
8th International Erlang/OTP
[Jser Conference

Stockholm, November 19, 2002

Proceedings

ËËrtiU
rr

t
î

t
ü

1'¿
Li¡

t
t.

ev
LL

ilE

ùll*rtl ¡¡J !lq J:'-1

III

EUC'2002 http z / /¡¡¡ww. erlang. se/euc / 02 /
Ericsson AB
P.O. Box 1505
SE-125 25 Älvsjti Stockholm
Sweden

ERICSSON ?

f-I

tuJ
ERLANG

ErlangOTP User Conferen ce 2002

Conference Programme
08.30 Registratíon

Applications I
09.00 Yaws.

Claes'Wikström, Alteon TVebSystems.

09.30Implementing the Mobile Location hotocol: A Tale from the Trenches.
Magnus Eklund, Fredrik Linder and Thomas Lindgren, Cellpoint.

10.00 The BLIS4 Platform and Development Experiences.
Thomas Verner, BluePosition.

10.30 Coffee

Applications If
11.00 HELGA - A Catt Load Generator Written in Erlang/OTP.

Anand Balagopalakrishnan and Bagirath Krishnamachari, Lucent Technologies.

11.30 The AXC 105 Fibre Switch.
Hans Nilsson, Ericsson.

11.50 Mobile Arts lligh Performance Telecom Platform.
Johan Blom and Göran Båge, Mobile Arts.

t2.10 DevelopÍng for the Web in Erlang: Why and how ?
Mickaël Rémond, erlang-fr.org.

12.30 Lunch

Technology I
14.00 On Reducing Interprocess Communication Overhead in Concurrent Programs.

Erik Stenman and Konstantinos Sagonas, Uppsala university.
14.30 Distel: Distributed Emacs Lisp (for Erlang).

Luke Gorrie, Alteon V/ebSystems.

15.00 Static Analysis of Communications in Erlang Programs.
Fabien Dagnat, ENST, Bretagne.

15.30 Coffee

Technology II
16.00 Stand Alone Erlang.

Joe Armstrong, SICS.

16.30 Use of Erlang in System Test of AXD 301.
Karl Olsson, Ericsson.

17.00 The Erlang/OTP R9 Release.
Kenneth Lundin, OTP Unit, Ericsson.

17.30 Close (and. pub evening)

Demonstrations (during intermissions)
BluePosition demonstrates their innovative Bluetooth Location Information System -
BLIS4.

Yaws - Yet Another Web Server

Claes Wikstrom
klacke@hyber.org

lLth November 2002

2

Contents

1 Introduction

1.1 Prerequisites

L.2 A tiny exa,mple . .

2 Compile, Install, Conffg and Run

2.0.1 Compile and Install

2.0.2 Configure

3 Static content

4 Dynamic content

4.1 Introduction .

4.2 EHTML...
4.3 POSTb....

4.3.1 Queries

4.3.2 Forms

4.4 POSTing files

5 Mode of operation

5.1 On the fly compilation

5.2 Ðvaluating the Y¡ws code

6 SSL

10

11

11

1L

16

16

77

18

20

20

2L

22

1

3

4

4

6

6

7

3

coN"EN"S

7 Applications

7.7 Login scenarios

7.L.1 The session server

7.I-2 Arg rewrite

7.L.3 Authenticating . .

7.L.4 Databa.se d¡iven applications

7.2 Appmods

7.3 The opaque data .

7.4 Customizations

7.4.1, 404 File not found

7.4-2 Cra.sh messages

7.5 St¡ea,sr content

7.6 All out/l retu::a values

I Debugging and Development

8.1 Logs .

9 Security

9.1 \,t ,V\ry Authenticate

L0 Embedded mode

lL The conffg file - yaws.conf

1L.1 Global Part .

11.2 Server Pa¡t

L1.3 Configuration Exâ.mples

2

23

23

23

25

26

28

28

29

29

30

30

31

31

33

33

34

34

36

37

37

38

40

4

Chapter 1

Introduction

Ynws is an ERu,Nc web server. It's v¡ritten in ERleNc and it uses ERIRNc as its embedded
language similar to PHP in Apache or Java in Tomcat.

The advantages of ERI¡Nc as an embedded web page language as opposed to Java or PHP are
ma,ny.

. Speed - Using ERLeNc for both irnplementing the web server itself a.s well as embedded script
Ianguage gives excellent dyna,rnic page generation performance.

o Beauty - Well this is subjective

¡ Scalability - due to the light weight plocesses of ERr,¡Nc , YRws is able to handle a very large
number of concurrent connections

Y¡ws has a wide feature set, it supports

1. HTTP 1.0 a¡d HTTP 1.1

2. Static content page delivery

3- Dyna.rnic content generation using embedded Enl¡¡¡c code in the HTML pages

4. Common Log Format tra,ffic logs

5. Virtual hosting with several servers on the sn.me IP address

6. Multiple servers on multiple IP addresses.

3

5

CHAPTER 1. INTRODUC?TON

7. HTTP tracing for debugging

8. An interactive interpreter environment in the Web server while developing and debugging the
web site.

9. RAM caching of co--onÌy accessed pages.

10. Fbll streaming capabilities of both up and down load of dynamically generated pages.

11. SSL

12. Support for W'WW-Authenticated pages.

13. Support API for cookie based sessions.

L4. Application Modules where virtual directory hiera¡chies can be made.

15. Embedded mode

1.1 Prerequisites

This document requires that the reader:

¡ Is well acquainted with the ERleuc programming language

o Understands ba.sic \fsþ tsehnelegies.

L.2 A tiny example

We introduce Yews by hetp of a tiny exa.mple. The web server Yews serves and delivers static
content pages similar to any old web server, except that YAws does this much faster than most web
servers. It's the dynarnic pages that ma,kes Y¡ws interesting. Any page with the suffix,,.yaws" is
considered a dynaanic Y.lws page. A Yews page can contain embedded ER¡,¡ruc snippets that a¡e
executed while the page is being delivered to the W\MW browser.

Exanple 1.1 is the HTML code for a small Yews page.

It illustrates the basic idea behind Y.lws . The HTML code can contaiu (erl> and </erl> tags
and inside these tags an ERleNc function called out/L gets called and the output of that function
is inserted into the HTML document, dyn¡mically.

It is possible to have several chunks of HTML code together with several chunks of ERI¡N6 code
in the sa,me Yews page.

The Arg argument supplied to the automatically invoked out/1 function is ale ERlaNc record that
contains various data which is interesting when generating dyn¡.mic pages. For exa^:nple the HTTP

4

t

6

CHAPTER 1. INTRODUC?ION

<htnl>

<p> First paragraph

(erl)
out(Arg) ->

{htnl, "<p)This string gets inserted into HTt'fL docuneat dynanicalty"}
</er1>

<p> And here is sone nore IfIlfL code

</htnt>

Figure 1..1: Exa^rnple 1.L

headers v¡hich were sent from the W'WW client, the actual TCP/IP socket lead.ing to the W\4 4/
client. This will be elaborated on througbly in later chapters.

The out/l function returned the tuple {htnI, String} and String gets inserted into the HTML
output. There a¡e number of different return values that can be returned from the out/l function
in order to control the behavior and output from the Y.rws web server.

5

7

Chapt er 2

Compile, Install, Config and Run

This chapter is more of a "Getting started" guide than a full description of the Y¡ws confrguration.
Yews is hosted on Sourceforge at http://sourceforge.net/projects/erlyøws/ . This is where the
source code resides in a CVS repository and the latest unreleased version is available through
anonymous CVS through the following comnands:

export CVS_RSH=ssh

export cvsR00T=:pserver:anonynous@cvs.erryavs.sourceforge.aet:/cvsroot/erlyaws
cvs login
cvs -23 co .

Released version of Y¡ws are available either at the Sourceforge site or at http://yaws.hyber.org/d,ownloød,.

z.O.L Compile and Install

To compile a¡rd install a Y,qws release one of the prerequisites is a properly installed ERr,eNc system
Yews runs on ERI¡,tlc relea.ses OTP R8 a¡d later. Get ERLeNc from http://www.erløng.org

Compile and install is straight forward:

cd /¡tsr/local/src
tar xfz yans-X.XX.tar.gz
cd yaws
nake
nake install

There is no confi.gure script (yet) since there a¡e no items to configure.

¡

6

8

CHAPTER 2. COMPILE, INSTALL, CONFIG ,A,ND RUN

The make com"'and will compile the Yews web server with the erlc compiler found in $pATH.
make install - will install the executable - called yaws in /usr/local/bin/ and a working confi.guration
frLe in /etc/yaws.conf

make local-install will install the executable in $HOME/bin and a working configuration fiIe in
$HOME/yaws.conf

While developing a Yews site, it's typically most convenient to use the local install a¡d. run yews
as a non privileged user.

2.O.2 Configure

Let's take a look at the config file that gets written to $HOME after a local install

first ¡¡e have a set of globals

logdir =
ebin-dir = /hone/kl acke / yav s /yaws/ex"'¡p1es/ebin
include_di r = /home /klacke /yavs/yaws/exanple s/inctude

and then a set of servers

<server localhost>
port = 8000
listen = 127.0.0.I
docroot = /hone/klacke/yavs/yaws/scripts/ . . /vuv

(/server>

Figure 2.1: Minimal Local Configuration

The configuration consists of a¡ initial set of global va¡iables that are valid for all defined servers.

The only global directive we need to care about for now is the logdir. Ynws produces a number
of log flles and they will - using the Configuration from Figure 2.1 - end up in the current working
directory. We sta¡t Yews interactively as

-/bin/ya¡¡s -i
Erlang (BEAÌ,{) enulator version 5.I.2.b2 lsource]

Eshell V5.1.2.b2 (abort with ^G)

1>

=INF0 nEP0RT==== 30-0ct - 2002 -. ; 01, : BB : 2) ===

.7
I

9

CHAPTER 2. COMPILE, INSTALL, CONFJG AND RUN

Using config file /hone /klacke/yavs. conf
=INFo ff,pQft==== 30-0ct-2002: :01 :38:2) ===
Listening to 127,0.0.1:8000 for servers ["Iocalhost:8OOO,,]

1>

By starting Y¡ws in interactive mode (using the comma¡rd switch -i we get a regula^r ERleNc
prompt. This is most convenient when developing Yews /http pages. For exa,mple we:

¡ Can dyna^m,ically compile and load optional heþer modules we need.

o Get aII the crash and error reports written directly to the terminal.

The configuratiou in Exa,mple 2.1 defined one HTTP server on address 127.0.0.1:8000 called "local-
host'r. It is importa¡t to understand the diference between the name and the address of a server.
The na-s is the expected value in the client Host: header. That is typically the sam.e as the fully
qualiûed DNS name of the server wherea,s the add¡ess is the actual IP address of the server.

Since Yaws support virtua,l hosting with several servers on the sa,me IP address, this matters.

Nevertheless, our server listens to 127.0.0.1:8000 and has the narne "loc¡lhostrr, thus the correct
URL for this server is http:/flocalhost:8000.

