</message>
</info>
<info name="all:data:pwd">
<hint> Enter (new) password </hint>
<message>
Enter (new) password here. You will be asked to verify this
password
before the (new) operator state is saved.
</message>
</info>
<info name="all:data:name">
<hint> Enter new or edit operator name </hint>
<message>
Enter new or edit old operator name information. Note that t
he
name
is not the same as the operator (login) id.
</message>
</info>
<info name="all:data:email">
<hint> Enter new or edit operator email address </hint>
<message> Enter new or edit old operator email address. </mess
age>
</info>
<info name="all:data:descr">
<hint> Enter new or edit operator description </hint>

<message> Enter new or edit old operator description. </messag
e>

</info>
<info name="all:data:service:service">
<hint> Select service </hint>
<message> Select service for this operator. </message>
</info>
<info name="all:data:timeout:timeout">
<hint> Set CLI and GUI inactivity timeout (min) </hint>
<message>

Set an inactivity time limit in minutes for CLI and GUI. If
the

user is
inactive longer that the given time the operator will be log

3

Sida 3

ged
out.
</message>
</info>
</help>

modify page example.gul.txt

Sida 4

modify page_ example merge.txt

%% The tree parts are merged using the name (and tag) attributes
<page name="operator modify" style="command-page"” ...>

<section name="all" >

<section name="data" style="command-area" layout="1" >
<section layout="2" >

<text> Password: </text> <password name="pwd" size="20" /

>
<text> Name: </text> <input name="name" size="1x20" /
>
<wrapper name="service" >
<text> Service: </text> <select name="service" />
</wrapper>
<wrapper name="timeout">
<text name="timeout_text"> CLI/GUI inactivity timeout:
</text>
<selectl name="timeout" />
</wrapper>
</section>
<button name="save" title="Save" />
</section>
</section>
</page>
B
%% Dynamic part part
%%
<code name="operator modify" ...>

<section name="all" >

%% Add onchange handler to password clause 'pwd' in section 'd
ata'

%% (in 'all'")

<script tag="password" name="data:pwd"

onchange="check password(~data:pwd)" />

%% Set default value of input clause 'name' in section 'data'’

<eval name="data:name" default="get name ($data:name, Soperator
)" />

%% Show wrapper combo all:data:service if condition evaluates
to

true
%% (not visible in example page)
<eval name="data:service:" show="show service($action)" />

10

Sida 1

modify_page_example_merge.txt

%% Add computed options to selectl clause all:data:timeout:tim
eout
<eval name="data:timeout:timeout"
value="timeout_options ($data:timeout:timeout)"” />

3% Add action code to button all:data:save
<eval name="data:save"
action="do_save_data($operator, Sdata:pwd, $data:name, .
'.}"
/>
%% Add onlick handler to button all:data:save
<script tag="button" name="data:save"
onclick="check_user_data($js_action, “data:pwd)" />
</section>

</code>

Help text part

o® o0 op
o0 0P o°

<help name="operator modify">
<info name="all:data:save"> %% Button 'save' in sect ‘data’ in s
ect
'all?
<hint> Save operator data </hint>

<message> Press button to save data and remove page </message
>

</info>
<info name="all:data:pwd">
<hint> Enter (new) password </hint>
<message>
Enter (new) password here. You will be asked to verify this
password
before the (new) operator state is saved.
</message>
</info>

</help>

Sida 2

11

modify page_example vars.txt

%% Variables/parameters are form-input values passed from caller (
may

be

%% the calling frame/page or this page) or local variables. Variab
le

]

3% identifiers start with $ (value of) or * (reference)

X

Static/structure part

P oe

2
%
<page name="operator modify" style="command-page"
import="user _modify gui 1ib”>

<section name="all" >
<section name="data" style="command-area" layout="1" >
<section layout="2" >

<text> Password: </text> <password name="pwd" size="20"

/>
</section>
<button name="save" title="Save" />
</section>
</section>

</page>
3
%% Dynamic part part
%%
%% The title attribute is computed by calling
%% user_modify gui lib: modify title
%% with parameters
%% Saction value of local parameter
2% $add op:operator:name value of name entered in input clause
%% add_op:operator:name in calling frame
%% $operator op:select:operator value of selected option in cla
use
%% operator_op:select:operator in calling
frame

<code name="operator modify"
title="modify title($action, $add _oOp:operator:name,
$operator op:select:operator)™
lock="modify lock($action, $operator op:select:operator)” >
%% The local variable action is set to the current action, 1i.e.
the

value
%% of the calling button id ("add" or "mod")
<local name="action" value="gui lib:get operation()" />

%% The action converted to a javascript string ('add' or 'mod')

Sida 1

19,

modify page_example vars.txt

<local name="js_action" value="operation js($action)" />

<section name="all" >

00 0P +

% when the button is pressed the javascript function
% check user data is called with the current action ('add' or

'mod"’)
%% and a reference to the password input object corresponding
3% to the clause all:data:pwd
<script tag="button" name="data:save"

onclick="check user_ data($js_action, data:pwd)" />
</section>

</code>

Sida 2

EAB/UPD/S Ulf Wiger

Rev PA1

P 5y S5
ERIISSON &£

CyberAthletics

Open Source and the Age of Wireless

Rev PA1 20030923 1 EAB/UPD/S UIf Wiger

. , ==
ERICSSON 2

Problem

* Athletics events are difficult to administer
» They are also difficult to follow

* The Swedish Athletics Federation would like some
software that supports event administration, statistics
reporting and continuous results service to the audience.

* ...but the Federation has no money

Rev PA1 20030823 2 EAB/UPD/S Ulf Wiger

2003-09-23

EAB/UPD/S Ulf Wiger

Rev PA1

Existing alternatives

* A few companies have their own software as part of a

package deal — expensive, and only an alternative at big
events.

* A few people have written their own software — often
incomplete, not extensible, and with no long-term support.

* Administering a "small” event is about as difficult
as administering a fairly "big” event,
but there is no money in it.

Rev PA1 20030923 3 EAB/UPD/S UIf Wiger

ERICSSON 2

The Open Source alternative

* Athletics in Sweden is a non-profit Popular Movement
("folkrérelse™). So is Open Source software development

* The software can be made available for free to all clubs in
the country

* Maintenance/improvements can be free/spontaneous or
paid for in preparation for important events

* Commercial players can build strategic add-ons on top of
the Open Source base, and charge for it (e.g. custom
adaptations for televised events)

Rev PA1 20030923 4 EAB/UPD/S Ulf Wiger

2003-09-23

EAB/UPD/S Ulf Wiger

Rev PA1

ERICSSON 2

The Mission

» Create an Open Source project aimed at developing
software for Athletics events.

» Try to tap into the pool of IT professionals devoting their
spare time to Athletics (there are lots of them)

» Try to involve universities

* Try to get commercial players to “plug in” proprietary
features for high-profile events (TV adaptation, custom
telemetry, custom presentation, ...)

Rev PA1 20030923 5 EAB/UPDI/S UK Wiger

o«
ERICSSON =

Not a New Idea

* We talked about doing this in 1985, but

— Wireless networks didn’t exist
and pulling coax cable across the stadium seemed problematic

— Computers were slow, clumsy and expensive

~ Freeware existed (GNU started in 1984),
but nobody (at least not 1) knew what it was

~ The World Wide Web revolution was years away

* We conducted some experiments and then
shelved the idea... until now

Rev PA1 20030923 6 EAB/UPD/S UK Wiger

2003-09-23

EAB/UPD/S Ulf Wiger

2003-09-23

ERICSSON &
Statistics
The Vision Server and
Events Calendar 553,‘
- WLAN suitable for a stadium S
* GPRSI/3G an alternative or complement i
+ Spectator gets the same kind of
information as if he/she were at
home in front of the TV
* The athlete can go home at night
and view the current statistics online
+ Lots of possible new features Statistics
Spectator uplo_ad &
i Service gueries
& =7 B
=7 Database &
" Admin. " Eventlogic
Client Server
Reav PA1 20030823 7 EAB/UPD/S UIf Wiger
ERICSSON 2
The Prototype
* Erlang-based server (so far 3.4 KLOC) for event logic
* Java-based client (so far 6.5 KLOC) for PDAs/laptops
* Client-server protocol specified using UBF
* Two user modes: 'spectator’ and ‘administrator’
Rev PA1 20030823 8 EAB/UPD/S Ulf Wiger

Rev PA1

EAB/UPD/S UIf Wiger

Rev PA1

ERICSSON 2

Server components

* Ubf - for protocol specification

* Mnesia/Rdbms - for database integrity

* Builder - for boot script support

* “packages” - for name space handling (& evaluation)

Rev PA1 20030923 ¢ EAB/UPD/S Ul Wiger

ERICSSON =

UBF

* Wonderful for client-server programming

* Quite stable

Elegant transport format — easy to read/debug
* All type-checking code is automated — bliss!

We had to add some stuff
~ OTP framework and packaging of the UBF code
~ Java-based UBF parser
= Contract-to-hr file generator

Rev PA1 20030823 10 EAB/UPD/S Ulf Wiger

2003-09-23

-

EAB/UPD/S UIf Wiger 2003-09-23

UBF Example

cath_plugin.con (UBF contract)

athlete id()
entry_number ()
born ()

athlete ()

constant () ;

int();

int ();

{athlete, athlete id(), name(),
born(), gender(), club{(), info()};

cath_plugin.hrl (Erlang source)

—record(athlete, {athlete id,
name,
ubf:con2hrl (born,
“cath_plugin.con”, gender,
[{outfile,”.../cath_plugin.hrl”}]). <.:lub,
info}).
Rev PA1 20030823 11 EAB/UPD/S Ulf Wiger

ERICSSON 2

Mnesia/Rdbms

* Rdbms automates referential integrity checks for mnesia
(e.g. "when deleting a club, also delete all its athletes”)

* <TabName>.<Contest> naming scheme — a new set of
tables for each contest (some tables have global scope)

* Prepared for physical separation of administrator and
spectator access (‘writer’ copies and ‘reader’ copies)
— unsure whether this will be needed even for big events.

* Making full use of Mnesia’s transaction support

Rav PA1 20030823 12 EAB/UPD/S UIf Wiger

Rev PA1 6

EAB/UPD/S UIf Wiger 2003-09-23

Packages

» Someone needed to evaluate it...

* Nice to get rid of the namespace problem

* You get used to the deep directory structure
* | had to add some patches to OTP in order

to get 'builder’ to work
client T gs —Ej”mping

Rav PA1 20030823 13 EAB/UPD/S Ulf Wiger

ERICSSON 2

The future

* Goal: to run this at some major event late next year
(after adding more features and running some field trials)

* Need to figure out how to best get universities to
cooperate with Open Source projects

« Start tying in commercial interests
* Demonstrate to foreign Athletics federations
* Try to attract an active developer community

Rev PA1 20030923 14 EAB/UPD/S Ulf Wiger

Rev PA1 7

EAB/UPD/S Ulf Wiger

Rev PA1

ERICSSON &

Possible new features

* Video on demand, event camera, replays, etc.
* Audio channel, expert commentary per event
* Chat, possibly also including the athletes
* Integrate electronic timing, wind measurements, etc.
 Statistics queries on-line

(includes the central statistics server, not yet started)
* XMLQuery filters for media

* Using e.g. ErlGuten to generate snazzy hardcopy reports

Rev PA1 20030923 15 EAB/UPD/S UY Wiger

2003-09-23

Torbjém Tormkvist

tobbe@nortelnetworks.com

NE2RTEL
NETWORKS Stioe 1
P .
What is LDAP ?
Client
« LDAP provides directory access, a centralized Pt
database of information about people, groups L ;
and other entities. =3
- Defined as a set of protocol operations against
LDAP _~_ _Server(s)
servers. IR
» Assumes one (or more) servers which jointly g [] \
provide access to the DIT (Directory LT
i ' ——0
Information Tree) ’ A

« Protocol described in ASN.1

NERTEL

NETWORKS

Slide 2

The Directory Information Tree (DIT)

* The DIT is made up of entries. - i
;N
+ Entries have names consisting of VA b
one (or more) attribute values. 7 I\
y 7N\
« The concatenatlon of the entry %) o Qe

names form a path, the
Distinguished Name (DN), which
uniquely Identlifles an entry.

EN. mndmtobhie, sl e pledesbitietail, doomaom

NEIRTEL ‘
NETWORKS Sliae 3

(Main) Protoco!l Operations

* Add/Delete/Modify entries.

+ Search the DIT (retreiving info)

* Authenticate the client (the bind-operation)

NEIRTEL

NETWORKS

Slide 4

Example: from the Erlang shell

1> {_,S} =eldap:open(["192.168.128.47"], [I).

{ok,<0.30.0>}
2> eldap:simple_bind(S,"cn=Torbjorn Tornkvist,cn=Users,dc=bluetail,de=com™,"qwe123").
ok
3> Base = {base, "dc=bluetail,dc=com"}.
{base,"dc=bluetail,dc=com"}
4> Scope = {scope, eldap:wholeSubtree()}.
{scope,wholeSubtree}
5> Filter = {filter, eldap:equalityMatch("sAMA !Name", "tobbe™)}.
{filter, {equalityMatch, (*Attribute ValueA jon', "sAMA N " "tobbe™} 33
6> Search = [Base, Scope, Filter].
[{base,"dc=bluetail,dc=com"},
{scope,wholeSubtree},
{filter, {equalityMatch,{'Attribute ValueAssertion’ "sAMA Name","tobbe"} }}}

7= eldap:search(S, Search).
{ok, {eldap_search_result,[{eldap_entry,
"CN=Torbjomn Tornkvist,CN=1Jaers, DC=bluemil, DC=com",
{{"memberOf",
["CN=TestGroup2,CN=Usera, DC=bluetail, DC=com",
"CN=TestGroup,CN=Users DC=bluetail DC=com",
"CN=Pre-Windows 2000 Compatible Access,CN=Builti,DC=bluetail DC=com",
"CN=Server Operators,CN=Builtin, DC=bluetail DC=com"]},
{"en",["Torbjorn Tomkvist"}},
{"company”,["Alteon Web Systems™]},
{"mail" ["tobbe@bluetail.com™},
{"givenName",["Torbjom™)},
{"instanceType",["47]},
{"astLogoff™,["0"]},
{"lastLogon”,("1271191093762671047},
{"logonCount’,[.1},
N Q—RTE L : mNil;/]\lloanahn |.oeds
NETWORKS (cap/bluetail com/CN=Configuration,DC=bluetail,DC=com™}J}} Stas s

Some eldap notes...

* Build a gen_server/supervisor harness around the eldap llbrary when
incorporating It into your system.

+ By using the option: {ssl, true} you will use the ssl application to setup an
SSL tunnel (LDAPS). (Make sure to also set the port fo 636)

*+ The eldap/test directory contains test code, and examples on how to setup

an OpenLDAP server.
*+ Eldap has been tested with OpenLDAP, Iplanet and ActiveDirectory LDAP-
servers.
NEIRTEL
NETWORKS Shoe 6

RADIUS

{Remote Authentication Dizi-in User Service)

* A protocol to carry authenticatlon, authorization, and configuration
Information between a Network Access Server, which desires to authenticate
its links, and a shared Authentication server.

+ Transactions client/server are authenticated through the use of a shared

secret, which also is used to encrypt any user password sent over the
network.

+ Information Is sent as Attribute-Length-Value 3-tuples, where new attributes

(e.g vendor speclfic) easlly can be added without disturbing existing
Implementations of the protocol.

NEIRTEL
NETWORKS

Sllae 7

A real example: the Nortel SSL-VPN

1. The user contact the Web-site and B i
Is presented with a login page. "' Btk \
2. ARadius Access-Request is sent R0 g
from the SSL-VPN to the Radlus " i
server. 4! ll‘ _
3. The Radlus server retumns an | SS1-VPN I
Access-Accept with authorization et
info. | \..3._, _,
L
4. The user accesses the Intranet via) 3.
the SSL-VPN portal. = T—
\\'-_._____..-r"f-

NERTEL
NETWORKS Stows ‘

Attribute dictionaries (FreeRadius).