The document root (docroot) for the server is set to the www directory in the Yaws source code
distribution. This directory contains a bunch of examples and we should be able to run aII those
s¡ample now on the URL http:/fiocølhost:8000.

Instead of editing and adding ûles in the Yews www directory, v¡e create yet a^nother server on the
sa.me IP address but a different port number - and in particular a diferent document root where
v/e can add our own fiIes.

nkdir -/test
nkdir -/test/logs

Now change the config so it looks like this:

logdir = /home lklacke/test/logs
ebin-dir = /home/kLacke/test
include_dir = /bome/klacke/test

<server localhost>
port = 8000
listen = 127.0.0.1
docroot = /hone/klacke/yaws/yavs/rnrr

8

¡

t

:

I

10

CHAPTER 2. COMPILE, TNSTALL, CONFTG AND RUN

(/server>

<server localhost)
port = 8001
listen = 127.0.0.1
docroot = /hone/klacke/test

(/server>

\Me define two servers, one being the original default and a new pointing to a document root in our
home directory-
'We ca¡ now start to add static content in the form of HTML pages, dynamic content in the form
of -yaws pages or ERI¡NG .bea- code that can be used to generate the dynamic content.

The load path will be set so that beam code in the directory - /test will be automatically loaded
when referenced.

It is best to run Y.qws interactively while developing the site. In order to sta¡t the yaws as a
daemon, we give the flags:

yaws -D -heart

The -D fl.ags instructs Y¡ws to run as a daemon a¡d the -heart flags wiII start a hea¡tbeat program
called heart which resta¡ts the daemon if it should crash or if it stops respond.ing to a regular
hea¡tbeat.

Once started in daemon mode, we have very limited ways of interacting with the daemon- It is
possible to query the daemon using:

f yaws -S

This com-and produces a simple printout of lJptime and number of hits for each configured server

If we change the configuration, we ca¡ HUP the daemon using the command.:

yavs -h

This will force the daemon to reread the configuration file.

I

1'l

Chapter 3

Static content

Yaws acts very much like any reguiar web server while delivering static pages. By default Y¡ws will
cacbe static content in RAM. The caching behavior is controlled by a number of global configuration
directives. Since the RAM caching occupies memory, it may be interesting to twea^k the default
values for the caching directives or even to turn 1¡ eff sempletely.

The following configuration directives control the caching behavior

. rnaï-nu,rn_cached*fiIes : Integer Yews will cache smalt files such a^s commonly accessed
GIF images in R'A.M. This directive sets a mæcimum number on the number of cached files.
The <-lef¿rrlt vaJue is 400.

. rnat-nurn_cached,_bgtes : Integer This directive controls the total amount of RAM which
can mæcimally be used for cached RAM fi.les. The default value is 1000000, 1 megabyte.

o rnac_size_cached_fiIe : Integer

This directive sets a maximum size on the files that a¡e RAM cached by Yaws . The default
valuei8000,8batters.

It may be conside¡ed to be confusing, but the numbers speciûed in the above mentioned cache
directives are local to each server. Thus if we have specified max-num-cached-bytes = 1000000
and have defined 3 servers, we may actually use 3 * 1000000 bytes.

10

t

r! ,l
;r, ì{- ":

l, I

:'.:i
ì.i

I

t

l

I

12

Chapt er 4

Dynamic content

Dyna^rnic content is what Yews is about. Most web seryers are designed with HTTP and static
content in mind whereas Yews is designed for dyna'"ic pages from the sta¡t. Most large sites on
the Web today make heavy use of dynamic pages.

4.L Introduction

When the client GETb a a page that has a .yaws suffx. The Y.qws server will read that page from
the ha¡d disk and divide it in parts that consist of HTML code a¡rd Enlllc code. Each chunk of
ERleuc code will be compiled into a module. The chunk of ERI¡,¡lc code must contain a function
oat/t. If it doesn't the Yews selver will insert a proper error message into the generated HTML
output.

When the Y¡ws server ships a .yav¡s page it will process it chunk by chunk through the .yaws ûle-
If it is HTML code, the server will ship that as is, whereas if it is ERt ¡r,lc code, the Y¡ws server
wiil invoke the out/1 function in that code a¡d insert the output of that out/1 function into the
strea;n of HTML that is being shipped to the clieut.

Y¡ws wiil (of course) cache the result of the compilation a¡d the next time a clieut requests the
same .yaws page Yews will be able to invoke the aJready compiled modules directly.

4.2 EHTML

There a¡e two ways to make the out/l function generate HTML output. The first and most easy
to understand is by returning a tuple {htnl, String} where String then is regular HTML data
(possibiy as a deep list of strings and/or binaries) which will simpty be inserted into the output
strea,sr. An exa^mpie:

<htnl>

11

13

CHAPTER 4. DYNAMIC CON"EN" L2

<h1> Exanple 1 </h1>

<er1>
out(A) ->

Headers = ^A,#arg.headers,
{htn1 , io_lib:fo¡:nat('ryou say that yourre ruaning -p',,

lHeaders#headers . user_agent])] .

</erl>

</lt¡nt>

The second way to generate output is by returning a tuple {ehtn1, EHT}íL}. The term EHTML must
adhere to the following structure:

EHTML = IEHTMLII{TAG, Attrs,Bod,s}l{rAG,Aurs}l{TAG}lbinary0lcharac.ter0

TAG: øtom)

Attr s : l{H tml AUribute, V alue}l

HtmlAttribute: atorn}

Value: stri,ns)latam\

Body - EHTML
We give ¿¡ s¡a,-ple to show what we mean: The tuple

{ehtnl, {tabte, [{bgcotor, grey}J,
t
{tr' [] '

t
{td, [], "1"],
{td' [] ' '2u],
{td, [] , "3',]

l,
{tr' [] '[{t¿, l{colspa¡, "3"}], "444"}f}}l}}

V/ould be expanded into the foilowing HTML code

<table bgcolor='rgreytt)
<tr>

<rö 1 </td
<td> 2 </ta>

14

CHAPTER 4. DYNAMIC CON?ENT 13

<td> 3 </ta>
</tr>
<tr>

<td colspan=Í3il> 444 </t,d>
</tr>

</table>

At a fi¡st glance it may appears as if the HTML code is more beautifr-rl than the Ealaxc tuple.
That may very well be the case from a purely aesthetic point of view. However the ERuwc code
has the advantage of being perfectly indented by editors that have syntæ< support for ERI¡r.lc
(read Emacs). I\rthermore, the ERleNc code is easier to manipulate from an ERr,eNc progra,m.

As an exa,mple of some more interesting ehtml we could have a¡ out/1 function that prints some
of the HTTP headers.

In the www directory of the Y.lws source code distribution we have a ñle called arg.yalrs. The frle
demonstrates the Arg ffa,rg record para.meter which is passed to the out/l function.

But before we discuss that code, we describe the Arg record in detail.

Here is the yaws-api.hrl file which is in included by defautt in all Y¡ws frles. The Sarg record
contains many fields that a¡e usefui when processing HTTP request dynamìcally. 'We have access
to basically all the information which a.ssociated to the client request such as:

¡ The actual socket leading back to the HTTP client

¡ AII the HTTP headers - parsed into a fheaders record.

¡ The HTTP request - pa,rsed into a fhttp_request record

o clidata - Data which is POSTed by the client

o querydata - This is the remainder of the URL following the first occuïrence of a ? cha¡acter
- if any.

r docroot - The absolute path to the docroot ofthe virtual server that is processing the request.

-record(arg, {
clisock,
headers,
r€9,
clidata,
querydata,
appnoddata,

Lil, t¡e socket leading to the peer client
%% headers
7olo request
'l,L TAe client data (as a binary in P0ST requests)
'1"/, Uas the IIRL on the fo::n of ...?query (GET reqs)
L'/, t¡e remainder of the path leading up to the query

15

CHAPTER 4. DYNAMIC CONTEN?

docroot,
fuIlpath,
cont,
state,
Pid'
oPaque

)).

/ollo wherers the data
'/,'1, tutt path to yaws file
%% Continuation for chunked nultipa¡t uploads
%% State for use by users of the out/1 callback
T,'/, píd of the yaws worker process
%% useful to pass static data

t4

-record(http_request, {nethod,
path,
version))

-record(headers, {
connection,
accept,
host,
if_nodified_since,
if_natch,
if_none_match,
if _ra:rge,
if_unnodified_since,
!ângê ¡

referer,
user_agent,
accept_ra¡ges,
cookie = [],
keep_alive,
coutent_length,
content_type,
authorization,
other = [] %% nisc other headers

)).

There are a number of. ad,uanced fields in the farg record such as appnod, opaque that will be
discussed in later chapters.

Now' we show some code which displays the content of the Arg ffarg record. The code is available
in yaws/www/arg.yaws a¡d after a a local-install a request to http://ocalhost:8000/arg.yo,us
will run the code.

16

CHAPTER 4. DYNAMIC CON?EN"

<htnl>

<h2> The Lrg </h2>

<p>This page displays the Arg #argunent structure
supplied to the out/t fu¡.ction.

(erl)

our(A) ->
Req = A#arg.req,
H = yaws_api :refornat_header(A#arg.headers),
{ehtnI,
[{h4,[], I'The headers passed to us were:,,],
{hr},
{o1, [],lists:nap(fun(S) -> {ti, il, {p, U,S}} end,H)},

15

th4, [], 'rThe requestr,],
{u1, [] ,

[tri, ¡1, f("nethod: -s",
{ri, n, f("Path: -p",
{Ii, n, f ("version: -pr',

[Req#http-request .nerhod])],
lReq#http-request . pathl)),
[Req#http-request . version])]l],

{hr},
th4, [] , "Other ite¡¡sr'],
{uI, [] ,
[{1i, [], f ("clisock from: -p", linet:peeraane(A#arg.clisock)])],
{li, n, f("docroot: -sr', [A#arg.docroot])],
{fi, ¡1, f ("fullpath: -srr, [A#arg.fullpath])]l],

{hl},
{h4, [], "Parsed query data"],
{pre, [], f (tt-ntt, [yaus-api :parse-guery(A)])],
thr),
{h4, [] , 'Parsed POST data "],
{pre, [1 r f (rt-ntt, [yaws-api:parse-post(A)])]l].

</er]->

</ht¡ot>

17

CHAPTER 4. DYNAMIA CON?ENT 16

The code utilizes 4 functions from the yaus-api module. yaws-api is a general puïpose www api
module that contains va¡ious functions that are handy while deveioping Yews code. We will see
many more of those functions during the exâ.mples in the following chapters.

The functions used are:

o yaws-api:f /2 ahas for io_lib:formatf2. The f/1 function is automatically -iucludeed in all
Y¿ws code.

o yass_api:reforroat_header/1 - This fi¡nction takes the fheaders record and unparses it,
that is reproduces reguiar text.

o yaws-api:parse_query/7 - The topic ofnext section.

o yaws_api:parse_post/l - Ditto.

4.3 POSTs

4.3.I Queries

The user can supply data to the server in many ways. The most common is to give the data in the
actual URI. If we invoke:

GET http : //1 ocalhost : 8000/arg . ya¡¡s?kalle=duck&goof y=unkno¡rn

we p¿ìss two parameters to th;e arg.yaws page. That data is URl-encoded by the browser and
the server can retrieve the data by looking at the remainder of the UR^L following the ? cha¡-
acter. Ïf we invoke the arg.yaws page with the above mentioned URL we get as the result of
yalrs-parse-query/1:

kalle: duclc

goofY: u,nlçnown

In ERr,ewc terminologr, the call yaws-api:parse-guery(Arg) returns the list:

[{kalle, "duck"}, {goofy, ttunk¡orn,t}]

Note that the fi¡st element is transformed into an atom, whereas the value is still a string.

hence, a web page ca,n contain URLs with a query and thus pass data to the web server. This
scheme works both with GET a¡rd POST requests. It is the easiest way to pa.ss data to the Web
seryer since no FORM is required in the web page.

18

CHAPTER 4. DYNAMIC CON?EN? 77

4.3.2 Forms

In order to POST data a FORM is required, say that we have a page called f orn.yaws that contain
the following code:

<htnl>
(f orn act ion=,' /post_f orn. yaus "

,"¡¡9¿=rpostl

<p> A Input field
<input name="xyz" type=tttexttt)
<input type="subnit")
</fon>
</htnl>

This will produce a page with a simple input freld and a submit button

Moz¡lla

l¿- ù -'ð i*3.
ii Back Forward Reload lé file:#lnome/klacke/yar w ¿f Seðrch ":;

Print
ffit
litä¿åÀil

A Simple form

An input field Submit Query :

-;ri. åIL ,2 ffi æ Document: oone (0,071 secs) -rÞrf

If we enter something - say "HelJ.o there " - in the input field and click the Submit button the client
wiII request the page indicated in the "action" attribute, namely post_forn.yars.

If that Yaws page has the following code:

out(A) ->
L = yaws_api:parse_post(A),
{ht¡¡I, f(tt-ntt, [L])]

The user will see the output

l{xyz,'rHello there"}l

The differences between using the query part of the UR^L and a form a¡e the following:

19

CHAPTER 4. DYNAMIC CON?EN? 18

. Using the query a,rg only works in GET request. \ü'e parse the query argument with the
function yaws-api : parse -query (Arg)

¡ Ïf rve use a form and POST the user data the client will transmit the user data in the body
of the request. That is - the client sends a request to get the page using the POST method
and it then attaches the user data - encoded - into the body of the request.

A POST request can have a query part in its UR^L as well ¿rs user data in the body.

4.4 POSTing files

It is possible to upload files from the client to the server by means of POST. We indicate this in
the form by telling the browser that v¡e want a different encoding, here is a form that does this:

out(A) ->
Forn =

{form, ltenctype,'rmultipart/forn-data"],
{nethod, post},
{action, t'f ite-upload-f orn.yaws"}],
t{input, lttype, subnit], {varue, "Upload"}l},
{input, [{type,file}, {width,'r50,}, {na.ne, foo}]}l},

{ehtnI, {htnl, [], [{h2, [], "A simple file upload page"],
¡ornl)).

The page delivers the entire HTML page with enclosing htnl ma¡kers. It looks like:

The user get an option to browse the local host for a file or the user can explicitly filÌ in the ûIe
na,me in the input field. The fiIe browsing part is automatically taken care of by the browser.

The action field in the form states that the cüent shall POST to a page calied file-upload-forn. yass.
This page will get the contents of the file in the body of the POST message. Here we have one easy

t.i.
i.l

ii'
Mozilla

i -;f. ¿jS .'-L 6J @ Documení. D9r.te f0t0s se"')

http:l/localhost:8080/ð - .å-!9arc¡ c:l
Print

A simple file upload page

-Þd

à
Forward

Upload i y'home/kl acke/yaws/yaw Browse..

e i*r
Reload

il"
Back

20

CHAPTER 4. DYNAI/fiC CON"EN" 19

case and one ha¡d case. Y¡ws will read the data from the client. However if the ûle is large the
entire contents of the fiIe wüI not be part of the read operation. It is not acceptable to let y¿ws
continue to read the fr¡li POST body and then when that is done, invoke the POST page. yaws
must feed the page with the chunks of the flle a.s they a,:rive.

First the easy case:

Not YET Written fitl this in later

Chapter 5

Mode of operation

5.1 On the fly compilation

When the client requests a Ynws page, Yews will look in its caches (there is one cache per virtual
server) to see if it finds the requested page in the cache. If Y.lws d.oesn't find the page in the cache,
it will compile the page. This only happens the first time a page is requested. Say that the page is
400 bytes big has the following layout:

21

100 bltes of EI¡û, code

120 bEzt,ee of Erlå¡,g code

80 bytes of Ellfli code

60 bltes of Erla^ûg code

140 bl¡t,eg of B1rDÍIJ code

The Y¡ws server will then pa,rse the file and produce a structure which makes it possible to deliver
the page in a readily fashion the next time the same page is requested.

When shipping the page it will

1. Ship the first 100 bytes from the ûle

20

+

i

22

CHAPTER 5, MODE OF OPEru?ION 21.

2. Evaluate the first ERr,¡,Nc chunk in the frle and ship the output from the out/1 function in
that chunk. It will also jump ahead in the ûle and skip 120 bytes.

3. Ship 80 bytes of HTML code

4. Again evaluate an ERleNc chunk, this time the second and jump ahead 60 bytes in the frle.

5. And ûnally ship 140 bytes of HTML code to the client

Yaws writes the source output of the sempilation into a directory ltmplyawsl$UlD. The beam
frles a¡e never written to a file. Sometimes it can be useful to look at the generated source code files,
for exa,rrple if the Yews /Enr,eNc code contains a compiìation error which is ha¡d to understa,nd.

5.2 Evaluating the Yews code

All client requests will execute in their own ERr,¡ruc process. For each group of virtual hosts on
the sa¡ne IP:PoRl pair one ERleNc process listens for incoming requests.

This process spawns acceptor processes for each incoming request. Eacå acceptor process reads
and pa.rses all the HTTP headers from the client. It then looks at the Host: hãader to figure out
which virtual server to use, i.e. which docroot to use for this pa^rticula^r request. If the Host: header
doesn't match any server from yøws.mnl with that IP:PORiI pair, the first one from yaws.conf is
chosen.

By default Y.tws wiII not ship any data at ali to the client while evaluating a Y.lws page. The
headers as well as the generated content a¡e accumulated and not shipped to tUe client until the
entire page has been processed.

23

Chapter 6

SSL

SSL - Secure Socket Layer is a protocol used on the Web for delivering encrypted pages to the
\MW\4/ client. SSL is widely deployed on the Internet and virtually all bank tra.nsactions as well
as all on-line shopping today is done with SSL encryption. There axe ma¡ry good sources on the
net that describes SSL in detail - and I will not try to do that here. there is for exa,mple a
good document at: http:/ lvyu.tldp.org,/HOlJ"I0lSSL-Certif icates-Hgi{Tgl which describes how
to manage certificates and keys.

In order to run an SSL server we must have a certificate. Either v¡e can create a so called self-signed
certificate ourselves or buy a certiûcate from one of the many CA's (Certificate Authority's) on the
net. YAWS use the otp interface to openssl.

To setup a Yews sewer with SSL we could have a yaws.conf file that looks like:

logdir = /var/Log/yavs

<server rrw. funky. org>
port = 443
listen = L92.168. 128.32
docroot = /var/yavs/wrw.funky.org
(ss1)

keyf ile = /etc/fvnky.key
cerüfile = /etc/fs¡oky. cert
password = gazonk

</ss1>
(/server>

This is the easiest possible SSL configuration. The configuration refers to a certificate file and a key
flle. The certificate frle must contain the na.me rrwww.funky.orgrt

a.s it I'Common N¡.metr.

The keyfrle is the private key file a¡d it is encrypted using the password 'rgaøonk'.

22

¡

t

:

I

24

Chapt er 7

Applications

Yaws is well suited for Web applications. In this chapter we will describe a number of application
templates. code and strategies that can be used to buitd web applications.

There are several ways of starting applications from yews .

o The first and most easy variant is to specify the -r Modul-e flag to the Y.tws sta,rtup script.
This will apply(Modu1e,start, [])

r 'We can also specify runmods in the yaws.ænJ file. It is possible to have several modules
speciûed if want the same Y¡ws server to run several different applications.

runmod = nyapp
ru¡mod = app_number2

o It is aJso possible to do it the other way around, let the main application start Y,lws . We
cail this embedded mode a¡d that will be discussed in a rater chapter,

7.I Login scenarios

Many Web applications require the user to login. Once the user ha.s logged in the server sets a
Cookie and then the user will be identified by help of the cookie in subsequent requests.

7.L.! The session server

The cookie is passed in the headers and is available to the Yews programmer in the Arg ffarg
record. The Y.qws session server ca¡ help us to maintain a state for a user while the user is loggeã
in to the application. The session server has the following 5 api functions to aid us:

23

25

CHAPTER 7. APPLICATIONS 24

1". yaws-api:ner¡_cookie_session(Opaque) This function initiates a new cookie based session.
The Opaque data is typically some application specific structure which makes it possible for
the application to read a user state, or it can be the actual user state itself.

2. yaws-api:cookieval_to_opaque(Cookie) This function maps a cookie to a session.

3. yaws-api:replace-cookie_session(Cookie, New0paque) ReplacetheOpaqueuserstatein
the session server.

4. yaws-api:delete-cookie_session(Cookie) This function should typicatly be called when
the user logs out or when our web application decides to auto logout the user.

Ail cookie based applications are different but they have some things in common. In the exa;nple
that follow v/e assume the existence of a function nyapp: auth (UserNane, passwd) and it returns
ok or {error, Reason}

F\¡rthermore - let's have a record:

-record(session, {user,
passwd,
udata = []])

The following functlon is a good template function to check the cookie.

get-cookie-val(CookieName, Arg) ->
H = Argfarg.headers,
yaws-api : find_cookie_val (CookieName , H#headers. cookie)

check-cookie(4, CookieNane) ->
case get-cookie-val(CookieName, A) of

n->
{error, "not logged in"};

Cookie ->
yaus_api : cookieval_t o_opaque (Cookie)

end.

So what we need to do is the following: We want to check all requests a,nd make sure the the
session_server has our cookie registered as an active session.

26

CHAPTER 7. APPLICAflONS 25

If a request comes in without a working cookie we want to present a login page instea.d of the page
the user requested.

Another quirky issue is that the pages necessary for display of the login page must be shipped
without checking the cookie.