ATTRIBUTE User-Name 1 string
ATTRIBUTE User-Password 2 string encrypt=1
ATTRIBUTE CHAP-Password 3 octets
ATTRIBUTE NAS-IP-Address 4 ipaddr
ATTRIBUTE NAS-Port 5 integer
ATIRIBUTE Service-Type 6 integer
ATTRIBUTE Framed-Protocol 7 integer
ATTRIBUTE Framed-IP-Address 8 ipaddr
1 7 ti olbfb]e
Type Length Value
NETRTEL
NETWORKS Stide 8

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

NEIRTEL
NETWORKS

Vendor specific attribute dictionaries.

VENDOR Alteon 1872

Alteon-Service-Type
Alteon-Xnet-Group
Alteon-ASA-Audit-Trail
Alteon-ASA-Audit-Source

VALUE Alteon-Service-Type Alteon-L4admin 250
VALUE Alteon-Service-Type Alteon-Slbadmin 251

26 integer Alteon
1 string Alteon
2 string Alteon
3 string Alteon

Slide 10

eradius/priv/dictionaries/

NEYRTEL
NETWORKS

Dictionaries and eradius

* 41 dictionaries taken from FreeRadius 0.9.1 are stored in

* These dictionaries are parsed and transformed into the corresponding files
containing Erlang records, as well as Erlang include files.

+ Code that uses eradius can choose which dictionaries to load.

Slide 11

Example: an Erlang program

go(IP, User, Passwd, Shared, NasiP) >
TraceFun = fun(_E,Str, Args) >
@ io:format(Str,Args),
io:nl()
end,
E =#eradius {servers = [[IP, 1812, Shared]],
user = User,
pasiwd = Passwd,
tracefun = TraceFun,
nas_ip_address = Nas[P},
eradius-atart(),
eradius:load_tables(["dictionary”,
“dictionary_alteon”,
"dictionary_sacend"]),
print_result(eradius:auth(E)).

print_result({accept, Attributes}) >
jozforman("Got ‘Accept’ with attributes: ~p~n",[Attributes]),
pa{Anributes);

print_result({reject, Attributes}) >
io:format("Got Reject’ with attributes: ~p~n",[Attributes]),
pafAnributes);

primt_result(Res) >
io:format{"Got: ~p~n",[Res]).

pa(({K, V) | As]) >
case eradius_dict:lookup(K) of
[A] >
io:format(” -3 = ~p~n",[Adkattribute.name,
to_list(V, A#attribute.type)]);
>
joxformat(” <not found in dictionary>: ~p~n",

NERTEL
NETWORKS

Slide 12

Example: ...the output...

2> etigo({192,168,128,1}, "support", Passwd, Passwd, {192,168,128,32)).
sending RADIUS request for support to {{192,168,128,1},1812}
0 got RADIUS reply Accept for support with attributes: [{{529,194),
<<0,0,0,72>>},
{{1872,1},
<<115,116,97,102,102>>}]
Got 'Accept’ with attributes: [{{529,194},<<0,0,0,72>>},
{{1872,1},<<115,116,97,102,102>>}]

®© Ascend_Maximum_Time = 72
Alteon_Xnet_Group = "staff™
true
NEIRTEL
NETWORKS

Slige 13

Radius Accounting

* Extends the use of Radius to cover delivery of accounting
information.

* Client sends Accounting-Request contalning attributes.

* Server replles with Accounting-Response.

NEZRTEL
NETWORKS

Slide 14

N

Types of Accounting-Requests.

* Accounting On/Off.
« Start/Stop accounting Info for a user.

= Interim-Update accounting info for a user.

ORTEL ‘
MNETWORKS Slide 15

NEIRTEL

Example of use: the Nortel SSL-VPN

» Sends info about how long time a user was logged on and what

* Used for audit trall logging, i.e logging of operator issued CL|

the termination cause was.

commands.

©
NETWORKS Sieo 16

Example: an Eriang program

-include(““dictionary_alteon.hri™). @

ace_start{User, SessId) >

acc() > Srvs = radacet_servers(),
eradius:stary(), NasIP = nas_jp_address(),
eradius_acc:start(), A= eradius_acc:new(),
fiuscload_tables(["dictionary”, R = set_session_id(
"dictionary_alteon"]), set_user(
@ User= "tobbe”, set_servers(
Sessionld =42, set_nas_ip_address({
R=acc_start(User, Sessionld), set_login_time(A),
Login = R#rad_accreq. login_time, NaslP),
sleep(10), Stvs),
(@)| VendAws=[{?Akeon, [{?Alteon_ASA_Audit_Trail, User),
"Thin is a test!"}]}], Seasld),
ace_update(User, Sessionld, VendAtrs), eradius_acc:ace_start(R),
sleep(10), R
@ ace_stop(User, Sessionld, Login,
TREASON_LOGOUT).
NERTEL
NETWORKS Siide 17

Example: the Radius accounting log

Mon Nov 10 14:14:47 2003
Acct-Status-Type = Start
Acct-Session-Id = "42"

@ User-Name = "tobbe”

NAS-IP-Address = 192.168.128.32
Client-TP-Address = trana bluetail.com
Acct-Unique-Session-1d = "000b40c 13fd3ef1a"
Timestamp = 1068470087

Mon Nov 10 14:14:57 2003
Acct-Status-Type = Alive
Acct-Session-1d = "42"
User-Name = “tobbe"
NAS-IP-Address= 192.168.128.32

@ Aleon-ASA-Audit-Trail = "This is 2 test!”

Client-TP-Address = trana.bluetail.com
Acct-Unique-Session-Id = "000b40c 13fd3ef1a”
Timestamp = 1068470097

Mon Nov 10 14:15:07 2003
Acct-Status-Type = Stop
Acct-Session-Time =20
Acct-Session-Id = "42"

(@ Acct-Terminate-Cause = User-Request
User-Name = "tobbe”
NAS-IP-Address = 192.168.128 32
Client-TP-Addreas = trana bluetail.com
Acct-Unique-Session-Id = "000b40c 13fd3efl1a"
Timestamp = 1068470107

NERTEL

NETWORKS

Slide 18

-

Available via the sourceforge jungerl cvs:

http://sourceforge.net/projects/jungerl/

Recommended References:

LDAP: RFC-2251, “LDAP System Administration” (OReilly), ,
Articles in Linux Journal July-Sep 2003,

Radins: RFC-2865,2866, “Radius” (O'Reilly),

I Nﬁﬁg}svlv'o'u(s Slige 19 A

Getting Erlang to talk to C and C++
from ei to UBF

Hal Snyder
Vail Systems, Inc.
hal@uvailsys.com

Rick Pettit
Vail Systems, Inc.
rpettit@vailsys.com

what this talk is about

current platform at Vail Systems
the problem: C/C++ and Erlang
first approach: ad hoc

second approach: ei, C nodes
third approach: UBF

conclusions

Vail Systems

* computer telephony applications service provider
* voice over IP (SIP)

» custom IVR and VoiceXML

» 2 sites, 3 million calls / day

» OTP for distributed services: LCR, CDR, RM, stats

the problem: C/C++ and Erlang

. %)_tli_sging systems in separate camps: C/C++ and

* connecting the two has been expensive in the
past

* new apps: which way to go? unpleasant
either/or

* one goal: C/C++ camp using mnesia with
minimal Erlang

first approach: ad hoc

 description
° reasons

* results

ad hoc: description

* three tiers
1. C++app
2. OTP request broker same host as C++ app
3. remote OTP node

* ad hoc protocol - went through two major versions

request: <Id><synclasync|handoff> <M, F,A>
reply: <Id><reply data>

e adds 1 thread for heartbeat

* C++, heavy use of STL, fancy OO wrappers (functors) for callbacks

ad hoc: reasons

e C++/STL/threads trusted

* TCP and ad hoc protocols trusted

* OTP ... risky

ad hoc: results

* initial use: least cost routing of outbound calls

* 5 months to write and test

* 1274 lines C++ source, 1521 line regression test
* 1 year in production

* 48 million requests

* 0 errors

* 0 downtime

second approach: ei, C nodes

 description
* reasons

* results

el, C nodes: description

* twotiers
1. C++ client calling Mod,Func,Arg
2. remote OTP node

» OTP resources already in use, at known "intentional” DNS names

+ software stack on C++ client
1. C++app
2. C++ driver with app-specific objects
3. our C driver, generic - heartbeat, reply matchup
4. Ericsson's ei_rpc

» each application thread calls M,F,A, waits for response

el, C nodes: reasons

greater confidence in OTP

incidental: shared lib for ad hoc method
developed build problems

didn't want to write another app-specific driver
ei_rpc uses proven protocol - OTP transport

Ericsson wrote a lot of code for us
— OTP server code - erts
— C client code - ei

no change to existing OTP services

ei, C nodes: results (1 of 3)

ERL_TICK => pthreads hell (again)
working transactions after two days of coding

memory management - terms, messages,
queues

still finding thread-related problems 4 weeks
later

message sequencing - feels like rewriting TCP
every time we do one of these

mantra of concurrency: no shared data

ei, C nodes: results (2 of 3)
message sequencing with ei_rpc

server:

addl (Num) -> timer:sleep(2000), Num + 1.
client:

>./ei_rpc_cli

connected to nodel@fafner.vail £d=3

+ 1 = ? ERL_TIMEQUT

= ? ERL_TIMEOUT

1
2
? ERL_TIMEOUT

w300 U WhEk o
+ 4+ + o+
FRRRRAEP R
[I A

W Wb

ERL_TIMEOUT

ei, C nodes: results (3 of 3)
message sequencing with ei_rpc

OTP uses PIDs as transaction IDs

* C nodes don't have real PIDs

work-around: in ei_connect.c, delete
self->num = £d;
from ei_reg_send() and ei_rpc_to()

ei, C nodes: results (concluded)

* initial use: C++ call control engine
- OTP resource for call setup info
- integration in progress

» all interface code
- 5 weeks, so far, still debugging C

- C shim 2698 lines, 1571 line test
- C++ app interface 433 line, 77 lines test

third approach: UBF

* description
* reasons

e results

UBF: description

two tiers
1. C++ server doing telephony control
2. OTP dlient coordinating work requests, resource management

C++ server

- lots of threads for telephony RTP streams etc.
- one thread iterative TCP UBF server for work requests

OTP client
- web etc. distributed resource for command and status

UBF: reasons

let us write apps in OTP instead of threaded C++
better security than ei_rpc
allow varied endpoints, e.g. Java client, C++ server

self-documenting protocol, contract checker

UBF: results (1 of 3)

initial use: call bridging engine
- OTP gets work requests from outside,
tracks resources

- C++ does outdial, patches calls
together

UBF: results (2 of 3)

all work so far is on C++ server
-~ UBF(B) grammar - 1 hour
— Erlang simulator plugin - 3 hours
— flex grammar - 4 hours
— bison grammar - 8 hours
— hooks to threaded C++ app - weeks

1o

UBF: results (3 of 3)

UBF experience so far
* want to separate contract checker and UBF server

* backward lists unfriendly to pipelines - [abc]
alternative?

* similarly, should semantic tag precede value it modifies?

* allow alternative radix on integers - Ox? 16#?

some payoff already
* UBF(B) grammar/contract is checkable/executable
* Erlang simulator also helps validate design

conclusions

* C++/OTP interface needed, must appeal to non-

OTP-zealots

* ad hoc TCP protocol was very reliable, but great

inertia to replicating the approach

* ei_rpc some implementation surprises, added to

toolkit but not dernier cri

* UBF - very helpful in design and early
implementation... to be continued ...

11

links

Joe Armstrong's UBF site:
http://www.sics.se/~joe/ubf/site/home.html

"Distribution by another means" thread on erlang-questions
http://www. erlan%. org/ml-archive/erlang-
cuestions msg .

ERLANGS EXTERNAL FORMAT and distribution protocol
otp_src_R9C-O/erts/emulator/internal doc/erl ext dist.txt

follow-up and code for this presentation will be at
http://www.drxyzzy.org/euc2003

Those who ignore Erlang are doomed to repeat it.

10

Erlang/QuickCheck

Thomas Arts, IT University
John Hughes, Chalmers University
Gothenburg

A little set theory...

e Recallthat X U Y=Y UX?

-

A little set theory...

* Recallthat XUY =Y U X?
* Erlang has a sets library. Does this hold?

A little set theory...

e Recallthat X U Y=Y U X?

* Erlang has a sets library. Does this hold?
* Property: XUY=YUX

A little set theory...

 Recallthat X UY =Y UX?
 Erlang has a sets library. Does this hold?
e Property: VX.VY.XUY=YUX

A little set theory...

 Recallthat XU Y=Y UX?
* Erlang has a sets library. Does this hold?
» Property: VX:Set. VY:Set. XUY=YUX

°

A little set theory...

Recallthat X UY =Y UX?

Erlang has a sets library. Does this hold?
Property: VX:Set. VY:Set. XUY=YUX
In Erlang/QuickCheck:

?FORALL (X,set(),
?FORALL(Y,set(),
sets:union(X,Y) == sets:union(y,X)))

A little set theory...

Recallthat X UY =Y U X?

Erlang has a sets library. Does this hold?
Property: VX:Set. VY:Set. XUY=YUX
In Erlang/QuickCheck:

prop_union_commutes() ->
?FORALL (X,set(),
?FORALL (Y,set(),
sets:union(X,Y) == sets:union(Y,X))).

Verifying the property

12> qc:quickcheck(
setsspec:prop_union_commutes()).

Verifying the property

12> qc:quickcheck(
setsspec:prop_union_commutes()).

Falsifiable, after 45 successful tests:
{'@,sets,from_l1ist,[[-6,7,11,10,2]]}
{'@',sets,from_1ist,[[7,7,1,-4,11,-7]1]}
ok

“function call” These sets are a
counterexample.

Fixing the Property

* Sets are not represented uniquely by the sets library

« union builds two different representations of the
same set

equal(sl,s2) ->
Tists:sort(sets:to_list(sl)) ==
Tists:sort(sets:to_list(s2)).

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
equal (sets:union(X,Y),sets:union(y,x)))).

Checking the fixed property

15> qc:quickcheck(
setsspec:prop_union_commutes()).

OK, passed 100 tests
ok

What is QuickCheck?

* A language for stating properties of
programs (implemented as a library of
functions and macros).

* A tool for testing properties in randomly
generated cases.

Properties
* Boolean expressions + ?FORALL + ?IMPLIES.

prop_positive_squares() ->
?FORALL(X,int(),Xx*>=0).

prop_larger_squares() ->
?FORALL(X,int(),
?IMPLIES(X>1, A precondition
X*X>X)) .

What are int() and set()?

* Types?

What are int() and set()?

* Types? NO!!!

* Test data generators.
— Define a set of values for test data. ..
— ...plus a probability distribution over that set.

e Test data generators are defined by the
programmer.

Defining generators

¢ We often want to define one generator in
terms of another, e.g. squares of ints.

* But we cannot do this by writing
N = int(), N*N

Returns a test Result should be
data generator, a generator, not
not an integer. an integer.

Defining generators

* We often want to define one generator in
terms of another, e.g. squares of ints.

* But we cannot do this by writing
N = int(), N*N
* We define a generator language to handle
generators as an ADT.
?LET(N,int(), return(N*N))

Bind a name to the Convert a value to a
value generated. constant generator.

How can we generate sets?

* An ADT can only be generated using the
ADT operations.

* Choose randomly between all ways of
creating a set.

A generator for sets

set() -> frequency([

{6,7LET(L,1ist(int()),
return({'@',sets, from_list, [L]}))},

{6,?LET(S,set(),?LET(E,int(),
return({'@',sets,add_element, [E,S]1})))},

{1, ?LET(P, function(bool1()),?LET(S,set(),
return({'@',sets,filter,[P,S]1})))},

1.

weights ?FORALL performs a call
when it sees '@"

10

A problem with random generation

* How do we know we tested a reasonable
range of cases, when we don’t see them?

A problem with random generation

* How do we know we tested a reasonable
range of cases, when we don’t see them?

 Simple approach: collect statistics on test

cases, so we see a summary of the test data.

* (A simple way to measure fest coverage,
which is a tangled topic in its own right).

11

An instrumented property

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
collect(sets:size(sets:union(X,Y)),
equal (sets:union(X,Y),
sets:union(Y,x))))).

Collect statistics on
the sizes of the
resulting sets.

Output: the distribution of set sizes

27> qc:quickcheck(
setsspec:prop_union_commutes()).