7.1.2 Arg rewrite

In this section we describe a feature whereby the user is allowed to rewrite the Arg at an early stage
in the Yews server. We do that by specifying an arg-re!¡rite-nod in the yaws.conf file.

arg_rerrite_nod = nyapp

Then in the nyapp module we have:

arg-rerrite(Arg) ->
OurCookieName = "nyapp_sid,,
case check_cookie(4, OurCookieNane) of

{error, -} ->
do_re¡rrite (Arg) ;

{ok, _Session} ->
%return Arg untouched
Arg

end.

%% tlese pages nust be shippable without a good cookie
Iogin-pagesO ->

It'/balaer.gif", "/]ogin.yaws", t'/post-login.yawst'1
.

do_rerrite(Arg) ->
Req - Arg#arg.req,
{abs-path, Path} = Req#http_request.path,
case lists:nenber(Path, Iogin_pagesO) of

true ->
Arg;

false ->
Arg#arg{reg = Reg#http_request{patn = tabs_path, "/login.yarrsr'}},

state = {abs_path, Path}}
end.

Our arg rewrite function lets all Args go through untouched that either have a good cookie or belong
to a set of predefined pages that a¡e acceptable to get without being logged in. If we decode that

27

CHAPTER 7. APPLICATIONS 26

the user must log in, we change the path of the request, thereby making the Y.lws server ship a
login page instead of the page the user requested. We also set the original path in the Arg stãte
argument so that the login page ca¡r redirect the user to the originat page - once the login procedure
is finished.

7.L.3 Authenticating

Nov¡ we're approaching the login.yass page, the page that displays the login prompt to the user.
The login page consists of two pa.rts, one part that displays the login data a.s a.forrr-a¡d. one form
processing page that reads the data the user entered in the login ûelds and performs the actual
authentication.

The login page performs a tiny well known Web trick where it passes the original URL request in
a hidden field in the login page and thereby passing that information to the form processing page.

The page login.yaws:

(erI)

out(A) ->
{ehtnl,
{htnt, [],
[{lZ, [], "Login page"],
{hr},
{form, [{action, " /login_post . yaws',} ,

{nethod,post}1,

[{p, [], "Userne.e"], {input, t{type,text},{nane,uname}J},
{p, l],"Passuord"}, {input, [{type,pass¡¡ord},{name,pass¡¡d}] },
{input, [{type , subnit}, {value, "Login"}] },
{input, [{type, hidden}, {name , url},

{value, A#arg. state}l }l }l }}.

</err>

The form processing page which gets the POST data from the code above looks like:

<erI>

-include ("nyapp. hrl") .

T,'/, ve have the sessiou record there
'/,'/' ve must set the include-path in the yavs.conf file

28

CHAPTER 7. APPLICATIONS ,7

'/,'1, in order for the conpiler to find that file

kv(K,L) ->
{value, tK, V}} = lists:keysearch(K,1,L),
V.

out(A) ->
L = yaus_api:parse_post(A),
User = kv(user, L),
Pt¡d = kv(passwd, L),
case myapp:auth(User, Pwd) of

ok ->
S = #session{user = User,

passvd = Pwd,

udara = []],
%% t¡os register the session to the session server
Cookie = yaws_api :nes_cookie_session(S),
[{redirect_loca1, kv(url, L)},

yaws_api : set cooki e (,'nyapp_sid',, Cookie) I
Err -)

tehtnl,
{htnl, [],
{p, [], f("Bad login: -p",[ErrJ)]]]

end.

</erl>

The function returns a list of two new previously not discussed return values: Instead of returning
HTMLoutputasin{htn1 , Str}or{eht¡aL,Term}wereturnalistof twonewvalues. Thereare
many different possible return values from the out/l function and they will all be described iater.

1. The tuple {redirect-1oca1, Path}. This particuia¡ redirect return value will make the
Yews v¡eb server return a 303 ¡edirect to the specified Path.

2. yars-api : setcookie ("nyapp_sid',, Cookie) generates a Set-Cookie header

Now if we put all this together we have a full blown cookie based login system. The last thing we
did in the form processing code was to register the session with the session server thereby letting
any future requests go straight through the Arg rewriter.

This way both Yaws pages as well as all or some static content is protected by the cookie login
code.

29

CHAPTER 7. APPLICATIONS

7.L.4 Database driven applications

28

We can use code similar to the code in the previous section to associate a user session to entries in
a databa.se. Mneisa fits perfectly together with Y,tws and keeping user persistent state in Mnesia
is both easy and convenient.

Once the user has iogged in we ca¡ typically use the user naïrre as key into the database. We can
mix ra,rr-tables a¡d disc-tables to our liking. The Mneisa database must be initialized by means
of create_table/2 before it can be used. This is typically done while i¡sf¡lli¡g the web application
on a machine.

Another option is to let the appLication check that Mnesia is initialized whenever the application
sta¡ts.

If we don't want or need to use Mnesia, it's of course possible to use a simple dets frle or a text frle
as well-

7.2 Appmods

Appmods is mechanism to invoke different applications based upon the URL. A URI - as presented
to the web server in a request - has a path part aad a query part.

It is possible to install seve¡al appmods in the yaws.conf fiIe as:

appnods = foo nyapp

Now, if the user requests a URL where any component in the d.irectory path is an appmod, the
parsing of the URL will terminate there and instead of reading the actual file from the disk, y¡ws
will invoke the appmod with the remainder of the path inserted into Arg#arg.appnoddata.

Say the user requests the UR-L http://www.funky.org/myapp/rr/bør.htmt Ytws will not ship the
file bar.htnl to the client, instead it will invoke nyapp:out(Arg) with Arg#arg.appnoddata set to
the string xxlbar.htnl. Any optional query data - that is data that folLows the first tr?tt cha¡acter
in the URL - is removed from the path and passed as Arg#arg.querydata.

Appmods can be used to run applications on a server. AII requests to the serve¡ that has an appmod
in the URL will be handled by that application. If the application decides that it wa,nt to ship a
page from the disk to the client, it ca,n return the tuple {page, path}. This return value will ma}e
Y¡ws read the page from the disk, possibly add the page to it's cache of commonly accessed pages
a^rld ship it back to the client.

The {Page, Path} retu¡n va,Iue is equivalent to a redirect, but it removes an extra round trip - and
is thus fa.ster.

Appmods can also be used to fake entire directory hierarchies that doesn't exists on the disk.

'

i r''
!

l\l

j..

30

CHAPTER 7, APPLICATIONS 29

7.3 The opaque data

Sometimes an application needs application specific data such a.s the location of its data files or
whatever. There exists a mechenism to pass application specific configuration data from the y.lws
server to the application.

lVhen configuring a selver we have an opaque ûeld in the conûguration file that can be used for this
puÌpose. Say that we have the following ûelds in the conûg frle:

(server foo)
Iisten = I92.168.128.44
<opaque>

foo = bar
sonef ile = /var /myapp/ db
¡lyname = hyber

</opaque>
</server>

This will create a normal server that listens to the specified IP address. An application ha,s access
to the opaque data that was specified in that particuiar server through Itg#*å.opaq¡e
If we have the opaque data speciûed above, the Arg opaque freld wi[have the value:

[{foo, "bar,t},
{sonef ile, " /var /myapp/db',},
{nyname, tthyber"}

l

7.4 Customizations

When actually deploying an application at a live site, some of the standa¡d Yews behaviors are not
acceptable. Many sites want to customize the web server behavior when a client requests a page
that doesn't exists on the web server. The standa¡d Y.tws behavior is to reply with status code 404
and a message explaining that the page doesn't exist.

Similarly, when Y,lws code crashes, the Reason for the cra.sh is displayed in the Web browser. This
is very convenient while developing a sit but not acceptable in production.

31

CHAPTER 7. APPLICATIONS 30

7.4.L 404 File not found

'We can insta,Il a special handler for 404 messages. We do that by specifying a errornod.-4o4 in the
yaws.conf fr)e.

If we have:

(server foo)

errormod_4O4 = nyapp

(/server>

When Ynws gets a request for a ñle that doesn't exists on the ha¡d disk, it invokes the errormo d 404
module to generate both the status code as well as the content of the message.

Module:out404(Arg, cC, SC) will be invoked by Yews . The arguments are

. Arg is a farg record

o GC is a fgconf record (defined in yaws.hrl)

o SC is a fsconf record (deûned in yaws.hrl)

The function can a¡d must do the sa,me things that a normal our/1 does.

7.4.2 Crash messages

'We use a similar ¡schnique for generating the crash messages, we install a module in the yaws.conf
ûle a¡d let that moduie generate the crash message. \il'e have:

errormod_crash = Module

The default is to display the entire formated crash message in the browser
debugging but not in production.

This is good for

The function Module:crashnsg(Arg, SC,
formated as a string.

Str) wiil be called. The Str is the real crash message

ì,

i'

i

I

:

t:

32

CHAPTER 7, APPLICAîIONS 31

7.5 Stream content

If the out/l function returns the tupie {content, MineType, Content} Yews will ship that data
to the Cüent. This way we ca¡ deliver dyn¡.misally generated content to the client which is of a
different mime type than 'rtext/htmlr.
If the generated file is very large and it not possible to generate the entire file, we can return
the value: {streamcontent, }fineType, Firstchunk} and then from a different EaleNc process
deliver the remaining chud<s by using the functions:

L. yaus-api:stream-chn¡L-dsüvsr(YawsPid, Data) where the Yar¡sPid is the process id of
the Ynws worker process. that pid is available in Arg#arg.pid

2. strean-chunk-end(Ya¡¡sPid) This function must be called to ind.icate the end of the stream.

7.6 All out/l return values

o {htnl, Deeplist} This assumes that Deeplist is formatted HTML code. The code will be
inserted in the page.

¡ {ehtnl, Ter¡n} This will transform the ERleNc term Term into a stream of HTML content.

r {content, MineType, Content} This function will make the web server generate different
content than HTML. This return value is only allowed in a Yews frle which has only one
<erl> </erl> part and no htr¡l parts at atl.

¡ {streamcontent, MineType, First0hu:rk} This return value piays the se.me role as the con
tent return value above. However it males it possible to stream data to the client if the Y.tws
code doesn't have access to ali the data in one go. (Typicaly if a file is very large or if data
arrives from back end servers on the network.

r {header, H} Accumulates a HTTP header. Used by ¡s¡ sxample the yaus_api : setcooki e/2_6
function.

r {allheaders, Headerlist} Will clear all previously accumulated headers and replace them.

. {status, Code} Will set another HTTP status code than 200.

¡ breaÏ Will stop processing of any consecutive chunks of erl or htnl code in the Yews flle.

¡ ok Do nothing.

r {redirect, Url} Erase ali previous headers a¡d accumulate a single Location header. Set
the status code.

r {redirect-local, Path} Does a redirect to the s¡me Scheme://Host:Port/Path as \ile cuï-
rently a,re executing in.

33

CHAPTER 7. APPLICATIONS 32

o {get-nore, Cont, State} When we are receiving large POSTs v¡e can return this value and
be invoked again when more Data a¡rives.

¡ [List0fValues] It is possible to return a list of the above defined return val.ues.