OK, passed 100 tests

16% 3 7% 7 3% 16 2% 9 1% 21
11% 4 6% 12 3% 14 2% 0 1% 18

9% 2 5% 13 3% 11 1% 20 ok
8% 6 4% 8 3% 5 1% 10
8% 1 3% 17 2% 24 1% 22

12

Testing concurrent programs

A simple resource allocator:

« start() — starts the server

« claim() — claims the resource . .
in the client
« free() —releases the resource

These functions are called for their effect, not

their result. How can we write QuickCheck
properties for them?

Traces

» Concurrent programs generate traces of
events.

* We can write properties of traces — they are
lists!

13

Testing the resource allocator

client() -> claim(), free(), client().

clients(N) — spawns N clients.
system(N) -> start(), clients(N).

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
.. property of T .))

The trace recorder

Running | Evyents Trace

system " recorder

» What should the recorded events be?

* How should we capture them?

Random traces: a problem
* What does this print?

test_spawn() ->
spawn(io,format,["a"]),
spawn(io, format, ["b"]).

Random traces: a problem
* What does this print?

test_spawn() ->
spawn(io, format, ["a"]),
spawn(io, format, {"b"]).

- ab — every time!

15

-

Random traces: a problem
* What does this print?

test_spawn() ->
spawn(io, format,["a"]),
spawn(io, format, ["b"]).

- ab —every time!

* But ba should also be a possible trace — the
Erlang scheduler is too predictable!

Solution: simulate a random
scheduler

* Insert calls of event(Event) in code under
test.

— Sends Event to trace recorder
— Waits for a reply, sent in random order

» Allows the trace recorder to simulate a
random scheduler.

* Answers question: which events should be
recorded?

16

Simple example revisited

do(E) -> event(spawned), event(E).

?FORALL (T,

?TRACE(3,begin spawn(?MODULE, do, [a]),
spawn (?MODULE, do, [b])

end),

collect(rename_pids(nowaits(T)),true)))

Simple example revisited

0K, passed 100 tests

18% [{exit,{pid,1},normal}, 18% [{exit,{pid,1},normal},

{event,{pid,2},spawned},
{event,{pid, 3}, spawned},
{event,{pid,2},a},
{exit,{pid,2},normal},
{event,{pid,3},b},
{exit, {pid, 3},normal},
timeout]

{event, {pid,2},spawned},
{event, {pid, 3}, spawned},
{event, {pid,3},b},
{exit, {pid,3},normal},
{event, {pid,2},a},
{exit, {pid,2},normal},
timeout]

[7

Simple example revisited

OK, passed 100 tests
18% [{exit,{pid,1},normal}, 18% [{exit,{pid,1},normal},

{event, {pid,2},spawned}, {event, {pid,2},spawned},
{event, {pid,3},spawned}, {event, {pid, 3}, spawned},
{event, {pid,2},a}, {event, {pid, 3},b},
{exit,{pid,2},normal}, {exit,{pid,3},normal},
{event, {pid, 3},b}, {event,{pid,2},a},
{exit,{pid, 3},normal}, {exit,{pid,2},normal},
timeout] timeout]
Pids are renamed Trace recorder times
for collecting out if no events happen
statistics " for a while
A surprise!

) 1% [{event, {pid,1},spawn},
Pid=spawn(fun()-> {event, {pid, 2}, spawned},
event(spawned), {event, {pid, 2}, ok},
event(ok) end), {event, {pid,1},ki11},

event(spawn), {exit, {pid,2},killed},

exit(pid, kill), {exit, {pid,2},noproc},

event(kill) {exit,{pid,1},normal},
timeout]

No doubt there is a good reason...

18

Trace properties

 The resource allocator guarantees exclusion
* Instrumented code:

client() >
event(request),
claimQ),
event(claimed),
event(freeing),
free(),
client().

Trace properties

 The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES({event,_,claimed}),
next(until (?MATCHES ({event,_, freeing}),
thot(?MATCHES ({event,_,claimed})))))))))

19

Trace properties

* The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T, ?TRACE(3,system(N)),
satisfies(T,
alwa; 's(timplies(?MATCHES ({event,_,claimed}),
ne. ‘until(?MATCHES ({event,_, freeing}),
“(?MATCHES({event,_,claimed})))))))))

The trace T satisfies...

Trace properties

* The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES ({event,_,claimed}),
ne “t(until(?MATCHES ({event,_, freeing}),
+(?MATCHES({event,_,claimed})))))))))

...it’s always true that...

20

Trace properties

 The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES({event,_,claimed}),
next(until (?MATCHES(“event,_, freeing}),
tnot(?MATCHES ({evet claimed})))))))))

...if the current event is claimed...

Trace properties

 The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES ({event,_,claimed}),
next(until (?MATCHES ({event,_, freeing}),
tnoiL{°MATCHES({event,_,claimed})))))))))

...then after this event...

21

Trace properties

 The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3, system(N)),
satisfies(T,
always(timplies(?MATCHES ({event,_,claimed}),
next(until(?MATCHES({event,_, freeing}),
tnot(?MATCHES({event claimed})))))))))

..-until a freeing event happens...

Trace properties

* The resource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES ({event,_,claimed}),
next(until (?MATCHES ({event,_, freeing}),
thot(?MATCHES({event,_,claimed})))))))))

...there will be no further claimed event.

22

Trace property language

* Based on linear temporal logic
— Logical operations:
tand, tor, tnot, ?TIMPLIES.

— Temporal operations:
always, eventually, next, until.

— Event matching operations:
?MATCHES, ?AFTER, 7NOW.

A failing property
 The resource is always eventually granted.

prop_eventually_granted(N) ->

?FORALL (T, ?2TRACE(3, system(2)),

satisfies(T,

always(?AFTER({event, Pid, request},

eventually(N,
tor(?Now({event,Pid2, claimed},
Pid==Pid2),
?MATCHES (more))))))).

23

A failing property

» The resource is always eventually granted. Failing trace of 23

steps found after

prop_eventually_granted(N) ->

?FORALL (T, ?TRACE(3, system(2)),

satisfies(T,
always(?AFTER({event, P+,
eventually(N,

tor(?Now({event,Pid2, claimed},
Pid==Pid2),
?MATCHES(more))))))).

After at most N steps

End of the
recorded trace

80 successful tests.

In progress

» Testing generic leader election behaviour
» Properties

— Eventually a leader is elected, even in the
presence of failures

— There is always at most one elected leader

24

Experience

* There are as many bugs in properties as in
programs!
— QuickCheck checks for consistency between the two,
helps improve understanding
* Random testing is effective at finding errors.

* Changes our perspective on testing
— Not "what cases should I test?”
— But ”what properties ought to hold?”

QuickCheck is Fun!

Try it out!

www.cs.chalmers.se/~rjmh/ErlangQC

25

References

» Erlang/QuickCheck is based on a Haskell original
by Claessen and Hughes.

— QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs, ICFP 2000.

— Testing Monadic Code with QuickCheck, Haskell
Workshop 2002.

— Specification Based Testing with QuickCheck, in Fun of
Programming, Palgrave, 2003.

— Testing and Tracing Functional Programs, in

Advanced Functional Programming Summer School,
Springer-Verlag LNCS, 2002.

Questions?

26

Answers

(The remaining slides may be used to answer
specific questions).

Random functions are pure
functions!

1> F = qc:gen(gc: function{qc:nat()),10).
#Fun<qc.46.1469i5i7~

2> F(1). Invokes 8 generator

8

3> F(2).

9 Random results

4> F(3).

3

5> F(1). But consistent ones

8

27

Controlling sizes

* Test cases are regenerated w.r.t. a size

parameter, which increases during testing.

prop_union_commutes() ->
?SIZED(N, resize(5*N,..))

Bind N to the Reset the size
size parameter parameter

* Set sizes now range up to 135 elements.

28

Performance Analysis with Model Checking®
Extracting performance information from
Erlang source code

Juan José Sanchez Penas
LFCIA, University of Corunha, Spain
juanjo@lfcia.org

Thomas Arts

I'T-university, Goteborg, Sweden
thomas.arts@ituniv. se

EUC 2003. Stockholm, 18th November

*Work partially supported by MCyT, Spain, Project TIC 2002-02859

General Approach Overview

e Given a real distributed system:

INPUT Functional requirements
Design and implementation of the system
Performance requirements

e Using techniques from formal methods:

Y
Erlang to process algebra compiler
TOOLS Process algebra tools
Model checking and graph analysis algorithms
e We want to find and fix:
Functional problems
' Performance problems
OUTPUT

Design problems (maintainability, flexibility)

Case Study: VoDKA Server - The project

Hierarchical distributed multimedia server (LFCIA, last 3 years)

Funded by an European Project and R, a Cable Telecommunications Com-
pany

Classical VoD server requirements: Huge storage capacity, high bandwidth,
predictable (low) response time, support for a great amount of concurrent
users and fault tolerance

Special requirements for the VoDKA project: Scalability (upwards and
downwards), adaptability and low cost

Hardware: Adaptation of Beowulf Cluster architecture

Software: Flexible distributed architecture based in Erlang/OTP platform

Case Study: Hierarchical Flexible Architecture

VODKA

e

e Flexible architecture based on a hierarchy of specialized levels

™~

Monitor

Monitor

Slorage

Monitor VODKA _slave VODKA_slave VODKA _slave
Stream Streaming Cache | _.._..__ Storage
Group Sched Sched n cache Sched
levels
RTP
Cache
H.263 HTTP Group Storage
Frontend \ HTTP Driver
Streamer (File)
HTTP
Frontend
Cache Cache
Driver | «oooooreetes Driver
(File) (File)

e Each level is composed by distributed Erlang processes

Group

Storage
Driver
(TAPE)

e Extensive use of generic server and supervision tree Erlang behaviours

Storage
Group

Storage
Driver
(HTTP)

EUC 2003

Case Study: Hierarchical Flexible Architecture (II)

VODKA

~

N

Video On Demand Kernel Architecture

Smimoff

Monitor VODKA _slave VODKA _slave Monitor
Mo bb2
Stream DD2: Streaming Storage Storage
Group lookup Sched lookup Sched lookup Group
lookupAns(A) lookupAns(A) IookupAns(A,B.C)
MO : loskup
DDI : ' lovkupAnstC)
RTP lookup : f(State, MO)={DS1,DD2) luokup OUKLPAN
LoOKUPARSIA) . i iennensonnns f(State, MO)=DS2 nSAY laakupAns(B)
Storage .
H.263 HTTP rag Storage St
Frontend N\ [Lrrp transfer Driver Driver Gor(r)z:ge
s i R e’ Sl (File) (TAPE) P
HTTP /
MO Frontend
—) Vidéo Strdam Storage
sesjmmsx HTTP Ew-------‘h---;----- - Driver
DDI DS1 y (HTTP)

STREAM I/O

STORAGE I/O

HTTP SERVER

Requestl

Request2(MO)

VODKA Relevant Data

Consulls

SERVLETS

XSLT

Response |

Consults

Management Data (MO)

Observer

q___ﬁAgenl

A

EUC 2003

Case Study: Distributed Scheduling

e Completely distributed scheduling subsystem:
no global state, no global decision

e Each process in the scheduling subsystem can implement:

Restrictions (number of connections, maximum bandwidth)
Scheduling function (filtering, cache algorithms, admission policy)
Cost (state of the component and resources still available)

e We want to analyse the system:

Information for the ‘user’ of the system (R) - capacity of the system

Information for the designer of the system - how to improve it (bottle-
necks)

EUC 2003

The Goal: What do we mean by performance analysis?

e Black-box evaluation (requirements oriented)

System capacity
Component capacity

User point of view Scenario checking

e Architecture and protocol analysis (internal de-
sign oriented)

Developer point Finding /checking bottlenecks

of view Bottleneck summary from the program graph
Extracting/checking message protocol and archi-
tecture

Finding required capacity for a new component

EUC 2003

The Goal: Problem Explanation by Example

e Goal: Given a configuration for the server (the processes, the storage
devices, all the restrictions, scheduling functions, and costs):

How can we extract performance information from the source code
of the system?

O e We want to be able to answer questions like:

What is the maximum number of users in the system?

What is the minimum number of users such that serving any MO is not possible?
What is the minimum number of users such that serving MO1 is not possible?
How many people can watch MO at the same time? (best case)

How many people can watch MO1 such that the system can still serve MO2?
How many people can watch MO1 such that serving MO2 is guaranteed?

Would it be better to move MO from storagel to storage2?

Where should we move MO1 for being able to serve it to N users?

Why (bottleneck) MO cannot be served to N users at the same time

What are the minimum requirements for a new component

EUC 2003 7

The Proposed Tool: A Prototype (I

SHORTEST FAIL
LOHOEST GEN BUCCLSS
HAX W PLAYS
HAX WM FLAYS FOR

{bTiiple

After:

— —dit
B Edit

]
) L I

150 a1 w4 AE 8T
& 5T wd 15 a7
190 a3 25 bE a7

bt buplres I Genarato: nodal

[T7] | oot

Yiew modal I Check props [

§ % A i - g

Generel foraulas

Vigw I Check
View Check
¥low Check

Viow _! Chack

Scansrio anelysis

I'p_l,a;(nl) play'(i? > Can happen:
Yiew Check

Scanar 1o analysia

F[I;l-ne‘ U Ha11,0 Y arse.

View J Check

Namo
Type

Max. bandvioth

i A

H e . Cost

s
L VodkaVLeve &d | 1)
Kano Inlr;; "=-l
ol s
Type [l!nn Al

— 1 I T

Haz. connectfong |'N ;;w- =

Max. pandwldth 1}}3;6‘ i

Cost [se . i"
Next fs-tér.arg; 5 3 :—,
Fodidy | Cancel §‘: .
&

| VodkaV Storage Edit

Max. conngclions |10

B |

Dragnostic

Drsgnostic

Dizgngsttc l

|
I o llgm‘l! If
|
|
|

fstary

ragnestie I

Diagnostic -J !
- — I

Exit

S|

|Storagiz

EUC 2003

ay

The Proposed Tool: A Prototype (II)

" VodkaV Model Data

- MARBW [WERT- — [DESCRIPTION
_VodkaV. Storage Edit | <]
Name: |§taragé’3 ' FE
Type. fcd_storage
Max. cﬁtﬁﬁeétions {2
Max. bandwidth |0 0 }
T v [Cost {40 5 /E
'&i .S m7 I (K] -
| _J nd nS Edit i
1 06 i o
1 ool f—p? T —J
Rl =3 S n—— T
' Hodify [Gance] IR I
e ST aaemt I
nY
——— _— — i
Add i pel . edi !
Drau-'-:supfrae- I-ﬁenarate node 1 v1eu mode) J Check prnps _I Save 1 Exit
| N R = e

EUC 2003

I
L

The Proposed Methodology

Graphical User Interface

Y

Erlang to
mCRL

Erlang ___ |
Source Code

Configuration
(Ievels, devices, restrictions,...)

mCRL File__

mCRL to
State Space

State Graph

High Level
Performance Questions

y

Graph

Analysis Global Properties

(Mod. Check)| of the System

o Generating the full state space of the system from its configuration

e Starting directly from the Erlang source code of the system (easier with design patterns)

e The source code is already an abstraction of the real one (only the scheduling subsystem
and no resources are released)

e uCRL as intermediate step (efficient tools for generating state space). Semantics similar

to Erlang

A high level GUI separates the theoretical details from the users of the methodology

EUC 2003

10

6y

Step One: Erlang to 1CRL

Graphical User Interface

Configuration MO List and
(levels, devices, restrictions,...) bandwidth .

modifiers

/ g \\
9 < f !

erl .etl . mCRL TN g ’

non—det.
N N etoe? - etomcfrl = userprocess L » | Rl
el compiler compiler builder I
erl Erlang Source Code mCRL code with mCRL code with
with a mCRL like structure deterministic behavior non—determinism in

Original Erlang Source Code the user process

e Compiler developed before (Thomas Arts and Clara Benac, STTT2003)

e Symbolically evaluates the supervision tree and generic servers for a given set of arguments
e Differences between Erlang and pCRL:

1CRL has no asynchronous communication mechanism: buffers
pCRL has strict separation of communication and computation (without any side effect): call_stack
p#CRL has no higher-order functions, records, list-comprehension: translate to simpler code

e Clients are modeled as non-deterministic users process for avoiding state explosion

pCRL has tools like a confluence analyzer that can be used to reduce the final state space
(reduction of 10-20%)

EUC 2003 11

el

Step Two: Generating State Space from yCRL

Graphical User Interface

|

N
 mCRL

The nodes of the graphs
are the states of the system
and the transitions are

the mCRL actions

S ——

mcrl tools
instantiator

transitions

mCRL code with
non—determinism in
the user process

rewriter

Hiding and reduction rules

Whole graph of the

system behavior

L

CADP
reduction
tools

e

Graph of the system
with user—fricndly transitions

Reduced high—level
behavioral graph

e Standard tools for uCRL (mcrl tools developed at CWI) are used to generate the state

space

e Caesar/Aldébaran tool set is used for hiding and renaming labels, and for reducing the

graph

e (For some properties) we hide the internal details of the system, because they are not

going to be used in the next step

e Example: the state space of a two level configuration, without cache, with four devices in the storage level

and all the possible combination of MOs distributed over the devices in two different qualities, contains up

to a few million states. Its generation takes some hours and it is reduced to about one thousand states

EUC 2003

12

s

7/

Step Two: Example of a Simple Reduced Graph

fail(3.(1])

play(cdml.1) play(tapg,ml,1)
play(cdm2,2) play(ed,m1,1) play(tape,m3.1)
piay(c#iml,2) play(cd.m2.1) play(tape,m3.2)
play(gdim2,1) play(tabe.m1,2)

play(tape,m3,1)

play(cd/ml 2) play(tape.m3.2) play(gdim2,2)

play(cd.m2,1)

play(tapgml 1)
play(cdm2,1) play(tape.m3.1)

play(ed.ml.1) play(oding,2)

play(cd,m2,1)

Two linear levels: streaming level
and massive storage level

Two storage devices:
Tape with 20MBit/s, no si-
multaneous access

CD with 30MBit/s, 2 simulta-
neous access

No extra restrictions than the
trivial cost functions

Abstract approach for the MQOs
(ml in both, m2 and m3 in one
of them)

Two possible qualities: 10/20
MBits/s

Original state space of 2547
states and 2747 transitions, the

reduction results in the 8 states
and 48 transitions

EUC 2003

13

5/

Step Three: Extracting Performance Information

e Verifying global properties with a black-box approach
e Extracting the architecture from the messages

e Extracting bottleneck information

o Calculating resources for a new component

EUC 2003

14

77

Step Three: Verifying Global Properties (black-box)

Graphical User Interface

High level properties are converted to mu—Calculus expressions

I
Counter-example based :
|

I
/ mode! checking (CADP) [|
I i
: logarithmic search alg : Performance measurcment of the
——] . ;
model checking (CADP) analyzed system

: i

1]

R 1 !
Re:el;](::&::ihg_l}:ggl ! scenario based i Yes/No answer about a possible

: model checking (CADP) scenario

Countere—xample with performance
information about the system

e Counter-example based:
‘the worst case scenario in which the system reaches its maximum load’:
[truex]<not ’fail.*’>true
‘the maximum number of simultaneous users after which a next user always can be
served’: [truex] (<’fail.*’>true\/<true>[’fail.*’]false)

e Existential and eventually existential

<’play(.*,ml1,.*)’.’play(.*, ml,.%)?, ‘play(.*,m3, .*) ’>true
e Feedback information
e Importance of the user interface

EUC 2003 15

Step Three: Architecture from the Messages

o Can we extract the process/component architecture and the protocol of the
messages they exchange, from the analysis of the source code?

e In the generic servers: source process, destination process, and message are
easy to extract from the analysis of the code

e We can build this kind of graphs:

{Lookup, m1, 1}
{Lookup, ml, 1} {Lookup, m1, 2}

{Lookup, m1, 2}
mupAns, fail, ml, 1}

/’—\ // {lookupAns, fail, ml, 2}

[USER j t}ATEWAY

{lookupAns, ok, m1, 1, serverl }
{lookupAns, fail, m1, 2}

SERVER 1

{Lookup, ml, 1}
{Lookup, ml, 2}

SERVER 2 J

{lookupAns, ok, m1, 1}
{lookupAuns, fail, m1, 2}

EUC 2003 16

07

Step Three: Bottleneck information

e Internal independent bottleneck: first place were we can see a fail in the
system, in any of the possible execution paths.

Stopping the graph generation when a fail occurs

e External/user independent bottleneck: the point in the architecture that
makes the first fails to be answered to a user request.

Graph analysis of the fails in the top level

e Internal relative bottleneck: the part of the system where a fail in a
component is too far away from a fail in a different component.

Model checking with formulae talking about the distance between fails

For all of them, using graph analysis tools, we can extract the table summary
with statistic information about the bottlenecks in the system.

EUC 2003 17

b/

Step Three: Calculating resources for a new component

e We want to know the resources needed in order to avoid a new component
added to a system to be the bottleneck point in the architecture

e We can use the same methodology, adding to the system architecture the
new component without any resource restriction

e We compute the system capacity in the execution graph, and we extract by

graph analysis the information about the maximum number of times that
the new component is asked

e The new component can be designed in order to be able to serve all

the possible requests that is going to receive, thus avoiding it to be the
bottleneck

EUC 2003 18

0g

Conclusions

e We can get performance information from the source code

Case study: VoDKA, a distributed functional VoD server
We use formal methods techniques for extracting information

e We use the fact that the systems are built on top of OTP modules
and design principles in order to be able to handle complex systems with
model checking

e The methodology can be used in other distributed systems

e Some advantages against testing, tracing and simulation

EUC 2003 19

All you wanted to know about the HiPE compiler
(but might have been afraid to ask)

K. Sagonas, M. Pettersson, R. Carlsson, P. Gustafsson, T. Lindahl
Information Technology Department, Uppsala University, Sweden

hipe@csd.uu.se

ABSTRACT

We present a user-oriented description of features and char-
acteristics of the High Performance ERLANG (HiPE) native
code compiler, which nowadays is part of Erlang/OTP. In
particular, we describe components and recent additions to
the compiler that improve its performance and extend its
functionality. In addition, we attempt to give some recom-
mendations on how users can get the best out of HiPE'’s
performance.

1. INTRODUCTION

During the last few years, we have been developing HiPE,
a high-performance native code compiler for ErLaNG. HiPE
offers flexible, fine-grained integration between interpreted
and native code, and efficiently supports features crucial for
ERLANG’s application domain such as light-weight concur-
rency. HiPE exists as a uew component (currently about
80,000 lines of ERLANG code and 15,000 lines of C and as-
sembly code) which nowadays is fully integrated with Eric-
sson’s Erlang/OTP imnplementation; in fact, HiPE is avail-
able by default in the open-source version of R9. The HiPE
compiler currently has back-ends for UltraSPARC machines
running Solaris and Intel x86 machines running Linux or
Solaris.

The architecture and design decisions of HiPE's SPARC
and x86 back-ends have been previously described in [5]
and [11] respectively. A brief history of HiPE's develop-
ment appears in [6]. As performance evaluations in these
reports show, HiPE considerably improves the performance
characteristics of ERLANG programs, and on small sequen-
tial programs makes Erlang/OTP competitive in speed to
implementations of other ‘similar’ functional languages such
as Bigloo Scheme [13] or CML (Concurrent SML/NJ [12]).

Performance evaluation aside, all the above mentioned re-
ports address quite technical compiler and runtime system
implementation issues which most probably are not so infor-
mative for ERLANG programmers who are simply interested
in using HiPE for their everyday application development.

Permission to make digital or hard copies of all or part of this work for
personal or classtoom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Erlang Workshop '03 29/08/2003, Uppsala, Sweden

Copyright 2003 ACM 1-58113-772-9/03/08 ...$5.00.

To ameliorate this situation, the current paper is targeted
towards HiPE users. Its aims are to:

1. describe features — and sometimes secrets — of the
HiPE cornpiler that are of interest to its users;

2. introduce recent and planned additions to the HiPE
compiler in a way that focuses on how these new fea-
tures affect users (i.e., without obfuscating their pre-
sentation by getting deep into technical details); and

3. give recommendations on how users can get the best
out of HiPE’s performance.

To make the paper relatively self-contained and provide
sufficient context for the rest of its contents, Section 2 be-
gins by overviewing HiPE’s current architecture, then de-
scribes basic usage, compiler options and recent improve-
ments, and finally presents some extensions to HiPE’s func-
tionality which are currently underway and will most prob-
ably be included in release RIC. Section 3 offers advise on
HiPE’s use, followed by Section 4 which reveals and doc-
uments limitations and the few incompatibilities that cur-
rently exist between the BEAM and the HiPE compiler.
Finally, Section 5 briefly wraps up.

We warn the reader that the nature of certain items de-
scribed in this paper is volatile. Some of them are des-
tined to change; hopefully for the better. HiPE’s homepage®
might contain a more up-to-date version of this document.

2. HIPE COMPILER: A USER-ORIENTED
OVERVIEW

2.1 HiPE’s architecture

The overall structure of the HiPE system is shown in
Fig. 1. The Erlang/OTP compiler first performs macro pre-
processing, parsing, and some de-sugaring (e.g., expanding
uses of the record syntax) of the ERLANG source code. After
that, the code is rewritten into Core Erlang [2, 1]. Various
optimizations such as constant folding, and (optional) func-
tion inlining, are performed on the Core Erlang level. After
this, the code is again rewritten into BEAM virtual machine
code, and some further optimizations are done. (The BEAM
is the de facto standard virtual machine for ERLANG, devel-
oped by Erlang/OTP. It is a very efficiently implemented
register machine, vaguely reminiscent of the WAM [14].)

The HiPE compiler has traditionally started from the
BEAM virtual machine code generated by the Erlang/OTP

Thttp: //www.csd.uu.se/projects/hipe/

Erlang/OTP Compiler HiPE Core Erlang Compiler
 —
g | Fromt-end c analynin
SRR Core Eirbang | ’—';
- ml.nfnr.mamm
EEDH T‘"""‘"“ ’
l—.l
7
| Symbolic |
BEAM BEAM
|~ mﬂmﬂﬁ/ T ;x
Icode |

e HIPE
Loader
[X

Erlang/OTP Runtime System HIPE Compiter
Figure 1: Structure of a HiPE-enabled Erlang/OTP
system.

compiler. The BEAM code for a single function is first
translated to ICode, an assembly-like language with a high-
level functijonal semantics. After optimizations, the ICode is
translated to RTL (“register-transfer language™), a low-level
RISC-like assembly language. It is during this translation
that most Erlang operations are translated to machine-level
operations. After optimizations, the RTL code is translated
by the backend to actual machine code. It is during this
translation that the many temporary variables used in the
RTL code are mapped to the hardware registers and the
runtime stack. Finally, the code is loaded into the runtime
system.

The Erlang/OTP runtime system has been extended to
associate native code with functions and closures. At any
given point, a process is executing either in BEAM code
or in native code: we call this the mode of the process. A
mode switch occurs whenever control transfers from code in
one mode to code iu the other mode, for instance when a
BEAM-code function calls a native-code function, or when
the native-code function returns to its BEAM-code caller.
The runtime system handles this transparently, so it is not
visible to users, except that the native code generally exe-
cutes faster.

A new feature, described further below, is that the HiPE
compiler can compile directly from Core Erlang. When used
in this way, the compiler compiles a whole module at a time,
and performs global analyses and optimizations which are
significantly more difficult to perform (and thus not avail-
able) in the traditional mode.

2.2 Basic usage

The normal way of using the HiPE native code compiler is
via the ordinary ERLANG compiler interface, by adding the
single compilation option native. From the ERLANG shell,
using the ¢ shell function, this looks as follows:

1> c(mymodule, [native]).

This will compile the file my.module.erl to native code and
load the code into memory, following the normal module
versioning semantics of ERLANG.

Calling the standard compiler function compile:file/2
(which by default does not load the resulting code) will pro-

duce a .bean file that contains both the native code and the
normal BEAM code for the compiled module; e.g.:

compile:file(my.module, [native])

produces a file my_module.beam which can be loaded later.
When a .bean file is loaded, the loader will first attempt
to load native code, if the file contains native code that is
suitable for the local system, and ouly if this fails is the
BEAM code loaded. In other words, the .beam files may
be “fat”, containing code for any number of different target
machines.

The compiler can also be called from the external program
erlc (which indirectly calls the compile:file/2 function).
E.g., from a UNIX command line shell or make-file:

erlc +native my._module.erl

producing a file my_module.beam.

Additional compiler options may be given between the
erlc command and the file name by prefixing them with +.
Quoting may be necessary to avoid expansion by the shell,
as for example in:

erlc +native +’{hipe, [verbosel }’ my module.erl

Generating native code and loading it on-the-fly into the
system is possible even in cases when the ERLANG source
code is not available but the .beamn file (containing BEAM
bytecode) exists. This can be done for whole modules using:

hipe:c(my.module)
or even for individual functions {M,F,A} using:
hipe:c({M,F,A}).

The function hipe:c/2 can also be used, which takes the list
of the HiPE compiler options as its second argument.

Finally, should you forget everything else, you can always
type the following from the ERLANG shell:

2> hipe:help().
which will display a short user’s guide to the HIPE compiler.

2.3 HiPE compiler options

For the average user, it should not be necessary to give
any extra information to the compiler than described in the
previous section. However, in some cases it may be useful
or even necessary to control the behavior of the native code
compilation. To pass options to the HiPE compiler via the
normal ERLANG compiler interface, these must be wrapped
in a term {hipe, ...}. For example:

3> c(mymodule, [native, {hipe, [verbose, a3]}]).

will pass the flags verbose and o3 to the HiPE compiler.
Note that if only a single option is given, it does not have
to be wrapped in a list, as in e.g.:

c(mymodule, [native, {hipe, verbose}]l).
The main useful options are the following:

00, ol, 02, o3 Selects the optimization level, 00 being the
lowest. The default is 02. Upper case versions of these
options also exist, i.e., 02 is an alias for 02, etc.

verbose Enables HiPE compiler verbosity. Useful if you
want to see what is going ou, identify functions whose
native code compilation is possibly a bottleneck, or
just check that the native code compiler is running.

If a module takes too long time to compile, try using a
lower optimization level such as ol. You can also try keep-
ing the current optimization level, but specifically select the
faster but less precise linear scan algorithm for register al-
location [7]. (Register allocation is one of the major bottle-
necks in the optimizing native code compilers.) This is done
by adding the option {regalloc,linear scan}, as in:

c(mymodule, [{hipe, [{regalloc,linear_scan}]}1).

If you wish to always use certain HiPE compiler options
for some particular module, you can place them in a compile
directive in the source file, as in the following line:

-compile({hipe, [01]}).

Note: options early in the list (i.e., further to the left)
take precedence over later options. Thus, if you specify e.g.

{hipe, [03, {regalloc,linear_scan}]}

the o3 option will override the regalloc option with the
more advanced {and more demanding compilation-time wise)
o3-level iterated coalescing register allocator. The correct
way would be:

{hipe, [{regalloc,linear_scan}, 03]}

which specifies 03-level optimizations but with fast register
allocator.

More information on the options that the HiPE compiler
accepts can be obtained by:

hipe:help_optiocns ().

24 Recent improvements

2.4.1 Local yype propagator

ERLANG, being a dynamically typed language, often pro-
vides the developer with freedom to experiment with data
structures whose handling is possibly still incomplete, and
rapidly prototype applications. However, this also means
that a lot of run time is spent in performing type tests (that
usually succeed) to ensure that the operations performed are
meaningful, e.g., that a programn does not accidentally suc-
ceed in dividing a float by a list or taking the fifth element
of a process identifier.

One of the recent additions to the HiPE compiler is a local
type propagator which tries to discover as much of the avail-
able (per-function) type information as possible at compile
time. This information is then propagated throughout the
code of the function to eliminate redundant type tests and
to transform polymorphic primitive operations that operate
on general types into faster operations that are specialized
to the type of operands actually being used.

Since the type propagator is a recent addition that is still
under development and further extensions of its functional-
ity are underway, we have not yet conducted a proper eval-
vation of the time performance improvements that one can
expect from it in practice. However, preliminary numbers
indicate that the size of the mative code is noticeably re-
duced, something which in turn has positive effects on the

later optimization passes, often resulting in compile times
even shorter than those of the HiPE compiler in R9B.

The type propagator is enabled by default at the normal
optimization level o2 (or higher).