:

34

Chapter 8

Debugging and Development

Yews has excellent debugging capabilities. First and foremost we have the ability to run the web
server in interactive mode by means of the com"'and line switch -i
This gives us a regular ERI¡,NG comma¡d line prompt and we can use that prompt to compile
helper code or reload helper code. Fl:rthermore all error messages a.re d.isplayeà there. If a .yaws
page producees aûy regula,r ERI¡NG io, that output will be displayed at the ERle¡lc prompt -
assuming that we are running in interactive mode.

If we give the co¡nma^nd line switch -d we get some additionat error messages. Also yaws does
some additional checking of user supplied data such as headers.

8.1 Logs

Ynws produces va¡ious logs. AII log fi.les a¡e written into the Yews logdir directory. This directory
is specified in the confrg frle.

We have the following log files:

r The access log. Access logging is turn on or off per server in the gaws.con! fite. If access_Iog
is turned on for a server, Y¡ws will produce a log in Com'r,on Access Log Format calied
H o stM ame : P ortNurnber. øccess

o repoú-log This file contâins all er¡or a¡d crash messages for all virtua,l servers in the sa.me flle.

o trace.trffic and trace.http T]ne two comma^nd line flags -t and -T tells Y.lws to trace a.ll trafÊc
or just ali HTTP messages and write them to a file-

33

35

Chapter 9

Security

Y¡ws is of course susceptible to intrusions. Y¡ws has no (yet) abilities to run under a different user
than root - Assuming we need to listen to priviieged port numbers. Running as root is generally a
bad idea.

Intrusions can happen basically at all places in Yews code where the Y.lws
"o¿s

çalls either the
BIF open-port or when Yaws code does calls to os:cnd/l.

Both open-port and os:cndl1 invoke the /bin/sh interpreter to execute its commands. If the
co"'"'a¡rds are nastily crafted bad things can easily happen.

All data that is passed to these two function must be carefully checked.

Since Y¡ws is written in ERleNc a la,rge class of crarks a¡e eliminated since it is not possible to
perform any buffer overrun cracks on a Y¡ws server. This is very good.

Another possible point of entry to the system is by providing a URL which takes the client out
from the docroot. This should not be possible - a¡d the impossibility relies on the correctness of
the URL parsing code in Yews .

9.1 \il-W-W Authenticate

Y¡ws has support for W'WW authenticate protected directories. The access rights to different
directories is controlled by directives in the yøws.conf frIe.
'We

can specify several auth groups in a server conûguration. If we have the following inthe gaws.con!
file:

(server foo)

34

l

i.,

i.

! ...
Ì.
:

!

36

CHAPTER 9. SECURITY 35

<auth>
realm = secretpage
dir = /var /yaus/wrn¡/protected
user klacke:gazonk
user jonny:ry2
user ronay: 12r8uyp09jksfdge4

</auth>
(/server>

Y.lws will protect all files in the speciûed d.irectory by me'r'. of \ü'WW-Authenticate access. If
a user requests a page in the directory and doesn't have the correct WW'W-Authenticate header,
Yews will reply with a proper status code that makes the browser pop up a togin window.

37

Chapter 10

Embedded mode

Y¡ws is a normal OTP application. It is possible to integrate Ynws into a¡other - larger - appli-
cation. The Yews source tree must be integrated into the la^rger applications build environment.
Y.lws is then simply sta¡ted by application:startO from the larger applications boot script.

By default Y¡ws reads its configuration data from a config file, the defauit is "/etc/yaws.conftr. If
Y.qws is integrated into a larger application that application typically has its confrguration data
kept at some other centralized place. Sometimes we may not even have a file system to read the
conûguration from if we run a small embedded system.

Yews reads its application environment. lf the environment key enbedded is set to ttrue, Yews
starts in embedded mode. Once sta¡ted it must be fed a configuration, and that can be done after
Y,lws has started by means of the firnction yaws_api :setconî,/2.

It is possible to call setconf/2 several times to force Yaws to reread the configuratiou.

36

¿f

!.

i
t

38

Chapter 11

The config file yau/s.conf

In this section we provide a complete üsting of all possible conâguration file options. The configu-
ration contains two distinct parts a gtobat part which a^ffects all the virtual hosts a¡d a server pa^rt
where options for each virtual host is supplied.

11.1 Global Part

¡ dir = Directory - All Y.qws logs will be written to files in this directory. There a¡e several
different log frles written by Yaws .

- report.log - this is a text flle that contains all error logger printouts from Yews .

- Host.access - for each virtual host served by Yaws , a ûle Host.access will be written
which contains a^n access log in Common Log Format.

- trace.http - this flle contains the HTTP trace if that is enabled

- trace.tra.fFc - this file contains the tra^ffic trace if that is enabled

¡ ebin-dir = Directory - This directive adds Directory to the ERI¡Nc search path. It is
possible to have several of these co--a¿d in the configuration file.

¡ include-dir = Directory - This directive adds Directory to the path of d.irectories where
the ERleNc compiier sea¡ches for include ûles. We need to use tbis if we want to include .hrl
ûles in our Y¡ws ERI¡.Nc code.

o nax-nun-cached-f iles = Integer - Y¡ws will cache sma,il frles such as commonly accessed
GIF images iu RAM. This directive sets a maximr¡m number on the number of cached fi.les.
The default value is 400.

' nax-num-cached-bytes = Integer - This directive controls the totat a^m.ount of RAM which
can maximally be used for cached RAM ûles. The default va.Iue is 1000000, 1 megabyte.

37

39

CHAPTER 11. THE CONFIG FILE - YAWS.CONF 38

. ¡na¡r-size-cached-f i1e = Integer - This directive sets a maximum size on the flles that a¡e
RAM cached by Yaws . The default value i 8000, I kBytes.

r cache-refresh-secs = Integer The RAM cache is used to serve pages that sit in the cache.
An entry sits in cache at most cache_refresh_secs number of seconds. The default is 30. This
means that when the content is updated under the docroot, that change doesn't show until
30 seconds have passed. While developing a Yews site, it may be convenient to set this value
to 0. If the debug flag (-d) is passed to the Y.lws start script, this value is automatically set
to 0.

. trace = traffic I nttp - This enables traffic or http tracing. tacing is also possible to
enable with a comma¡d line flag to Y¡ws .

LI.z Server Part

Ynws can virthost severa,l web servers on the sa.me IP address a.s well as severa,l web servers on differ-
ent IP addresses. The on limitation here is that there can be only one server with ssl enabled per each
individual IP address. Each virtual host is deñned within a matching pair of <server ServerNa.me)
and <,/server>. The ServerNa.me will be the name of the web server.

The following directives are allowed inside a seryer definition.

o port = Port - This makes the server iisten on Port

o listen = IpAddress - This makes the server listen on lpAddress When virthosting several
setvers on the sa,me lP/port address, if the browser doesn't send a Host: fieid, Yaws will pick
the fi¡st server specified in the config frle

. rPort = Port This forces all local redirects issued by the server to go to Port. This is useful
when Yaws listens to a port which is different from the port that the user connects to. For
s¡a.mple, running Yaws as a non-privileged user makes it impossible to listen to port 80, since
that port can only be opened by a privileged user. Instead Y¡ws listens to a high port number
port, 8000, and iptables are used to redirect tra,ffic to port 80 to port 8000 (most NAT:ing
fi¡ewalls wiil also do this for you).

o rscheme = http I https This forces all local redirects issued by the server to use this
method. This is useful when an SSL off-Ioader, or stunnel, is used in front of Y¡ws -

¡ access-]og = true I false Setting this directive to fa,lse turns of tra,ffic logging for this
virtual seryer. The default value is true.

¡ docroot = Directory - This males the server serve aJI its content from Directory

o partial-post-size = Integer - When a Y¡ws file receives large POSTs, the ¡.mount of data
received in each chunk is determined by the this pa^ra,rreter. The default value is 10240.

i

f'

f
t,

40

CHAPTER 11.. THE CONFIG FILE - YAWS.CONF 39

. tilde-exPand = truelfalse - If this value is set to false Y,rws will never do tilde expan-
sion. The default is true. tilde-expansion is the mechanism whereby a URL on the form
http://www.foo.com/ username is changed into a request where the docroot for that partic-
ular request is set to the directory -usernane/public_htn1/ The defauit value is true.

. aPPnods = [List0fModuleNanesJ - If any the na,mes in ListOfModuleNa^mes appear as com-
ponents in the path for a request, the path request parsing will terminate and that module
will be called.

Assume for s¡ampLe that we have the URL http://www.hyber. orylmyapplf.oolbar lbaz7,r.s¡:joe
while we have the moduie foo defined as an appmod, the function foo:out(Arg) will be invoked
instead of sea¡eling the file systems below the point foo.

The Arg argument will have the missing path part supplied in its appmoddata field.

¡ errormod -404 = Module - Ït is possible to set a special module that handles 404 Not Found
messages.

The function Module:out404(Arg, Gc, sc) will be invoked. The arguments a,re

Arg is a arg record

GC is a gconf record (deûned in yaws.hrl)

SC is a sconf record (defined in yaws.hrl)

The function can and must do the sa.me things that a normal out,/l does.

o errormod-crash = Module - It is possible to set a special moduie that ha¡dles the HTML
generation of server cra.sh messages. The default is to display the entire formated. crash
message in the browser. This is good for debugging but not in production.

The function Modu]e:cr¿shmsg(Arg, sc, str) will be called. The str is the rea^l crash message
formated as a string.

. arg-relrrite-nod = Modu1e - It is possible to install a module that rewrites aU the Arg arg
records at an early stage in the Y.lws server. This ca¡ be used to do va¡ious things such a.s
checking a cookie, rewriting paths etc.

¡ (ssl) </ssl> This begins and ends an SSL configuration for this server.

- keyfile = File - Specifies which frle contains the private key for the certificate.

- certf ile = File - Specifies which fiIe ss¡fa.ins the certificate for the server.

- cacertfile = File File If the server is setup to require client certiûcates. This fiIe needs
to contain all the certificates of the acceptable signers for the client certs.

- verify = t I 2 I 3 Specifies the level of veriûcation the serve¡ does on client certs. 1

means nothing , 2 means the the server will ask the client for a cert but not fait if the
client doesn't supply a client cert, 3 means that the server requires the client to supply
a client cert.

41

CHAPTER 11. THE CONFIG FILE - YAWS.CONF 40

- depth = Int Specifies the depth of certiûcate chains the server is prepared to follow
when verifying client certs.

- password = String - String If the private key is encrypted on disk, this password is the
Sdes key to decrypt it.

- cciphers = String This string specifies the ssl cipher string. The syntax of the ssl
cipher string is a little horrible sub language of its own. It is documented in the ssl man
page for rrciphersrr.

- </ssl> Ends a¡ SSL definition

o (auth) ... </auth> Defines an auth structure. The following items are allowed within a
a¿lching pair of <auth> and </auth) delimiters.

- dir = Dir Makes Dir to be controlled bu W'W"W-authenticate headers. In order for a
user to have access to W'WW-Authenticate controlled directory the user must supply a
password.