2.4.2 Handling of floats

In the runtime system, atomic ERLANG values are repre-
sented as tagged 32-bit words; see [10]. Whenever a tagged
value is too big to fit into one machine word the value is
bozed, i.e., put on the heap with a header word preceeding
it which is pointed to by the tagged value. Floating point
numbers have 64-bit precision and are therefore typically
boxed. This means that whenever they need to be used as
operands to a floating point operation, they need to be un-
boxed, and after the operation is performed the result must
then be boxed and stored back on the heap.

To avoid this overhead, starting from R9YB, the BEAM
has been enhanced with special floating point instructions
that operate directly on untagged values. This has sped up
the handling of floats considerably since the number of box-
ing/unboxing operations are reduced. However, siuce the
BEAM code is interpreted, floating point arithmetic is still
not taking advantage of features available at the floating
point unit (FPU) of the target architecture, such as na-
chine registers. More specifically, the operands are put into
the FPU, the operation is performed, and then the result is
taken out and stored in memory.

In the HiPE compiler, floating point values are mapped
to the FPU and are kept there for as long as possible, elimi-
nating even more overhead from floating point calculations.
In [8] we have described in detail the two back-end specific
schemes used in the mapping. Our performance compari-
son shows that HiPE-compiled floating point intensive code
can be considerably faster than floating-point aware BEAM
bytecode. Table 1 gives an idea of the performance improve-
ments that can be expected across a range of programs ma-
nipulating floats.

To maximize the gain of the floating point ivstruction the
user is encouraged to use appropriate is_float/1 guards
that currently communicate to the BEAM compiler the float-
ing point type information® and to try to keep floating point
arithmetic instructions together in blocks, i.e., not split them
up by inserting other instructions that can just as well be
performed before or after the calculations.

The more efficient, target-specific compilation of floating
point arithmetic is enabled by default starting at optimiza-
tion level oi.

2.4.3 Handling of binaries

Proper support for the bit syntax [9] was introduced into
Erlang/OTP in R8B. Initially, the HiPE compiler used a
rather naive compilation scheme: binary matching instruc-
tions of the BEAM were translated into calls to C functions
which were part of the interpreter’s supporting routines. As
a result, the HIPE-compiled code was actually slightly slower
than the BEAM code because of costs in switching between
native and interpreted code (cf. also Section 3). To remedy
this, we proposed and implemented a scheme that relies on
a partial trunslation of binary matching operations. This
scheme identifies special “common” cases of binary match-

2Explicitly writing such guards will become unnecessary when
the global type analysis gets fully integrated in HiPE; see Sec-
tion 2.5.2.

Table 1: Performance of BEAM and HiPE in R9B on programs manipulating floats (times in ms).

Benchmark | BEAM HiPE speedup Benchmark | BEAM HIiPE speedup
float_bm 14800 4040 3.66 float_bm 1930 750 2.57
barnes-hut 10250 4280 2.39 barnes-hut 1510 600 2.51
fit 16740 8890 1.88 fft 2830 1450 1.95
wings 8310 7370 1.12 wings 1160 850 1.36
raytracer 9110 8500 1.07 raytracer 1200 1070 1.12
pseudoknot 3110 1440 2.16 pseudoknot 380 140 2.71

(a) Performance on SPARC.

ings and translates these completely into native code, while
the remaining “uncommon” cases still call C functions in
order to avoid extensive code bloat. The implementation of
this compilation scheme is described in [4] and is included
in the HiPE compiler as of the R9B release of Erlang/OTP.

The performance of this scheme on several different bench-
marks involving binaries is shown in Table 2. The first
three benchmarks test the speed of binary matching: the
bsextract benchmark takes a binary containing a GTP_C
message as input, extracts the information from the mes-
sage header, and returns it. The bsdecode benchmark is
similar but rather than simply extracting a binary, it also
translates the entire message into a record. The ber_decode
benchmark, generated by the ASN.1 compiler, parses a bi-
nary. The last two benchmarks, bsencode and ber_encode,
test the speed of binary creation rather than matching.

As expected, speedups are obtained when there is infor-
mation available at compile time to identify cases which can
be compiled fully to native code. Such, for example, is the
case when the binary segment sizes are constant or when it
is possible to determine statically that a segment of a bi-
nary starts at a byte boundary. In other words, to achieve
best time performance, it might be advisable to use some
extra space to guarantee that each element starts at a byte
boundary. For example, if one wants to use binaries to de-
note 16 integers where each integer needs 7 bits it is possible
to pack them so that they only take up 14 bytes. If each
integer is put a byte boundary, the binary will take up more
space (16 bytes), but the binary matching operations will
be performed faster.

The HiPE compiler option inline_bs enables native code
compilation of the bit syntax. This option is selected by
default at optimization level o1 or higher, and the only rea-
sons for a user to disable it is either to test its performance
effects or if code size is a serious concern.

2.5 Planned extensions for the near future

2.5.1 Better translation of binaries

The compilation schemne introduced in R9B made binary
matching faster, but more work has since been done to make
it even faster. In the upcoming RIC release, a new scheme
for compiling binary matching will be included. Rather than
relying on a partial translation and having BEAM be in con-
trol, the entire binary matching operation will fall in the
hands of the native code compiler. This has made it possi-
ble to avoid several unuecessary mode switches. With this
scheme most binary matching code will make no calls to the
C functions which are used strictly as a last resort when a

(b) Performance on x86.

single operation becomes very complex.

In addition to this a new scheme to compile binary cre-
ation has been developed. It is developed in a similar fashion
to the binary matching scheme by changing calls to C func-
tions into specialized versions of these functions that are
then translated into native code.

As seen in Table 3, the performance of HiPE compiled
code has been improved substantially. The speedup for the
matching benchmarks ranges from 1.5-4 times compared to
BEAM. The speedup for benchmarks that create binaries
is more than 2 times on x86 and more than 1.5 times on
SPARC.

In connection with the effort to compile directly from Core
Erlang to native code a project has started to further imn-
prove the compilation of binary matching as new possibil-
ities open up when the structure of the matching becomes
visible to the compiler. The result of this project will likely
be available in the R10 release.

2.5.2 Global type analysis

As described in Section 2.4.1, the HiPE compiler now in-
cludes a local type propagator which works on individual
functions. However, if no assumptions can be made about
the arguments to the functions, only the most basic type
information can be found. We have therefore implemented
a global type analyzer which processes a whole module at a
time. It can generally find much more detailed type infor-
mation, but the precision depends to a large extent on the
programiuing style of the analyzed code. Since an exported
function can potentially be called from anywhere outside the
module and with any inputs, it is not possible to make any
assumptions about the types of the arguments to exported
functions. The best precision is achieved when only the nec-
essary interface functions are exported, and the code does all
or most of its work within the same module. When module
boundaries are crossed, type information is lost. For most
built-in functions, however, we can know what types of data
they accept as input and what types they return.

We are currently working on how to take advantage of
the gathered type information (in combination with the lo-
cal type propagator). First of all, we are often able to re-
move unnecessary type checks from the code. Second, it is
sometimes possible to avoid repeatedly tagging and untag-
ging values (cf. Section 2.4.2). Third, global type analysis
makes it possible to avoid creating tuples for returning mul-
tiple values from a function, when the result of the function
is always immediately unpacked — instead, multiple values
can be passed directly in registers or on the stack.

Note that the global type analysis is not a type checker

Table 2: Performance of BEAM and HiPE in R9B on programs manipulating binaries (times in ms).

Benchmark | BEAM HiPE speedup Benchmark | BEAM HiPE speedup
bsextract 15540 8450 1.84 bsextract 14500 7350 1.97
bsdecode 27070 26860 1.01 bsdecode 13490 12970 1.04
ber_decode 14350 9130 1.57 ber_decode 16500 9200 1.79
bsencode 14210 15870 0.90 bsencode 17540 16030 1.09
ber_encode 18720 16280 1.15 ber_encode 21870 17420 1.26

(a) Performance on SPARC.

(b) Performance on x86.

Table 3: Performance of BEAM and HiPE in a pre-release of R9C on programs manipulating binaries.

Benchinark | BEAM HiPE speedup Benchmark | BEAM HiPE speedup
bsextract 13380 4060 3.30 bsextract 14700 3560 4.13
bsdecode 26060 21110 1.23 bsdecode 13670 7780 1.76
ber_decode | 13980 5720 2.44 ber_decode 15610 6070 2.57
bsencode 16960 11070 1.53 bsencode 16790 7290 2.30
ber_encode 18150 9510 1.91 ber_encode 22560 10860 2.08

(a) Performance on SPARC.

or type inference system, i.e., the user is not able to spec-
ify types (because the user cannot be completely trusted),
and furthermore, the fact that an input parameter is always
used as e.g. an integer does not mean that the passed value
will always be an integer at runtime. Indeed, the current
implementation does not even give a warning to the user if
1t detects a type error in the program, but just gemerates
code to produce a runtime type error. This might change
in the future, to make the type analyzer useful also as a
programining tool.

2.5.3 Compilation from Core Erlang

A new feature of the HiPE compiler is the ability to comn-
pile to native code directly from the ERLANG source code,
(i-e., instead of starting with the BEAM virtual machine
code, which was previously the only way). This is done
by generating HiPE's interinediate ICode representation di-
rectly from the Core Erlang code which is produced by the
Erlang/OTP compiler. No BEAM code needs to have been
previously generated. The advantages of this are better con-
trol over the generated code, and greater ability to make use
of metadata about the program gathered on the source level,
such as global type analysis information.

Currently, the way to do this is to add an extra option
core when compiling to native code:

c(my-module, [mative, core]).

However, this method of compiling is not yet fully functional
in the coming RIC release, in that somme programming con-
structs are not yet handled properly. We intend to have
compilation from source code completely implemented in
release R10.

We expect that in the future, compilation from source
code will be the default method of the HiPE compiler. The
compilation from BEAM will however still be available, for
those cases when the source code is not available, or it is for
other reasons not possible to recompile fromn the sources.

(b) Performance on x86.

3. RECOMMENDATIONS ON HIPE’S USE

3.1 Improving performance from native code

o If your application spends most of its time in kmown
parts of your code, and the size of those parts is not
too large, then compiling those parts to native code
will maximize performance.

Largish self-contained modules with narrow external
interfaces allow the compiler to perform useful module-
global type analysis and function inlining, when com-
piling via Core Erlang.

While very deep recursions are not recommended, they
are much more efficient in native code than in BEAM
code. This is because the HiPE runtime system in-
cludes specific optimizations (generational stack scan-
ning [3, 11]) for this case.

e Monomorphic functions, functions that are known to
operate on a single type of data, are more likely to be
translated to good code than polymorphic functions.
This can be achieved by having guards in the func-
tion heads, or by avoiding to export the functions and
always calling them with parameters of a single type,
known through guards or other type tests.

e When using floating point arithmetic, collect the arith-
metic operations in a block and try to avoid breaking
it up with other operations; in particular try to avoid
calling other functions. Help the analysis by using the
guard is_float/1. You might still benefit from this
even if you do not manage to keep the operations in a
block; the risk of losing performance is minimal.

o Order function and case clauses so that the cases that
are more frequent at runtime precede those that are
less frequent. This can help reduce the number of type
tests at runtime.

3.2 Avoiding performance losses in native code

e If the most frequently executed code in your applica-
tion is too large, then compiling to native code may
give only a small or even negative speedup. This is
because native code is larger than BEAM code, and in
this case may suffer from excessive cache misses due
to the small caches most processors have.

Avoid calling BEAM-code functions from native-code
functions. Doing so causes at least two mode switches
(one at the call, and one at the return point), and these
are relatively expensive. You should native-compile
all code in the most frequently executed parts, includ-
ing Erlang libraries you call, otherwise excessive mode
switching may cancel the performance improvements
in the native-compiled parts.

e Do not use the -compile(export_all) directive. This
reduces the likelihood of functions being inlined, and
makes useful type analysis impossible.

Avoid crossing module boundaries too often (making
remote calls), since the compiler cannot make any as-
sumptions about the functions being called. Creative
use of the pre-processor’s -include and -define di-
rectives may allow you to combine perfortnance and
modular code.

Avoid using 32-bit floats when using the bit syntax,
since they always require a mode switch. It is also
costly to match out a binary that does not start at a
byte boundary, mainly because this requires that all
the data of the binary is copied to a new location. If
on the other hand a binary starting at a byte bound-
ary is matched, a sub-binary which only contains a
pointer to the data is created. When variable segment
lengths are used it is beneficial to have a unit that is
divisible by 8, because this means that byte boundary
alignment information can be propagated.

3.3 Cases when native code does not help

e Be aware that almost all BIF calls end up as calls to
C functions, even in native code. If your application
spends most of its time in BIFs, for instance accessing
ETS tables, then native-compiling your code will have
little impact on overall performance.

Similarly, code that simply sends and receives mes-
sages without performing significant amounts of com-
putation does not benefit from compilation to native
code; again, this is because the time is mostly spent in
the runtime system.

4. THE TRUTH, THE WHOLE TRUTH,
AND NOTHING BUT THE TRUTH

Significant work has been put into making HiPE a ro-
bust, “commercial-quality” compiler.® As a matter of fact,
we have mostly tried to follow BEAM’s decisions in order
to preserve the observable behavior of ERLANG programs,

3 At the time of this writing, July 2003, we are not aware of any
outstanding bugs.

even if that occasionally meant possibly reduced speedups
in performance. Still, a couple of small differences with code
produced by BEAM exist, and the user should be aware of
some limitations. We document thern below.

4.1 Incompatibilities with the BEAM compiler

e Detailed stack backtraces are currently not generated
from exceptions in native code; however, where possi-
ble, the stack trace contains at least the function where
the error occurred. Performing pattern matching on
stack backtraces is not recommended in general, re-
gardless of the compiler being used.

The old-fashioned syntax Fun = {M,F}, Fun(...) for
higher-order calls is not supported in HiPE. In our
opinion, it causes too many complications, including
code bloat. Proper fums should be used instead, or
explicit calls M:F(...).

On the x86, floating-point computations may give dif-
ferent (more precise) results in native code than in
BEAM. This is because the x86 floating-point unit
internally uses higher precision than the 64-bit IEEE
format used for boxed floats, and HiPE often keeps
floats in the floating-point unit when BEAM would
store them in mermmory; see [8].

4.2 Current limitations

e Once inserted into the runtime system, native code is
never freed. Even if a newer version of the code is
loaded, the old code is also kept around.

The HiPE compiler recognizes literals (constant terms)
and places them in a special literals area. Due to ar-
chitectural limitations of the current Erlang/OTP run-
time system, this is a single area of a fixed size deter-
mined when the runtime system is compiled. Loading
a lot of native code that has many constant terms will
eventually canse the literals area to fill up, at which
point the runtime systemn is terminated. A short-term
fix is to edit hipe_bif0.c and explicitly make the lit-
erals area larger.

S. CONCLUDING REMARKS

We have presented a user-oriented description of features
and characteristics of the HiPE native code compiler, which
nowadays is integrated in Erlang/OTP and easily usable by
ERLANG application developers and aficionados. We hold
that HiPE has a lot to offer to its users. Some of its benefits
are described in this paper. Others, perhaps more exciting
ones, await their discovery.

One final word of advice: HiPE, like any compiler, can
of course be treated as a “black-box”, but we generally rec-
ommend to creatively explore its options and flexibility and
add color to your life!

6. ACKNOWLEDGMENTS

The HiPE compiler would not have been possible without
the prior involvement of Erik “Happi” Stenman (formerly
Johansson) in the project. Its integration in Erlang/OTP

would still be a dream without close collaboration with mem-
bers of the Erlang/OTP group at Ericsson (Bjérn Gustavs-
son, Kenneth Lundin, and Patrik Nyblom), and the active
encouragement of Bjarne Dacker. HiPE’s development has
been supported in part by the ASTEC (Advanced Software
Technology) competence center with matching funds by Er-
icsson Utvecklings AB.

7.
1]

2l

B3]

4

[5]

(6]

REFERENCES

R. Carlsson. An introduction to Core Erlang. In
Proceedings of the PLI’01 Erlang Workshop, Sept.
2001.

R. Carlssou, B. Gustavsson, E. Johausson,

T. Lindgren, S.-O. Nystrém, M. Pettersson, and

R. Virding. Core Erlang 1.0 language specification.
Technical Report 030, Inforination Technology
Department, Uppsala University, Nov. 2000.

P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI’98, pages 162-173. ACM Press, 1998.

P. Gustafsson and K. Sagonas. Native code
compilation of Erlang’s bit syntax. In Proceedings of
ACM SIGPLAN Erlang Workshop, pages 6-15. ACM
Press, Nov. 2002.

E. Johansson, M. Pettersson, and K. Sagonas. HiPE:
A High Performance Erlang system. In Proceedings of
the ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 32—-43.
ACM Press, Sept. 2000.

E. Johansson, M. Pettersson, K. Sagonas, and

T. Lindgren. The development of the HiPE system:
Design and experience report. Springer International
Journal of Software Tools for Technology Transfer,
2003. To appear.

7]

8

=

(¢l

[10]

[11]

(12}

[13]

[14]

E. Johansson and K. Sagonas. Linear scan register
allocation in a high perforinance Erlang compiler. In
Practical Applications of Declarative Languages:
Proceedings of the PADL’2002 Symposium, number
2257 in LNCS, pages 299-317. Springer, Jan. 2002.
T. Lindahl and K. Sagonas. Unboxed compilation of
floating point arithmetic in a dynamiecally typed
language environment. In R. Peiia and T. Arts,
editors, Implementation of Functional Languages:
Proceedings of the 14th International Workshop,
number 2670 in LNCS, pages 134-149. Springer, Sept.
2002.

P. Nyblom. The bit syntax - the released version. In
Proceedings of the Sizth International Erlang/OTP
User Conference, Oct. 2000. Available at
http://www.erlang.se/euc/00/.

M. Pettersson. A staged tag scheme for Erlang.
Technical Report 029, Information Technology
Department, Uppsala University, Nov. 2000.

M. Pettersson, K. Sagonas, and E. Johansson. The
HiPE/x86 Erlang compiler: System description and
performance evaluation. In Z. Hu and

M. Rodriguez-Artalejo, editors, Proceedings of the
Sizth International Symposium on Functional and
Logic Progremming, nummber 2441 in LNCS, pages
228-244. Springer, Sept. 2002.

J. H. Reppy. CML: A higher-order concurrent
language. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 293-305. ACM Press, June 1991.

M. Serrano and P. Weis. Bigloo: a portable and
optimizing compiler for strict functional languages. In
A. Mycroft, editor, Proceedings of the Second Static
Analysis Symposiurn, nuwber 983 in LNCS, pages
366-381. Springer, Sept. 1995.

D. H. D. Warren. An abstract Prolog instruction set.
Technical Report 309, SRI International, Menlo Park,
U.S.A., Oct. 1983.

All you wanted to know about

the HiPE compiler
(but might have been afraid to ask)

K. Sagonas, M. Pettersson, R. Carlsson,
P. Gustatsson, T. Lindahl

The High-Performance Erlang Group
Computing Science Department
Uppsala University, Sweden

P

4

>

e

B

B

[' Contents '

Brief overview of HiPE’s architecture.

HiPE-HOWTO: compiling and loading code, compiler options
Recent improvements.

Planned extensions.

HiPE do’s and dont’s.

(The few) Known incompatibilities and limitations.

HiPE’s architecture

l ERLANG , FRONT-END TYPE ANALYSIS
CORE ERLANG {
. TRANSFORMS
i INLINING
BEAM X
[\
BEAM RN SYMBOLIC
BEAM BYTECODE DISASSEMBLER BEsM
Interpreter ICODE
DATA ‘
RTL
NATIVE R
CODE LOADER / \
SPARC X86
Erlang Runtime System ? f j 1

/ HiPE-HOWTO I \

Simply add the native flag to the usual BEAM compilation tools!

1> c(Module, [native]).

compile and load interactively

2> compile:file(Module, [native]).
compile to .beam file with both BEAM and native code; native

code in a .bean file is automatically enabled at load-time

erlc +native Module.erl

Kin a Unix shell or Makefile /

‘ HiPE-HOWTO, continued I

For HiPE-specific options, add {hipe,Optionlist} to the list of
options (in addition to native):

c(Module, [native, {hipe, [03]1}]).
erlc +native ’+{hipe, [03]}’ Module.erl
-compile({hipe, [03]}).

e 00, 01, 02, 03 Choose optimisation level. 02 is default.

e {regalloc,linear_scan} Specify the use of a specific register
allocator. coalescing is default on x86 (and SPARC at 03), but
it can be slow on large functions.

N /

l HiPE-HOWTO, continued I

To find out what options there are and what they do, use

hipe:help(), hipe:help_options(), and
hipe:help_option(Option). For example:

hipe:help_option(regalloc) tells you what register allocators you

can choose from.

hipe:help_option(o03) tells you what internal compiler options o3

enables.

- /

(Recent improvements I

[Bit syntax]

» In RIB, HiPE recognised special-cases of BEAM's bit-syntax
instructions, and implemented them with native code. Other
cases became calls to C functions. Speedup over BEAM generally

between 1.0-2.0.

» In RIC, HiPE identifies the entire block of BEAM instructions
for a binary matching or creation expression, and compiles it as a
single unit. This results in better code and fewer calls to C

functions. Speedup over BEAM in the 1.5-4.0 range.

. }

Bit syntax speedups in R9C

Benchmark | speedup speedup

SPARC x86
bsextract 3.30 4.13
bsdecode 1.23 1.76
ber_decode 2.44 2.97
bsencode 1.53 2.30
ber_encode 1.91 2.08

/ ’ Recent improvementsl \

Floating-point arithmetic

» A single f.p. operation becomes: type test, move value from heap
to FPU, do operation, allocate heap, move value from FPU to
heap, tag pointer.

» Starting with R9B, BEAM recognises blocks of f.p. operations,
and uses new instructions for unboxed f.p. arithmetic. BEAM
now skips the allocate, store, tag, test, load sequence between
pairs of f.p. operations.

» HiPE goes further and keeps intermediate f.p. values in the FPU
rather than in memory “registers”. This reduces memory traffic

\ and delays between f.p. instructions. /

9

P]

Floating-point benchmark speedups

Benchmark | speedup | speedup

SPARC x86
float_bm 3.66 2.57
barnes-hut 2.39 2.51
ftt 1.88 1.95
wings 1.12 1.36
raytracer 1.07 1.12
pseudoknot 2.16 2.71

‘ Recent improvements I

Local type analysis

» Propagates type information from guards and other operations
that yield known types.

Works on a single function at a time.
Eliminate redundant type tests.

Specialise overloaded operations (e.g. +) when types are known.

vy v v ¥

No performance results yet, but code size is reduced, which also
makes remaining compiler passes faster.

11

_

| Recent improvements I

Miscellaneous

» Apply (M:F(...) calls) is now implemented natively. Major
speedup in apply-intensive code. Also improves “generic server”.

)

» Mailbox operations in receives are now inlined. 10-15%

improvement in receive/timer-intensive benchmarks.

» Compile-time literals are merged, reducing their space usage.

» A source of excessive compile-times has been fixed.

/

-

\

\Planned extensions'

Module-global type analysis

Extends the local type analysis with information about actual
parameters and return values from function calls.

» More opportunities for type check removal and specialising

overloaded operations.

» Tuples can be returned in registers or on the stack.

time, the size of the external interfaces, and on programming style.

The precision of the analysis depends the amount of code it sees at a

/

13

4 N
lPlanned extensions'

Module-global compilation from source

Instead of compiling a function at a time, via its BEAM code, we are
working on compiling from Erlang source, via Core Erlang.

» Type analysis is potentially more precise when done at a level

closer to normal Erlang.

» Hasier to utilise high-level meta-data (e.g. types) for things like
function inlining and optimised calling conventions.

» Avoiding BEAM code gives us better control over constructs like

pattern-matching and bit syntax operations.

N *_ y

_

run faster, but doesn’t change anything else.

versa) is more expensive than a simple function call.

‘Do’s and Dont’s'

» Basic fact #1: Compiling Erlang code to native code makes it

» Basic fact #2: Switching modes (from native to BEAM and vice

/

15

‘Do’s and Dont’s, continuedl

Do compile your code if it performs a lot of computations.

» Traditional functional code with lots of function calls, data
construction, and pattern matching, clearly benefits from being

compiled to native code.

Deep recursions are several times faster in native code due to

explicit garbage collection support for deep native stacks.

» Bit-syntax operations on binaries may be several times faster in

native code.

» Blocks of floating-point operations may be several times faster in

k native code. j

1R

‘ Do’s and Dont’s, continued'

Helping the compiler:

» Bit-syntax optimisations rely on segments being 8-bit aligned.
Variable-length segments should use a multiple-of-8 unit.

32-bit floats in binaries aren’t handled efficiently.

» Monomorphic code is more likely to be translated to good native
code. Using guards, e.g., is_float/1, may help the compiler
detect and utilise relevant type restrictions.

» Order clauses so that more likely cases precede less likely cases.

- /

17

e

]Do’s and Dont’s, continued'

Helping the compiler, continued:

» Largish self-contained modules with narrow external interfaces
help type analysis and inlining decisions.

The -compile(export_all) directive makes the external
interface wide-open, which limits the precision of type analysis

and makes inlining less likely to occur.

At a remote call, the compile cannot in general make any

assumptions about the called function or what it will return.

1R

‘Do’s and Dont’s, continued'

While in native code, avoid leaving it.

» Avoid frequent calls to BEAM-mode functions.

» Ensure that Erlang libraries you use frequently are compiled to
native code. This includes standard libraries.

» If you call function closures in native code, ensure that they also
come from native code.

» It’s best to first profile the application, and then compile the
most frequently used parts to native code.

o /

19

4)

}Do’s and Dont’s, continued'

Don’t compile your code if time is mostly spent elsewhere.

» Some applications are “BIF bound”, being mostly glue around
things like ETS tables or drivers.

» Some applications are “scheduling bound”, being mostly send
and receive agents that don’t do much actual computation.

Compiling these can only yield limited performance improvements.

. /

N

/ ‘ Known incompatibilities I

» Stack dumps at exceptions are less detailed than in BEAM.
Assume bug(X) -> X+1. Then calling bug(a) generates

{badarith, [1}

if bug/1 is in native code, but
{badarith, [{Module,bug,1},...1}
if bug/1 is in BEAM code.

» Fun = {M,F}, Fun() is not supported. Use proper funs or
M:F() calls instead.

» Floating-point on x86 uses higher precision for intermediate
values and calculations than BEAM does, so HiPE may deliver

\ slightly different (more accurate) results.

~

21

\ Current limitations I

» Native code is never freed. Repeatedly loading newer versions of

the code leads to a (bounded) space leak.
Fixing this requires a redesign of the HiPE object code loader.

» There is a single global area for compile-time constant terms, and
this area may overflow if large amounts of native code is loaded.

This is a consequence of the design of Erlang/OTP’s memory
management system. We are hoping that R10 will fix this.

N /

D]

PROFILE-DRIVEN INLINING FOR
ERLANG

Thomas Lindgren
e-mail: thomasl_erlang@yahoo.com

Abstract
Inlining of function calls is a common optimization for high-level lan-
guages. While static inlining has been described for functional languages,
profile-driven inlining of functional programs has to our knowledge not been
explored. In this paper, we describe a simple and powerful algorithm for
function inlining using profile data and give some tentative performance data.

INTRODUCTION

Inlining is a straightforward, common and useful optimization for functional, object-
oriented and imperative languages. Inlining a function call f{(X1,...,Xn), or call site
means replacing the call with a copy of the function body of f/n and binding the
formal parameters to the actual parameters X1, ..., Xn.

Doing so enables the following optimizations:

e The cost of the function call can be removed.

e Duplicating the function body means the code can be specialized with regard
to the actual parameters. For example, operations on constant parameters
can be simplified.

e Compiler optimizations often work only on a single function at a time, so
enlarging the function may help.

e Native code optimizations such as code motion, instruction scheduling and
register allocation work better with larger sections of code.

Unlimited inlining would yield too large program, negating all performance ad-
vantage by increasing cache misses, or would not terminate at all. For reasonable
performance, the inlining algorithm has to decide which call sites to attack, and
when to stop. The interesting issue with inlining, then, is what heuristics are used.

There are two main methods of doing this: static inlining, which examines
the program structure to decide (e.g., inlining only calls to small functions), and
dynamic or profile-driven inlining, which uses profiling information to focus inlining
on the frequently executed, hot, regions of code.

The BEAM compiler already performs inlining of some code, in R9CO using a
static algorithm proposed by Wadell and Dybvig for Scheme [5] and redeveloped for
Erlang by Richard Carlsson. The performance improvements on application code
are, however, so far slight {2].

For functional languages, research has focussed on static inlining, in particular
connected to higher-order functions; the author is at the time of writing unaware of
any previous work on profile-guided inlining of functional languages. In this paper,
we introduce a simple profile-driven algorithm for cross-module inlining of Erlang.

INLINING ALGORITHM

An example

We begin by describing the intuition of our algorithm with an example. Consider
the following example program, where each function is annotated with the number
of times it was executed, and each call site is annotated with the number of times
it was visited during profiling.

We assume that there is no code size restriction, but that call sites must be
visited at least 201 times to be considered for inlining.

%% £/1 called 1000 times
f({a,X}) > g(X); %% visited 700 times
£({b,X}) -> h(X). %% visited 300 times

%% g/1 called 700 times
g{c, YD) -> gi(Y); %% visited 500 times
g({d,Y}) -> hi(Y). %% visited 200 times

%% h/1 called 300 times
h({e,Z}) -> g1(Z); %% visited 200 times
h({£,Z}) —> hi(Z). %% visited 100 times

%h g1/1 called 5004200 times
gl(yes) -> true;
gi(l) -> false.

%% hi1/1 called 2004100 times
hi(no) -> true;
hi(_) —> false.

We want to inline the most frequently visited function calls. We begin by or-
dering all of the call sites by number of visits, then consider each entry in priority
order.

g/1 in £/1: 700
gl/1 in g/1: 500
h/1 in £/1: 300
h1/1 in g/1: 200
gl/1 in h/1: 200

We begin by inlining g/1 in f/1, which yields
f({a,X}) >

case X of
{C, Y} -> gl(Y);
{d, Y} —> hi(Y)
end;
£({b,X}) —> hn(X).

Note that two new call sites have appeared: gl/1 in £/1 and h1/1 in f/1. What
are their call frequencies? In general, we can only estimate this value, which we do
by taking the ratio of the call site visits divided by the total function visits in the
original function. This is then multiplied with the number of visits to the call site.

(internal call site visits/ function visits) * call site visits

In this case, the first ratio is (500/700) for gl1/1 in g/1, meaning the ratio is
0.714. We then multiply the actual number of visits to the call site (700 calls), to
yield 500. (Not such a coincidence, since only f/1 calls g/1.) So the call site g1/1
in f/1 gets priority 500. In the same vein, h1/1 in f/1 gets priority 200.

gl/1 in g/1: 500
gl/1 in £/1: 500
h/1 in £/1: 300
hi/1 in g/1: 200
gi/1 in h/1: 200
hi/1 in £/1: 200

Two sites have the same priority 500, so we use a tie-breaker to select the next
site. Let us assume it is g1/1 in g/1; we inline it to yield:

g({c,¥}) >
case Y of
yes —> true;
_ —> false

end;
g({d,Y}H) -> hi1(Y). 4% visited 200 times

No new call sites appear, so we proceed to the next site, gl/1 in f/1, which
yields:

f({a,X}) >
case X of
{C, Y} ->
case Y of
yes —-> true;
- —> false
end;
{4, Y} —> ni(y)
end;
£({b,X}) > rX).

Again, no new call sites appear. We then inline h/1 in f/1:
f({a,X}) ->

case X of
{c, Y} >
case Y of
yes -> true;
_ => false
end;
{d, Y} —> ni(y)
end;
£({b,X}) >
case X of
{e, 2} -> g1(2);
{f, Z} -> hi(Z)
end.

In h/1 there are two call sites: g1/1 and h1/1, which have the ratios 2/3 and
1/3 respectively. The inlined call site h/1 in f/1 had priority 300, so the new call
sites get priority 200 and 100, respectively. The new priority queue looks like:

hi/1 in g/1: 200
gl/1 in £/1: 200
gl/1 in h/1: 200
(1) h1/1 in £/1: 200
(2) hi/1 in £/1: 100

Note that there now are two different calls to h1l/1 in f/1, which have been
distinguished by an index. At this point, however, no call site has a priority of 201
or more, o inlining stops.