- realn = Realn In the directory defi¡ed here, the W\MW-Authenticate Rea^lm is set to
this value.

- user = User:Password Inside this directory, the user User has access ifthe user supplies
the password Password in the pop up dialog presented by the browser. We can obviously
have several of these value inside a single (auth> </auth> pair.

- </auth> Ends an auth definition

11.3 Configuration Examples

The following exa^m.ple defines a single server on port 80.

logdir = lvarlLoglyaus
<server wrw.nydonain. org>

port = 80
listen = !92.168. 128.31
docroot = /var/yaus/r¡r¡s

(/server>

And this er(a'''ple shows a similar setup but two web servers on the same Ip address

logdir = /varllog/yaus
<server rww.nydonain. org>

port = 80
listen = !92.168. 128.31

42

CHAPTER 11.. THE CONFIG FILE - YAWS.CONF 4t

docroot = /var /yaus/¡n¡r¡
(/server>

<server www.funþ.org>
port = 80
listen = 192.168. 128.31
docroot = /var/yaus/wrw_fuaky_org

(/server>

An exr.mple with www-authenticate a¡d no access logging at all.

logdir = /var/loglyalrs
<server wrw.nydonain. org)

port = 80
listen = 192.168. 128.81
docroot = /væ/yaus/¡¡rw
access-Iog = false
<auth>

dir = /var /yavs/¡nnr/secret
realm = foobar
user = jonny:verysecretplrd
user = benay:thequestion
user = ronay:havingaaa.nethatendswithy

</auth>

(/server>

And finaily a slightly more complex exa,mple with two servers on the same IP, and. one ssl server on
a different IP.

logdir = /var/Log/yaus
max_nrur_cached_files = 8000
na¡(-nu¡r_cached_bytes = 6000000

<server www.nydonain. org>
port = 80
listen = 192.168. 128.91
docroot = /var/yavs/r¡r¡¡¡

(/server>

<server wuu. funky. org>

43

AHAPTER 11. THE CONFTG FTLE - YAWS.CONF

port = 80
listen = 1-92.168.128.31
docroot = /var /yaws/r¡wï-funky-org

(/server>

<server wrw. funky. org>
port = 443
listen = L92.t68.L28.32
docroot = /var /ya'¡s/www-funky-org
<ssI)

keyfile = /etclfunky.key
certfile = /etc/fruD&y.cert
password = gazonk

</ss1>
(/server>

42

1

IMPLEMEI\TING THE MOBILE LOCATIOI\
PROTOCOL: A TALE FROM THE TRENCHES

Thomas Lindgren Fredrik Linder
Magnus Eklund
Cellpoint AB

e-mail: fi,rst.Iast@cellpoint.com

Abstract
'We describe the first commercial implementation of the Mobile Location

Protocol version 3.0.0. The complexities of fiaishing the development of a
feature-rich protocol in a tight time frrme led us to an approach of rapid
redevelopment, exemplified below.

INTRODUCTION
Location services are and will remain a distinctive feature of wireless data services
in 2G and 3G applications. No dominant standa¡d to access location information
has emerged until now: the Location Interoperability Forum, LIF, has recently
released version 3.0.0 of the Mobile Location Protocol, MLP. Cellpoint is an active
LIF participant, and has developed an implementation of MLP 8.0.0 for use in its
mobile location platform. This is the first generally available MLP implementation.

'w'e give an overview of cellpoint's implementation of MLP and how it fits to
the mobile location platform, CMLP, developed by Cellpoint. \Me conclude with a
discussion on development issues.

BACKGIì,OUND
Location services are implemented by interrogating the GSM network on the posi-
tion of subscribers (or rather, their mobile terminals). This is done by a location
server, which provides the service to a collection of clients. A client can be, e.g.,
a portal deployed by a.n operator, or a third-party application. Cellpoint has two
main products: the mobile location server, MLS, and the mobile location broker,
MLB. They are also known as the Cellpoint Mobile Location platform, or CMLp.
The task of the MLs is to provide location information. The MLB acts as an aggre.
gator of location requests and location information by acting as a proxy for multiple
MLS:s.

upon receiving a request, the MLS interrogates the GSM network, using one
of several available methods (e.g., cell ID, enhanced cell ID, assisted GpS, or oth-
ers) [3GPP]. The method used depends on the requested quality of service: some
application users require a quick answer, others a precise one. If the subscriber is
roaming into another mobile network, the MLS contacts the counterparty MLS, a
process known as MLS roaming. For the purpose of implementation, the MLs thus
has to act as both client and server.

The MLB has a slightly different role. Each MLB knows of a collection of MLS
nodes. When receiving a tequest, the MLB is responsible for dispatching the request

1

2

to the right MLS. (This is simila¡ to MLS roaming, but normaJly occurs inside
an operator's network.) The MLB also handles issues such as securit¡ subscriber
anonymity a¡rd subscriber privacy, leaving the MLS nodes to act with the MLB as a
trusted counterparty. Subscriber anonymity is used to hide the subscriber identity
from third pa^rties. Subscriber privacy is used to check whether the subscribei
permits the positioning operation.

THE PLATFORM
Each of the CMLP products runs on sola¡is and is primarily written in Erlang [2]
with supporting code in C and scripting languages. A number of softwa¡e packageÃ
are sourced in to provide the configuration that operators require, e.g., an Oracle
database for subscriber information, and veritas redundant disk software.

When booting, the system first starts an internally developed system for clus-
tering. The clustering system handles failover very quickly (on the order of a few
seconds) and provides redundancy for disks [a]. A. part ofthis process, a collection
of Erlang nodes are sta¡ted. When all cluster nodes a¡e operational, the Erlang ser-
vice softwa¡e is sta¡ted as a collection of processes, aka components, that implement
the desired functionality. Examples of components are protocol service frãntends,
subscriber management, database management, the cha^rging subsystem, a www-
based GUI, the positioning software a¡rd the SSz network interfaces. when all
required components are available, the system is ready for service.

THE MLP PROTOCOL
MLP is a complex protocol based on HTTP/l.l and xML, which has evolved rapidly
during the spring of.2002. (As an example, the February 2002 book by Hjelm [6]
uses a syntax which is now obsolete.) MLP is being sta¡da¡dized by a committee ol
operators and equipment providers known as the Location Interoperability Forum,
or LIF. At the time of writing, the MLP 8.0.0 standa¡dization process is being
finalized [1].

The basic capability is to serve a location request. The client sends a request as
follows:

<?xnl version =tt1.0tt ?)
< !D0CTYPE svc_init SYSTEM nMLP_SVC_INIT_3O0.DTD">

<svc-init ver=r'3. 0.0rr)
(hdr ver=tt3.0.Ott>

<client>
< id>app1 icat ion_4<,/ id>
(pwd)secret</pwd>

</client>
</hdr>
<slir ver=tr3.0.Ott)

<nsids>
<nsid t¡pe="MSISDN" >4670221 10BB</nsid>

</nsids>
<geo_info>

<CoordinateRef erenceSyst eu>
<Identifier>

<code>4326</code>
<codeSpace>mrúr . epsg. org< / codeSpace>
<edition>6 . 1</editiou>

t

3

</Identifier>
<,/CoordinateRef erenceSysten)

<,/geo_inf o>
</s1ir>

<,/svc_init>

The client sends its identity, password and service ID for authorization. The
client can also use a <subclients> tag, much as a HTTp proxy, to tell which
location servers have pa.rticipated in the request. Several applications, portals,
MLBs and MLSs may be involved in a request, generally for administrative reasons,
and must be tracked for correct billing. The subscribers to be positioned are then
identified with <nsid> tags, in this example a single ID of type MSISDN, indicating
an ordinary cell phone number, followed by information on the desired quality-of-
position (accurac¡ timeliness and so on) and the coordinate system to use. Many
parameters are optional; in the example, no explicit quality-of-position is given. The
coordinate system tells the server holq to format the response. Client and server
agree on coordinate system by consulting a database maintained by the European
Petroleum Survey Group, EPSG, which is the final authority [b].

The server returns a response, €.g., as below.

<?:rnl version =tt1.Ort ?)
< ! D0CTYPE svc_result SYSTEM 'iMLP_SVC_RESIILT_30O. DTD">
(svc_result ver=rr3. 0. 0tt>

<slia ver=tt3.0.0tt>
<POS>

<ns id>467027 1 1038</ns id>
<pd>

(tiue utc_of f="+0200">20020623134458<./tine>
<shape>

<C ircularArea srsName= ".rùw!r . epsg. o19#4326 " >(coord)
<x>20 30 5.41¡</x>
<Y>0 0 3.5N</Y>

</coord>
(radius>570</radius>

</CircularArea>
<,/shape>

</Pd>
</pos>

</s1ia>
(/svc-result)

The response is a position for the indicated MSID, in the shape of a ci¡cle
centered at the specified coordinate with the given radius. The position was acquired
at the time 13:44.53 on 2002-06-23 in time zone *0200.

Ifthere was an error in the request, or the request could not be fulfilled, an error
response is returned instead.

This basic functionality is extended by several extra features.

¡ There is a class of emergency requests with a slightly different format, which
are treated $'ith different priorit¡ privacy settings, and so forth by the location
server.

¡ Client-assisted positioning permits the client to send GSM information to
another node. This is used to ask a server to map a cell ID (enhanced with,
e.g.' timing advance information provided by the client) to an actual position.

3

4

¡ Tliggering and zoning permits the client to register an interest in a certain
subscriber (pending the approval of the subscriber, known as subscriber pri-
vacy). When some event occurs, e.g., the subscriber moves into or out of
a certain area, the location server contacts the client with this information,
inverting the client-server relationship.

THE SIMPL2 PROTOCOT
Before the current product release, Cellpoint used a small, proprietary protocol
named SIMPL for positioning requests. Cellpoint decided to use a subset of MLp,
extended with some Cellpoint-specific features, as the next version of SIMpL, na,rred
SIMPL2.

Cellpoint's SIMPL2 protocol [8] restricts the MLP protocol in several ways, and
does not support some of its features. For example, triggering and zoning are not
supported, nor are some lesser features concerning format. SIMPL2 reports all such
deviations from MLP as errors or unsupported features.

Cellpoint's extensions to MLP concern DES-encryption of requests and responses,
and the capability of sending charging information to the charging subsystem of the
location server.

DESIGN AND IMPLEMENTATION
The initial specification and implementation proposal for SIMPLZ was written in
August-September 2001, based on a preliminary version of MLP 1.1. Business events
put the actual implementation on hotd until January 2002, with a new d.evelopment
team (the authors) implementing the SIMPL2 version of MLp 8.0.0. The first
commercial release of SIMPL2 was in June 2002. Total development time until
final delivery was thus roughly 18 man months.

The fina^l development schedule for SIMPL2 was quite aggressive, with proto.
typing starting quite some time before the standa¡ds were even close to finalization.
During six months of development (January to June 2002), there were no less tha¡r
fourteen releases of the SIMPL2 specification, often driven by changes to the un-
derlying MLP being sta¡rdardized by LIF. Even as late as May, there were major,
incompatible changes and extensions in how to specify such things as the coordinate
system being used.