The algorithm

We now want to implement the intuitive algorithm of the example. This is done in
three parts.

1. A preprocessing step that computes call site ratios and function sizes.
2. A loop over a priority queue to decide which call sites to inline.

3. A code generation step that actually performs the inlining.

Preprocessing. We traverse each function to yield a mapping call_sites from
MFA to (Call.site, Ratio), where Ratio is a value 0 < Ratio < 1. This denotes the
ratio of how many times call site ¢ in function f is visited compared to how many
times f itself is visited. This initial ratio is then adjusted downwards to get rid of
some unfortunate special cases, yielding a final ratio.

First, consider the function £() -> g(). The call to g/0 would have a ratio of
1.0 since it is always invoked when f/0 is executed. We adjust such call sites to a
lesser value, currently 0.99.

For a heavily executed loop, the recursive call will have a ratio of nearly 1.0,
which means it will be inlined heavily. (In one case, we saw our system unroll a
recursive loop 68 times.) However, this is seldom productive and overstates the
benefit of inlining a recursive call. We heuristically scale down the ratios of such
call sites by a factor 0.5.

Hence, for each call site in f, we now have a ratio indicating how often the call
site on average will be executed when f is executed. For function f with call sites
ci,...,Cn With associated ratios r1,...,7,, we define:

ca.ll_,sites(f) = {(Cl, rl)) SR (crn Tn)}

Inlining must also restrict code growth, since the benefits of inlining would
otherwise be cancelled by worse cache performance. We therefore also estimate
the code size of each function as a mapping size(f) from MFA to integers, always
yielding a code size greater than or equal to one.

Priority-based inlining. The data structure to keep track of what inlinings to
do is an inline forest. Each function is represented by a tree in the forest. The tree
originally consists of the function node and its immediate call sites. The nodes and
leaves of every tree are call sites, annotated with the estimated number of visits.

We define a function ezpand(c,n) which, given a call site ¢ and priority n to c,
yields a list of call sites with associated priorities.

ezpand(c,n) = [(c,n)| (¢,7) « call _sites(functionof(c))]

Now for the algorithm, shown below in pseudo-code. The main loop examines
each call site in priority order, and decides whether to inline it. A call site is inlined
if it (a) has sufficient priority, and if (b) inlining it does not break a predefined code
growth limit.

If inlined, the corresponding node in the inline tree is extended with its call sites
as new leaves, and the new call sites are added to the priority queue.

compute size(c) for all functions mfa;

compute expand(c,n) for all functions mfa;

seed inline forest with all functionms;

initialize priority queue with initial call sites;

currsize := <estimated total size>;
maxsize := currsize * <predefined value>;
minprio := <predefined value>;

vhile priority queue non-empty
let (c,n) be the call site c with highest priority n;
if (n < minprio) then stop;
if (size(called_function(c)) + currsize > maxsize) then <skip call site>
else <expand call site, update inline forest and priority queue>
end

return inline forest;

Note that the call sites may include recursive calls. Recursion means the inline
tree can potentially be extended infinitely, say, by inlining a recursive call repeat-
edly. Our algorithm overcomes this problem, as follows. Expanding a site with
priority n always yields call sites with lower priorities n' < n due to the definition
of ratios, eventually growing smaller than minprio. Since size(c) > 1, currsize
furthermore always increases, eventually approaching maxsize. Hence, the algo-
rithm terminates.

Code generation. The final code generation phase is straightforward. We have
a forest of inline trees, each of which will generate one function. (An example inline
tree is shown in the Appendix.)

We traverse each tree recursively from root to leaves. For a node f with children
91, --.,9n, we first generate code for each child g;, which yields a fun A;. We then
substitute e; for the function at the proper call site, converting g;(z) into \;(z).
When all children of f have been inlined into the body of f, we convert f into a
fun A and return A. On returning to the root of the tree, code generation for the
corresponding function is finished.

Each function is then simplified heuristically; in particular, the inlined code has
a number of fun:s applied to known arguments. These are simplified using beta
reduction, which ideally opens up further possibilities for simplification.

The simplified functions are then collected into modules, compiled and executed.

A short example. Here is a short example of the mechanics of inlining a single
function. The initial function is this:

minimum_octets(0,Acc) ->
Acc;
minimum_octets(Val,Acc) ->
minimum_octets(Val bsr 8,[Val band 255]|Accl). %% site 1

Let us assume minimum_octets/2 is called 1000 times and that call site 1 is called
0900 times. The ratio for site 1is then 0.9. The size of minimum_octets /2 is estimated
by considering that it has some pattern matching, two arithmetic operations and
a list construction. (The precise estimated value is not interesting; our current
method is fairly naive.)

The inliner subsequently decides to inline call site 1 (that is, “ynrolling the
loop” by one iteration). This is done by converting the called function into a fun
and substituting it for the called function.

Here is the fun:

(fun (0,_5_Acc) ->
_5_Acc;
(_5_Val,_5_Acc) ->
minimum_octets(_5_Val bsr 8,[_5_Val band 255|_5_Acc])
end)

We substitute the fun for the function call to minimum_octets/2. The inlined
but unsimplified code is then the following:

minimum_octets(0,Acc) —>
Acc;
minimum_octets(Val,Acc) ->
(fun (0,_5_Acc) —->
_5_Acc;
(_5_Val,_b_Acc) ->
minimum_octets(_5_Val bsr 8,[_5_Val band 2551_5_Accl)
end) (Val bsr 8,[Val band 266|Accl).

Our system then simplifies the code into the following:.

%% after simplify:
minimum_octets(0,Acc) —>
Acc;
minimum_octets(Val,Acc) ->
case {Val bsr 8,[Val band 255|Accl} of
{0,_5_Acc} >
_b5_Acc;
{_5_Val,_5_Acc} —>
mipimum_octets(_5_Val bsr 8,[_5_Val band 2551 _5_Accl)
end.

The BEAM compiler can now perform further optimizations. In the compiled
code, shown below, we can see that most of the potential overhead has disappeared.

{function, minimum_octets, 2, 2}.
{1abel,1}.
{func_info,{atom,oct},{atom,minimum_octets},2}.
{1abel,2}.

{test,is_eq_exact,{f,3},[{x,O},{integer,O}]}.
{move,{x,1},{x,0}}.
{?%live’,1}.
return.

{label,3}.
{test_heap,2,2}.
{bif, *bsr’,{f,0}, [{x,0},{integer,8}],{x,2}}.
{bif,’band’,{£,0}, [{x,0},{integer,255}]1,{x,0}}.
{put_list,{x,0},{x,1},{x,0}}.
{test,is_eq_exact,{f,4}, [{z,2},{integer,0}13.
return.

{label,4}.
{test_heap,2,3}.
{bif, ’bsr’,{f,0}, [{x,2},{integer,8}],{x,3}}.
{bif s ’band’ > {f ,0}’ [{1,2} > {mteger,255}] s {x,2}} .
{put_list,{x,2},{x,0},{x,1}}.
{move, {x,3},{x,0}}.
{?’%1live’,2}.
{call_only,2,{f,2}}.

EVALUATION

We have evaluated the inlining algorithm on four benchmarks taken from OTP,
similar to those in Ref [4]. While the workload and interface remains the same
in this paper, the older paper used Erlang version R7B2, while this paper uses
Erlang R9C0. There are substantial differences in implementation between the two
versions, including the underlying code of the benchmarks, and the results are thus
not comparable for these purposes. Furthermore, the current program in general
selects more modules for optimization than in the previous paper.

In a previous paper [4], we described a number of techniques to improve cross-
module inlining opportunities: apply optimization, outlining and module merging.
For clarity, none of these extra optimizations were performed on the applications
in this paper. However, we here assume that module merging is done after inlining
(cf. Future Work below for a further discussion on this issue).

The evaluation was performed on an Athlon 1300+ PC with 512 MB memory
running Erlang ROCO. The inlining algorithm per se was implemented in 460 lines of
Erlang, though that number excludes a substantial support library. The benchmarks
were executed ten times each, and the fastest results used for comparison. Speedup
for each benchmark was computed as:

Speedup = Torig/Topt
We used the following applications:
¢ ldapv2. Generating and parsing ASN.1 data for the LDAPv2 protocol.
e gen_tcp. Socket communication using short and long messages.
¢ beam. BEAM compiler working on a number of source files.
e mnesia. Mnesia simulating simple HLR-like traffic.

The applications can be summarized by measuring the number of modules, func-
tions and call sites. The number of local call sites are those accessible to a per-
module algorithm. We also measured the number of call sites that were visited
during profiling; only visited call sites were even considered for inlining.

Application | Modules | Functions | Call sites | Local sites | Visited sites
gen_tcp 13 658 1546 989 202
Idapv2 5 321 1038 616 140
beam 51 2347 9669 7594 2653
mnesia 63 4207 13390 8435 984

Local call sites are 60% to 78% of the total; the remainder are remote call sites
and higher-order function calls.

It is interesting to note that only 7% (mnesia) to 27% (beam) of all call sites
are ever visited during profiling. This suggests that profiling can eliminate large
numbers of functions from being considered for inlining.

Performance results. We have only very preliminary performance results at the
time of writing. The two larger benchmarks could not be executed, due to bugs
in the code emitted by the inliner. Of the two remaining programs, the gen_tcp
benchmark yields a small speedup of 4% at a size cost of 1%; examination shows
that the inliner chose just to inline three functions in prim_inet. Ldapv2 shows a
better speedup of 10% at a greater size cost.

In both benchmarks, we set the maximum code growth to 50%, which was not
attained; our size estimation heuristic may be the culprit.

Application | Speedup (emu) | Size increase
gen_tcp 1.04 1.01
1dapv2 1.10 1.33

Finally, since native code compilation could hypothetically take greater advan-
tage of inlined code, we tried to measure native code performance of the bench-
marks. Unfortunately, the native compiler choked and we were unable to complete
this task.

Our tentative conclusion is that the inlining algorithm can provide some speedup
on a sizeable application. However, substantial work remains to debug, tune and
enhance the inlining algorithm. This is further discussed below.

CONCLUSION AND FUTURE WORK

We have shown how to exploit profiling information to drive function inlining. Our
algorithm performs cross-module inlining and recursive inlining. While our evalua-
tion is incomplete, the inlined programs tentatively show reasonable speedups.

Cross-module inlining must handle Erlang’s hot code loading feature. One ap-
proach to doing this at a near-zero runtime cost is described in Ref [3]: modules are
merged into larger units of code, and former cross-module calls inside the merged
entity are guarded to preserve the code loading semantics.

In a previous article (4], we described how to form module aggregates by merging
the modules that called each other most frequently; inlining was then done inside
each aggregate. The current approach to inlining instead suggests post hoc module
aggregation, by first observing the actual cross-module inlinings, then merging the
modules where cross-module inlinings occurred. The details of this approach remain
to be worked out.

What has been presented here is in some sense work in progress. We have, for
example, conducted a very basic evaluation in this paper. When considering the
interactions between multiple inlining parameters, multiple optimizations, multiple
benchmarks and multiple workloads, a more thorough performance evaluation seems
necessary. It is likely that such experience would also lead to refinements to the
heuristics described in this paper.

For instance, our heuristic of always choosing the most visited call site unless
too large could be generalized to consider cost and benefit more explicitly [1], which
could lead to better results.

STOCKHOLM, OCTOBER 2003

References

[1} M. Arnold, S. Fink, V. Sarkar, P. F. Sweeney. A comparative study of static
and profile-based heuristics for inlining. Proceedings of the ACM SIGPLAN
workshop on Dynamic and adaptive compilation and optimization, ACM 2000.

[2] R. Carlsson, personal communication. October 2003.

[3] T. Lindgren. Module merging: aggressive optimization and code replacement
in highly-available systems. Technical report 154, Computing Science Depart-
ment, Uppsala University, 1998.

[4] T. Lindgren. Cross-module optimization. In Proc. Seventh Erla.ng User Con-
ference. September 2001.

[5] O. Waddell, R. K. Dybvig. Fast and Effective Procedure Inlining. In Proc.
Fourth International Symposium on Static Analysis (SAS ’97), Springer LNCS
1302, 1997.

A Inline tree for mnesia

The inliner performs 802 inlines on the mnesia benchmark, where one of the core
activities is mnesia:dirty_write/2. We show the inline tree for that function here,
which involves inlining across a total of eight modules. The original version of
dirty_write/2 is two lines of code; the inlined version of dirty_write/2 is somewhat
more than 1000 lines of Erlang.

Many nested inlinings are done. Starting from the top, mnesia:dirty_write/2
contains an inlined call to mnesia:do_dirty_write/3, which contains an inlined call
to mnesia_tm:dirty/2, which contains an inlined call to mnesia_tm:rec.dirty/2; one
inlined call to mnesia_tm:async_send_dirty/4; one to mnesia_tm:val/1, and one to
mnesia_tm:prepare_items/5. All but one of which themselves contain inlined calls.

mnesia:dirty_write/2
.mnesia:do_dirty_write/3

. .mnesia_tm:dirty/2

. .mnesia_tm:rec_dirty/2

. .mnesia_tm:async_send_dirty/4

..mmesia_tm:async_send_dirty/6

..... mnesia_tm:async_send_dirty/6
...... mnesia_tm:async_send_dirty/6
....... mnesia_tm:do_dirty/2
........ mnesia_tm:do_commit/2
......... mnesia_tm:do_commit/3
.......... mnesia_tm:do_update/4
.......... mnesia_tm:do_update/4
.......... mnesia_tm:do_update/4
.......... mnesia_tm:do_snmp/2
.......... mnesia_dumper:update/3
........ mnesia_log:log/1

......... mnesia_dumper:incr_log writes/0
.......... mnesia_lib:incr_counter/2
......... mnesia_log:append/2
.......... disk_log:alog/2
........... disk_log:notify/2
............ disk_log_server:get_log_pids/1
............. disk_log server:do_get_log_pids/1
......... mnesia_monitor:use_dir/0
...... mnesia_tm:do_dirty/2
....... mnesia_tm:do_commit/2
........ mnesia_tm:do_commit/3
......... mnesia_tm:do_update/4
.......... mnesia_tm:do_update_op/3
........... mnesia_lib:db_put/3
........... mnesia_tm:commit_write/6
......... mnesia_tm:do_update/4
.......... mnesia_tm:do_update_op/3
........... mnesia_lib:db_put/3
........... mnesia_tm:commit_write/6
......... mnesia_tm:do_update/4
.......... mnesia_tm:do_update_op/3
........... mnesia_lib:db_put/3
........... mnesia_tm:commit_write/6
......... mnesia_tm:do_snmp/2
......... mnesia_dumper:update/3
....... mnesia_log:log/1
........ mnesia_dumper:incr_log_writes/0
......... mnesia_lib:incr_counter/2
........ mnesia_log:append/2
......... disk_log:alog/2
.......... disk_log:notify/2
........... disk_log_server:get_log_pids/1
............ disk_log_server:do_get_log pids/1
........ mnesia_monitor:use_dir/0
..... mnesia_tm:do_dirty/2
...... mnesia_tm:do_commit/2
....... mnesia_tm:do_commit/3
........ mnesia_tm:do_update/4
......... mnesia_tm:do_update/4
......... mnesia_tm:do_update_op/3
.......... mnesia_lib:db_put/3
.......... mnesia_tm:commit_write/6
........ mnesia_tm:do_update/4
......... mnesia_tm:do_update/4
......... mnesia_tm:do_update_op/3
.......... mnesia_lib:db_put/3
.......... mnesia_tm:commit_write/6
........ mnesia_tm:do_update/4
......... mnesia_tm:do_update/4
......... mnesia_tm:do_update_op/3
.......... mnesia_lib:db_put/3
.......... mnesia_tm:commit_write/6
........ mnesia_tm:do_snmp/2
........ mnesia_dumper:update/3

10

...... mnesia_log:log/1
....... mnesia_dumper:incr_log_writes/0
........ mnesia_lib:incr_counter/2
....... mnesia_log:append/2
........ disk_log:alog/2
......... disk_log:notify/2
.......... disk_log_server:get_log_pids/1
........... disk_log_server:do_get_log_pids/1
....... mnesia_monitor:use_dir/0

. .mnesia_tm:val/1

. .mnesia_tm:prepare_items/5

. .mnesia_tm:check_prep/2

..mnesia_tm:do_prepare_items/7
..... mnesia_tm:prepare_nodes/5
...... mnesia_tm:prepare_nodes/5
....... mnesia_tm:prepare_nodes/5
........ mnesia_tm:prepare_node/5
........ mnesia_tm:pick_node/4
....... mnesia_tm:prepare_node/5
........ mnesia_tm:prepare_node/5
....... mnesia_tm:pick_node/4
...... mnesia_tm:prepare_node/5
....... mnesia_tm:prepare_node/5
........ mnesia_tm:prepare_node/5
...... mnesia_tm:pick_node/4
..... mnesia_tm:prepare_snmp/7

. .mnesia_tm:val/1

...mnesia_tm:val/1

11

[/JL\mL/S WeWw w PQC
keu(/{/l\ Z.UML\‘K

e R R T

What’s new in Erlang/OTP R9C

This presentation will highlight some of the new and changed functions in the latest release.