At the same time, there was a considerable learning curve for the developers
involved: none of us were experienced in the ways of geographical information
systems, and the MLP and SIMPL2 standa¡ds mainly specified the syntactic formats
of requests and responses, rather than the semantics. Thus, we also had to lea¡n how
to interpret the requests and translate the intentions to the underlying positioning
system.

The CMLP itself furthermore evolved rapidly during this period of time, adding
numerous features that required support or changes in the protocol modules. Parts
of CMLP were also redesigned to support SIMPL2.

we began by building a basic prototype implementation, integrating the freely
available xmerl and iaets subsystems into CMLP and using them for HTTp and
XML processing. We then used existing CMLP code for interfacing to the rest of
the positioning system, and wrote the code to convert XML to the internal format.

The responsibility of the validation code is to check that the incoming values
are valid according to the protocol, and to turn the values into a suitable data
structure for the positioning system. A second task is to manage the MLB and
MLS roaming functionalit¡ i.e., to act as a client to some other SIMpL2 or MLp

4

5

server, which requires validation and conversion of responses simila¡ to what was
done on requests, and to convert internal data into SIMPL2 positioning requests.

The method of development initially was that of exploratory programming. As
the implementation matured, we realized that there were a number of as-yet poorly
defined features in MLP and SIMPL2, which, along with changes to the specifica-
tions, made necessary continuous fixes to the protocol code.

As an example of the latter, the fina.l dra,ft of SIMPL2 was released on May 12,
with seven subsequent drafts released between then and June 7. During the entire
development period, there were also extensive mail conversations and revisions in
between drafts.

This imposed a considerable burden on us, since Cellpoint also works with a
system of weekly formal code freezes that a¡e tested by a separate group of testers.
The internal goal was to release a working version of SIMPL2 every week, while
tracking cha^nges to specifications, external change requests and protocol bug fixes
and cla¡ifications. This proved to be difficult just by patching and debugging the
existing code, and we found that our caJ.enda¡s were filled with reacting to such
events.

We realized that we needed to retool the code to rapidly react to changes. We
decided to implement what we cùled rapi,d red,euelopmenü to enable us to respond
very quickly to changes and trouble reports. This was done as follov¡s.

Abstraction and refactoring
Modularit¡ macros and abstract data types were used extensively in development.
As the implementation matured, we tried to refactor the code further.

'We found that Erlangs records were a source of errors. Records are useful
because they make changes in data representation easy. The record notation is also
handy because it can be used in pattern matching as well as expressions. However,
there are also complications:

o There a¡e often constraints between the fields, e.g., when user narne has been
filled in, then user data fields must be consistent with the narne. These con-
straints are frequently undocumented.

r When new fields are added, every existing record creation in the code must
be verified and perhaps updated.

These properties slow down code changes. We opted to throw out explicit use
of records and deploy abstract data types insteadl.

As a further benefit, abstract data types also made the code clearer, since the
operation is named.

Data driven design

A major source of change in MLP was the format of XML data, both in what
attributes were available and their format. Initially, we used a straightforward
design to validate formats, structured roughly as follows2:

check([svc-init, hdr, client, id], ID, State) ->
check_client_id(ID, State) ;

lFor readers unfamiiiar with this concept, an abstract datatype encapsulates the representation
of a data structure inside a module; a weli-known Erlang example is the dict moduìe. Object
oriented programming also uses encapsulation, though with objects instead.

2This is not the actual code.

I

5

6

check(lsvc_init, hdr, client, pwd], pwd, State) ->
check_client_pwd(Pwd, State) ;

This turned out to be a source of problems. The reason was that all aspects of
the xML code changed: tag and attribute narnes, contents, locations in the request,
as well as data format n¿unes and data format definitions, which quickly became
confusing. Not atl changes in specification were correctly introduced, and it was
difrcult to keep track of all the versions.

We refactored validation into an interpreter. The XML attributes an¿ formats
were specified as a term:

-def ine (tag_specs ,

[{,svc_initr, b}ank,
[{rverr, {rorr, [{nember, ["3.0.0"11, {unsupported, ver}]}}]},

l)

In the case above, the tag svc-init has an attribute ver which must have
the value "3.0.0" or the request will get a^n'unsupported'error. F\rrthermore,
svc-init must not have data content itself.

Each SIMPL2 data type was also defined in a rule engine:

apply-rule(ble.k, Va1ue) ->
[] == strip-whites(Vatue) ;

apply_rule({rorr, Rules}, Value) ->
11sts:any(fua(Rule) -> apply_rule(Rule, Value) end., Ru1es) ;

When checking data, the refactored program first locates the rule to use from
the specification term, then invokes the correct rure in the rule engine.

We call this a ilata dri,uen design. The net effect is to sepaxate the ad,m,i,nstrøti,ue
aspects from the speci,ficatiue aspects of checking.

Ensuring that we followed the current specification was simplified immensely,
since the specification part changed most rapidlg and this wa,e now much easier
to verify quickly. ln the first part of the project, teste$ found most of the data
format bugs. As we nea¡ed deliverg the rules engine approach had overcome this
problem and we could instead turn to fine-tuning the definitions in the SIMpL2
specification.

Testing framework
As we have described, SIMPL2 is a very flexible protocol with many features to
implement and test.

To improve internal quality a^ssurance at releases, we implemented a testing
framework, also in Erlang. We decided to implement an external testing framel
work' but not one for unit testing. The reason was that automated unii testing
seemed harder to get right and Erlang's purity and natural interactive bottom-uf
development at the same time made reasonable manual unit QA more straightfoi-
wa¡d than one might expect.

6

7

our testing framework generates requests and the expected responses, sequen-
tially tests every case, and signals any deviant responses. At present, there are
roughly a hundred test cases. We also implemented a regression testing framework
to ensure that old bugs did not reappear: when there is a bug report, we write a
test case that triggers the bug and re-run the test at subsequent releases.

The testing framework is data driven: each test request is specified as an Er-
lang data structure, which is translated into XML text. Specifying a series of test
requests looks like:

test_series(1, 1) ->
Clients = [{"service_art, I'secrettt, ?0K}, ...],
MSID = rt...rt,
[{Expect,

?svc_init (?hdr_clieut (Name, pwd) , ?slir (?rnsids (MSID) ,
?default_geo_i.nfo))

ll {l,lane, Pwd, Expect} <- ClÍents l;

This generates one test case per client, with an expected outcome Expect and
a request to be sent. The list of Clients consists of cases that should pass or be
rejected, as specified by the progra^rnmer.

The testing framework sends each request to the server under test, awaits the
response and notifies the user when there is an unexpected response (ranging from
socket errors to XML validation errors).

Social aspects

Our development methods have also made extensive use of pair programming, brief
coordination meetings (sometimes several per day) and the use of instant messaging
to keep developers synchronized, even though there were only three main developers
(aJong with half a dozen developers working ¡¡ith related items and. three testers).
This has improved code quality by keeping all developers "working in the same
paradigm". The discussions have also turned out to help with finding and resolving
the grey areas of SIMPL2 and MLP; at least one of our findings has led to changes
in the MLP sta¡rdard specification.

DISCUSSION
How did rapid redevelopment work out in practice? Quite well.

Since the XML tags, attributes and validation rules changed very frequentl¡ the
rules-based approach to validation was extraordina^rily helpful: the ruies are easy to
read, understand and change compared to code. Verifying that the implementation
conforms to the specification is much easier.

A second improvement is that using abstract data types meant lve could. control
how data was manipulated, we could validate inputs and outputs a¡¡d we could
change representations easily. By not exposing record datatypes, we ensure disci-
pline in how crucial data is created, used and accessedS.

Because of tþe many features of SIMPL2 and their potential interactions, our
testing framework has been invaluable. As a trouble report appears and is fixed,

"'I'his requires programmers not to break data abstractions, rather than prohibiting them from
doing so as do, sa¡ SML:s abstypes.

7

!
I
¡-i:,: '

_. -

i.
i

i:
I.
a

i:
i,
t-
!..

we add a regression test case. Prior to each weekly release, we check that the code
passes all the tests. We then hand it off to the testers for formal quality assura,nce.

To improve on this, it would probably be useful to have a dedicated tester to
add more test cases. While doing this full time for just SIMPL2 would be overkill,
it might be a very useful part-time effort.

one can view rapid redevelopment as a form of extreme programming [3]. Here
is a comparison. The item bullets are taken from the reference, page 54.

Small releases. We incrementally released code every week once the system wâs up
and running. However, the QA organization had problems in tracking what
could be usefully tested. Serious formal testing began only in the later parts
of the project.

Testing. xP mandates a strict testing regime. we did not use Xp unit tests,
but implemented and used an automated testing framework successfully, as
described previously. The effect was gratifying, since it improved code quality
while reducing our testing effort.

Refactoring. we refactored code thoroughl¡ as shown previousl¡ but mainly in
reaction to problems rather than proactively. This might have been a mistake.

Pair programming. Considerable portions of the code were developed using pair
programming, which turned out to be a good choice.

Continuous integration. Erla.ng naturally enables continuous integration. The
normal development cycle is to edit-debug-recompile, then lo¿d the code into
a running full CMLP system (configured as an MLS or an MLB) to test it.
However, we also had to integrate the results of other developers. This was
done at every release and included changes in the system configuration files
(including their format) and CMLP resta.rts. Continuously integrating such
changes would likely have slowed development down.

on-site customer. we did not have an on-site customer. As mentioned. above, a
dedicated test case writer ¡uould be useful. Also, having a customer represen-
tative available would have clarified a number of practical issues. The main
issue in introducing this is probably to motivate the expense of doing it.

Coding standa¡ds. We did not use written coding standards, but some principles
were obeyed, such as the use of ADTs instead of records.

FUTURE WORK
'We

are currently mulling over if the code that converts incoming data to our internal
format, and back into outgoing data, can be converted into a ¡ule.based form as
well. The main problem is that our current set of sketched conversion rules is too
large and unstructured to yield any great advantage on ordinary code.

Given the successful rules-based approach to vaJidation, we a,re also considering
writing a tool to tra¡rslate the rules into a directly validating a¡rd tra¡rslating XML
parser. The advantage of this approach is higher efficiency (as long as code size
remains reasonable).

However, it is not at all clear that SIMPL2 is a bottleneck. Positioning requests
may naturally have long latency (e.g., several seconds), and the cost for SIMPL2
processing is small in this context. While reducing latency and memory footprint
per request is still welcome, because system capacity is improved, other tasks have
had priority since SIMPL2 was released to customers.

I

9

CONCTUSION
we have described the implementation of the SIMPL2 version of MLp 8.0.0 on
Cellpoint's location server series, CMLP.

SIMPL2 evolved quickly and had many features; in this context, rapid redevel-
opment, an xP-like approach based on abstraction and testing, has been highly
successful.