Outline of the presentation
*New and changed things
* ERTS
* Applications
e Misc

* Incompatible things

Automatic testing: 1

Ericsson AB, UKH/K

ERICSSON Z

New and Changed things (ERTS)

*Memory management improvements with a number of different
allocators which can be configured

* temp_alloc, eheap_alloc, binary_alloc, ets_alloc, sl_alloc,
ll_alloc, fix_alloc, sys_alloc, mseg_alloc

Changed flags for E-node start

erl +MB true +ME true +MEas aobf +r
*E:\Program\eri5.3\erts-5.3\doc\html\erl.html
*E:\Program\erl5.3\erts-5.3\doc\html\erts _alloc.html

* Improved memory instrumentation

Automalic lesting: 2

Ericsson AB, UKH/K

New and Changed things (ERTS)

* New! System flag +Bi starts an E-node which ignore break signals
(i.e cannot be terminated with CTRL-C)

* New! erlang:hibernate(Mod, Func, ArgList),
reduce a process memory footprint as much as possible.
Can be used instead of saving a process state in ets-tables

Note! erl +P 262144 (default 32768 number of Erlang processes)
* New! erlang:send/3 supersedes erlang:send_nosuspend

* New! Support for IPv6 in the gen_tcp, gen_udp and inets modules.

Automatic testing: 3 Erlcsson AB, UKH/K

New and Changed things (kernel/stdlib)

* New! integer_to_list(Integer, Base)

3> erlang:integer_ to_list(10,16).

wpn

* New! list_to_integer(CharList, Base)

4> erlang:list_to_integer("A", 16).

10

* New format characters for io:format/2 ~b, ~B, ~x, ~X, ~+ and ~#

* New format charaters for io:fread/2 ~u, ~- and ~#

Automalic testing: 4 Ericsson AB, UKH/K

ERICSSON =

New and Changed things (stdlib)

* New! The Erlang shell enables the user to write functions which
can restrict the execution of certain functions.

* New! The modules erl_tar and filelib are now documented and
supported

Autornalic testing: 5 Ericsson AB, UKH/K

ERICSSON Z

New and Changed things (compiler)

» Change! When updating a record the record tag and size is now
always checked.

* New! In the bit syntax a size field can be bound during the same
matching

<<Size, B:Size/binary,Rest/binary>> =
<<2, IIABII’ 3 R IICDEII>>

Automatic tesling: & Ericsson AB, UKH/K

ERICSSON Z

New and Changed things (crypto/ssl)

» Change! Crypto requires dynamically linked OpenSSL libraries
that the user has to install (used via SNMP v3)

* Change! SSL is now based on OpenSSL

Automalic testing: 7 Ericsson AB, UKH/K

i SR B v i

New and Changed things (applications)

* Change! IDL compiler: The CORBA stub/skeleton-files generated
are reduced in size and less dependent on the interface repository.

* New! ASN.1 compiler have support for partial decode for BER
(can be used to improve performance depending on application)

Aulomatic testing: B Erlesson AB, UKH/K

New and Changed things (misc)

* New! Erlang Reference Manual

* New! crashdump_viewer for browsing Erlang crashdumps.

Automnalic testing: 9 Ericsson AB, UKH/K

ERICSSON 2

New and Changed things (misc)

*New! Now possible to build Open Source Erlang also on Windows,
New Installation program for Windows

*HiPE improved performance for bit syntax matchings

* Erlang mode for EMACS now documented + bugs fixed + new
feature for aligning arrows.
 Cover

* new WebCover interface

= export and import of cover data

¢ multi node support

* analyse_to_file can produce nice htm! output

Automatic testing: 10 Ericsson AB, UKH/K

Crashdump Viewer

* HTML based tool for browsing Erlang crash dumps

* Displays any crashdump from OTP R7B01 and newer
* Available in ERV vob now for OTP R8B and R9B.

* Warning if dump is truncated

e example of dump

Automalic testing: 11

Ericsson AB, UKH/K

Crashdump Viewer, general info

General information
Processes

Ports

ETS tables

Timers

Fun table

Atoms

Distribution inforrnation
Loaded modules
CZiInternal Tables
{OMemory information
TDocumentation

Load New Crashdump |

General information ey

Automatic testing: 12

Ericsson AB, UKH/K

Crashdump Viewer, process info

Process Information gep

| Pid ‘: Name | SE-:I'U\'.IIPD]"-'I:T) _.?-@._i“]'{ednc;ng ;‘t;:k+;m11\11 'L;'I'I"fll
[<0630> | mnesia_tocker proc_tibinit_p/s Runicg | 4081077 233)
T<000> [t | otp_ring0:start2 [Waiting | 404504 | 4181 0
1<020> edprmjoader | edprim loadersta i Witng | 464792] 610 0
Tc0a0> [emor_logger ' |proc_tbinit_pis - 4620161, 832040 0
[<050> |applcation_controller [proe_tibinit_pi5 o 176517 2584 | o
«0700 | | proc_tibinit_pf5 o 45 377 0
| :.-) [application_mastersstart w4 ust 233 0
(090> _.dl;.emel_:uf;_“_- [proc_libinit_pfS - %752 6100 0
01002 |rex | proc_ibinis_p/5) R mi 0
140110> | global_name_server | proc_libinit p/5 303615 377 P 0
:_<o-12 0> ..)) -) | globaliniz_the_locker/1 N 739 f-- 610 0
| [wits i e e 2

Automatic lesting: 13 Ericsson AB, UKH/K

ERICSSON =

Crashdump Viewer, process details

Spawnedas E . i
T . _ T e T T T S
!'Started i Sp d by unknown
Redugons 408107 F =
Staclctheap T OldHeap T
‘Heap wmmsed S Es ~ 'OldHeap uwnused -) -
'Number of heap fragments 'mknm iHeap fragment data 205words
"_I\tfsgql_:ex;eleng-d;) 0 — = ___ —— __) o ___ _“_
Tk st [<0.60.05] o
Dictionmy ({*$inicial_call', (mnesia_sp,init_proe,
| [mne:iu_.lockez,mne:ia_luckez, inic, [£0.60.02]])),
{'$ancescors', [mresia_kernel sup,mnesia_sup,=it.57.02]))
[StackDuanp Fxpwd (1007 bytess 7

ETS mbles owned by thic process Timers owned by this srocess

Automatic lesling: 14 Erlcsson AB, UKH/K

ERICSSON Z

Incompatibilities
* Erl_interface , internal and interface header files separated if internal header
files are used the application might not compile without changes.
* When updating records , tag and size are always checked
* The deprecated module unix is removed

» See the documentation

Automatic testing: 15 Ericsson AB, UKH/K

LUU 2ZUUS = rarucipants

Erlang/OTP User Conference 2003 - Participants

Sida 1 av 4

[B __Cha-irman and speakers i -)
W Mobile Arts - Stockholm, Sweden |liohan.blom_at_mobilearts. se Fﬁb—
Goran Bage Mobile Arts Stockholm, Sweden lgoran.bag_e: at_home.se Pub
|Richard Carlsson Uppsala university Uppsala, Sweden richardc_at_csd.uu.se Pub
Bjarne Dicker cs-lab.org Stockholm, Sweden bjame_é?_cs—lab.org Pub
[Per Gustafsson Uppsala ;miversity Uppsala, Sweden .) Pub
[J ohn Hughes B Chalmers university | Gothenburg, Sweden jmh at__c_s.chalmers_. se . [[w
Tobias Lindahl Uppsala university Uppsala, Sweden B B - B Pub
Thomas Lindgren Stockholm, Sweden ﬂlomasl_erlgnﬁ__yahoo.cog Pub
Kenneth Lundin Ericsson Stockholm, Sweden kenneth_at_erix.ericsson.se ~ |[pub
Mikael Pettersson Uppsala univérsity Uppsala, Sweden mikpe_at_csd.uu.se Pub
Mickaél Rémond |Paris, France]mickael.remond_at_erlang-ﬁ. org Pub
Kostis Sagonas [Uppsala university Uppsala, Sweden @ﬁs}jxser.it.uu. se Pub
Juan José Sanchez Penas Unim of Corunha IC(:-rl.u“ia, Spain Euanj o_at _dc.fiudc.es ~ Pub |
Danie Schutte Teba Bank E'h-'-drand, South Africa DANIESC.SCHUT T—E_at_tebabank.c-:om Pub
|[Hai Snyder Vail Systems Chicago, USA hal_at_vailsys.com Pub
Torbjom Tormkvist Nortel Stockholm, Sweden tobbe_at_bluetail.com
|ULf Wiger Ericsson Stockholm, Sweden _| ulf.wiger at_ericsson.com Pub
Jesper Wilhelmsson Uppsala university Uppsala, Sweden | jesperw_qat_ﬂit.gu;se- |[Pub
Mike Williams Ericsson Stockholm, Sweden michael.wi]liz];ms_at ericsson.com Pub
Parti:i;ants N
Peter Andersson Ericsson Stockholm, Sweden Jlgub
Ingela Anderton Ericsson Stockholm, Sweden lingela_at_erix.ericsson.se "ﬂ
Gunilla Arendt ||[Exicsson - Stockholm, Sweden u

JIg_J_gunﬂla_at_eﬁx.ericss_qn.se
If —

Nfmn 1 1

|

AT TAIANAAALTS A « 1.

hs

AMaNN? 11 1H

EUC'2003 - Participants Sida 2 av 4

|Joe Armstrong - |sics . Stockholm, Sweden joe_at_sics.se ||Pub |
'[Thoma_s—Arts ll;I‘-university _____ Gothe:ﬁagg, Sweden thomas.arts_at_ituniv.se |[Pub |
Gosta Ask B :_ Stockholm, Sweden |lg.ask_at_telia.com IPub
Robert Balla Ericsson B Bud;I)est, Hungary gballro_at _cbe.ericsson.se Pub |
John-Olof Bauner Ericsson Budapest, Hungary John-Olof Bauner_at_ericsson.com [
_|Clara Benac Earle University of Kent Canterbury, England cb47 at kent.ac.uk Pub
|Per Bergqvist |Synapse |Stockholm, Sweden per Hynag.se Pub
| Johan Bevemyr Wrtel ‘__ [Stockholm, Sweden [}’b_at_bluetail.com Pub
E‘L" Bihari _ Ericsson B Budapest, Hungary _ |leva.bihari_at_ericsson.com . Pub
Martin Bjorklund Nortel Stockholm, Sweden 'mbj _at_bluetail.com } Pub
Pascal Brisset Cellicium Bagneux, France pasmrisset_atﬁcellicium.com Pub
Hans Bolinder Ericsson Stockholm, Sweden
[Francesco Cesatini Erlang Training & Consulting London, England francesco_at_erlang-consulting.com __|[Pub
Mats Crongvist ; Ericsson - N Bud@_st, Hungary mats. cronqvist_at_eth.ericsson_. se _I
Lars-Ake Fredlund __|[Uppsala universi-t;: |Uppsala_, Sweden fred_at_sics.se E
[Magnus Froberg ~ |Nortel N Stockholm, Sweden magnus_at_bluetail.com [Pub
Luke Gorrie [Nortel Stockholm, Sweden luke_at_bluetail.com Pub
Pir Grandin Ericsson Stockholm, Sweden
Joakim Grebend Nortel Stockholm, Sweden jocke_at_bluetail.com Pub
Dan Gudmundsson Ericsson Stockholm, Swe@ " . Pub
Bjorn Gustavsson __|Eﬂ3§§;n Stockholm, Sweden_ "bjorn at_erix.eficsson.se_) Pub
Gordon Guthrie | [|Scottish Enterprise Network || Glasgow, Scotland '[gordon.guth.ﬁe_at_scotent. co.uk B L
Per Hallin Synapse [Stockholm, Sweden _Eer.hallin_at__synap.se [Pub |
Siri Hansen Ericsson Stockholm, Sweden Pub
Per Hedeland [Nortel Stockholm, Sweden Iper_at_bluetail.com Pub
Andras Horvath Ericsson . Budapest, Hungary andras.horvath_at_ericsson.com Pub |
Bertil Karlsson [Ericsson - I [[Stockholm, Sweden ___]

LUV 4UVO = dlluvipdiils

Sida 3 av 4

Mikael Karlsson "Creado Systems |Stockholm Sweden |Imikael.karlsson_at_creado.com |
Bengt Kleberg ||Encsson |—_ockholm Sweden Bengt.Kleberg at ericsson.com

Tord L;r—ssog_ _JlNortel Eockholm, Sweden tiarsson_at nortelnetworks com . |_
Fredrik Linder ||CellPomt AB [Kista, Sweden ~ lfredrik.]mder at_cellpointcom [Pub
Matthias Ling [Corelatus Stockholm, Sweden matthias_at _corelatus.se Pub
Luca Manai Ericsson Stockholm, Sweden I|luca.1:(1am¥;at__en'csson.com Pub
Hikan Mattsson Ericsson Stockholm, Sweden hakan_at_erix.ericsson.se ~ Pub |
|Pete;i\l agy . Ericsson Budapest, Hungary meter.ﬁg};at_a;gson.con} e _] zub_~|
Hans Nilsson o a'i:ssg_ Stockholm, Sweden "hans.r.nils?on at_e;ﬂ:sson::om - Pub |
Raimo Niskanen Ericsson Stockholm, Sweden | - B Pub
Annika Nordqvist Ericsson Stockholm, Sweden annika.nordqvist_at_ericsson.com

Patrik Nyblom Ericsson Stockholm, Sweden Pub
Jan Henry Nystrom Heriot-Watt University Edinburgh, Scotland jann_at_macs.hw.ac.uk Pub |
Denes Pazmany Ericsson L Budapest, Hung-a; Denes.Fa_zinany_at eth. ericsson.se E
Akos Pri_rzczinger - [Ericsson . ___ Budapest, Hungary | @rakos_at- cbe.ericsson.se _ |
Bﬂhur Quinn Scottish Ente_rprise Network |Glasgow, Scotland 3 B

Claus Reinke University of Kent | Canterbury, England C.Reinke at kent.ac.uk Pub
Tony Rogvall Synapse [Stockholm, Sweden tony at rogvall.com Pub
Sebastian Strollo Nortel ||Stockholm, Sweden seb_at_bluetail.com [Pub |
Per Einar Stromme - ”Stockholm, Sweden stromEg at_telia.com Pub |
Biro Szabolcs |[Exricsson . B ||Budapest, Hungary J[Szabolcs Biro_at_eth.ericsson.se Pub I
Simon Thompson Bl 4_]|Universit_y of Kent . Canterbury, England S.J. Thompson at_kent.ac. uk N

Zoltan Peter Toth Ericsson i Budapest, Hungary Zoltan.Tothﬁat_eth.encsson.se

Laszlo Vadkerti Ericsson Budapest, Hungary ! laszlo.vadk;ti_at_eﬁcsson.com

Jane Walerud |[Stockholm, Sweden jane_at_walerud.com Pub
|Claes Wikstrom [Nortel Stockholm, Sweden klacke at_bluetail.com ||Pub
rns Williams |[Ericsson L Stockholm, Sweden chris.williams_at ericsson.com ;] Pub |

FVAICN AL a0/ ANA A e tea e AT TONIAANIN T oid® 2 s Van

ANNAA 24 1A

EUC'2003 - Participants Sida 4 av 4

To send a mail rgplgce the" at " byan"@" ‘—_—”

|updated 2003-11-12