In a development project concerned with a large a^nd changing feature set and an
aggressive schedule, the resulting emphasis on flexibility and ease of modification
has been invaluable in reducing trouble response times. This in turn leads to a
virtuous spiral, where development gets the time to rewrite a¡rd extend the code
before testing, rather than as a response to testing finding bugs.

We have thus found rapid redevelopment to be a fruitful way to develop feature-
rich, committee'specified protocols with high demands on reliabilit¡ as is often the
case in the telecom world.

A version of CMLP including SIMPL2 is commercially deployed at a¡r operator
at the time of writing, making this the world's first implementation of the MLp
3.0.0 sta¡rda¡d.

KlsrA, Jur.¡¡-OcroBÐR 2002

ACKNO\MLEDGEMENTS
The comments of Lars-Göran Ericson and Bogumil Hausman were helpful in prepa,r-
ing this paper.

References

[1] 3GPP, standard document 03.71. http://www.Bgpp.org

[2] Joe Armstrong, Robert virding, claes wikstrm, Mike wiiliams. concurrent
Programming in Erla^ng. Prentice Hall.

[3] Kent Beck. Extreme Programming Explained. Addison-Wesley, 2000.

[4] Per Bergqvist. Improving Robustness in Distributed systems. proc. Erlang
User Conference, 2001.

[5] European Petroleum Survey Group. http://www.epsg.org

[6] Johan Hjelm. Creating Location services for the wireless web. wile¡ Febru-
ary 2002.

[7] Location Interoperability Forum. LIF Mobile Locarion protocol. LIF TS 101
v3.0.0, rev 2. June 3,2002.

[8] Rob schmersel. sIMPLv2.0 specification. Internal cellpoint document.

I

i

Questions please use : info@bluepositlon.com

ng

BÍueÞott, Lo@t¡on Inlomation s'ysæm

Using Erlang

EUC2002

Lß4
mob¡l¡ty to

BluePosition.com

Verner

on A/S
the next level

BluePosition A/S
We take mobility to the next level

o Established in D
2002.

o Spin m Ericsson Denmark

ber of the Bluetooth SIG
csson (and others) partner.

Erlang User 1996-1999
BluetOOth' en,cssoa, f G) BlueTagS

EUC2002 2

a rk, Spring

n House.

!_

Questions please use : info@bluepositiln.com

Imagine if...

a

o Imagine if your p
routed to e
stationary
location.

that you could located a college using

gine the better customer service you

magine the improved efficiency.
Imagine the reduced phone bill...

EUC2002 3

ne depending on your actual

lls was automatically
ur mobile phone or

uld offer trough this.

browser.

o

r Solve a p rob¡em for "
- Peformance
- More Logic
-Noti

BLT54
why Erlang

ault tolerant / Distribution

,f

EUC2002 4

TCP/IP

rformance
need for low support costs

ft Development time

L

Questions please use : info@bluepositlon.com

Product Overview

Phone
(Bluetooth/DECT)

PBX System

Time Card)

ü
Ei

t
conùo!

5EUC2002

Erlan Mob¡le
Phone

Gsr,l
Neturork

rI;
---#å

W¡ú*
Other, ¡nclud¡ng:
Aco8ss Control
Intrenet
Information Screens
Etc.

BLr54

TCPIIP - F¡LE - HTTP POST

& Event

BLIS4 Design
Erlang Design

A9Þl¡.doo
x

ERTGISSON RED.I.I Other

û{}

E]II

fcPlrP

EUC2002 6

BL:TS4
D¡str¡buted

3

Questions please use : info@bluepositiån.com

Product Architecture
g
3

€ñ
E
Eg
ütoê

ã
ti
g
et
o

¡¡¡¡.bü 'â.i!È
r côàbol
:DoûCG

(opüord)'

EUC200.2 7

Application Overview

o BLIS4Framework

o
u -InPI

Bluetooth Location Inform
(ERt-ANG)

Lock Workstation on behalf on a user
(Erlang and a WS32 Client)

with PBX's using CTI/CSTA

platform

EUCz002 8

wslock

forIn ofation usrn WEBEmployees g
dace

G and PHP)

Locator
location inform

Questions please use : info@bluepositon.com

oooooo

oooo

oooooo

ooooo

Zone 2
/-_---\

--\
7----\

/-------\
.æ

3

o

[! ![
cFo

PAI
2

cEo

o

ll
In

1

9

¡

::
t.:.

l:

g o

o Pretty Code is n
o Prototyp¡ng

Usin

Experiences
using Erlang

a

o

to introduce new applications
sy to introduce more logic

l0EUC2002

ga lmost all from scratch

opt¡on
works

std(lib) functionality

- Concepts
- Constraints

5

Questions please use : info@bluepositlon.com

Experiences
interfacing w¡th Erlang

o HTïP / Erlang

o

- POST XM

- GET

ecialized TCP/IP Protocols
till a need for C++ & JAVA designers

@

- BluePosition Middleware

l1EUC2002

references
cu ments

ERVER

cing with third party

Human Ressource
Experiences

a

o Short t¡me to
r Trouble

o Sales & Marketing
- Design keeps their

- Better

They get convinced when the see the performance

unication

EUC2002 t2

for new applications
(and vice versa)

ustomers

rmance is the key

se learning

- Seeing is believing ...
. Both BLIS4 and Erlang

t

7

Questions please use : info@blueposition.com

Issues
Our "bad" exper¡ences

o Erlang Applications ma
- Design keeps their pro

r Short time to
. Trouble

- Better com
o Wind

n easier to do-it-yourself

(200X(P)) focus
ication

EUC200.2 l3

new applications

overhead

Easy HfiP (Client)

ace
XML

I

Danish Parliament
An Erlang Case

EUC2002 t4

7

Questions please use : info@blueposldon.com

Danish Parliament

o

o One (1) BLI54
o50+A
o500 +

presence detection to
ll centre

minates phone calls (ringing) in
ting room

AND YES : IT WORKS !

oints

EUC2002 l5

ca

o

ers

ition AIS,
take mobilíty to the next level

EUC2002 r6

1

HELGA - A call load generator written in Erlang/oTp

Anand Balagopalakrishnan
Lucent Technologies
Golf View Campus
Wind Tunnel Road
Bangalore, lndia

anandb@ lucent.com

ABSTRACT
CDMA2000 lxEV-DO [1] is a 3G standard (TIA/EIA/IS-
856, 'CDMA2000 High R"ate Packet Data Air Interface Spec-
iûcation') which provides Internet access by providing up to
2.4 Mbps in a 1.25 MHz channel. It is compatible with
CDMA networks and is optimized for packet data services.

This paper describes a call load generator v¡ritten in Erlang
[2] which is used to perform load tests on a lxEV-DO RNC.
In this paper we present the details of how such a load gen-
erator can be used to perform load tests. We also present
some of our experiences in using Erlang/OTP for testing.

Categories and Subject Descriptors
D.3.2 [Programming Languages] : F\rnctional languages-
Erløng
D.1.3 [Software]: Concurrent Programming
D.2.5 [Software Engineering]: Testing and Debugging-
cøll generation, loød, testing

General Terms
Performance, Veriûcation

Keywords
lxEV-DO, Load generation, Testing, Erlang/OTP

1.. INTRODUCTION

Figure 1: lxEV-DO Reference Architecture

A high level network diagra- of a lxEV-DO system is given
in Figure 1. A PC connected to a lxEV-DO mobile device
is used to counect to the Internet via a Base Station (BTS),

Bagirath Krishnamachari
Lucent Technologies
Golf View Campus
Wind Tunnel Road
Bangalore, lndia

bagi@lucent.com

a Radio Network Controller (RNC) and a Packet Data Ser-
vice Node (PDSN). The PDSN terminates the PPP protocol
originating from the mobiles and also assigns IP addresses
to the mobiles in the network.

TCP/UDI
TP
l2
Phv

RLP
lCP/[IDF GRE

TP

t2 f2
Phv hv

Mobilc BTS RNC PDSN Rdoþ Host

Figure 2: Protocol Stacks for the Reference Archi-
tect¡¡re

The protocol stacks involved in each network element during
call processing are described in Figure 2. The initial part
of call setup, which sets up the radio resou¡ces, consists of
messaging between the mobile, the BTS a¡d the RNC. In
the next step, the mobile sets up a PPP tunnel with the
PDSN via the resources provided by the RNC. Dwing the
PPP tunnel establishment, the PDSN assigns a.rr IP add¡ess
to the mobile. Once the PPP tunnel is established, the
mobile câñ access the Internet.

HELGA is a softv¡a¡e tool written in Erlang v¡hich is used to
generate call processing load on the RNC. It simulates both
a BTS as well as a set of mobiles and sets up data calls via
the PDSN. Its primary use is to perform load testing of the
tra^ff.c processing components of the lxEV-DO RNC. It is
also used to simulate different ha¡doff scenarios. This tool
is w¡itten entirely iu Erlang and is used in conjunction with
a packet th¡ower (written in C) to generate the call load on
the system.

2. INTEREACES USED
The RNC call processing components have the following in-
terfaces to the external entities simulated by HELGA

¡ A TCP interface to the BTS which canies signalling
messages

o A UDP interface to the BTS which ca¡ries data and
signalling messages.

HELGA is the endpoint for these interfaces and passes mes-
sages between the "mobiles" and the RNC over these inter-

TJDP
IP

PPPrF

12

UDP
IPIP

PPP

GRE
'IP
'12
' Phv

12ã;

PC Mobile

lxEV-DO
BTS

lxEV-DO
RNC

PDSN
IP

Network

2

faces. HELGA implements the 15-856 message set and also
simulates the interface between the RNC and the BTS. It
also handles the establishment of the ppp tunnel with the
PDSN. Each insta¡ce of HELGA simulates a single BTS
and a (configurable) set of mobiles. Multiple instances of
HELGA can be connected to each other by running them
over a set of distributed Erlang nodes.

2.1 Functional Decomposition
Since the number of calls under a BTS is configurable and
can also change from time to time (depending on the number
of handoffs v¡hich take place), the implementation of the tool
is split into two compouents - one which simulates the BTS
and another which simulates a mobile. This makes the BTS
and mobile components loosely coupled and handoffs can be
achieved using the distribution mechanism provided by the
Erlang emulator. The dov¡n link data rate for each call is
controlled by an external packet thrower.

2.2 Simulating the BTS interface
For the rest of this paper, the term UBTS, will be used
to identify the part of the tool which simulates the BTS
interface i.e the set of Erlang processes which simulate the
BTS interface. A BTS is simulated by two Erlang processes
- one for handling the UDP interface to the RNC and one for
handling the TCP interface. These two processes handle the
signalling messages between the BTS aud the RNC and also
route messages between the RNC and individual mobiles.
Each mobile is identified by a unique Mobile Identifier and
the details of all the mobiles running under a BTS are stored
in a¡ ETS lookup table. When run over a distributed set of
Erlang nodes, each BTS is capable of communicating with
its neighbours a¡d can therefore perform handofis to other
Base Stations.

2.3 Simulating the mobÍIe
For the rest of this paper, the term "mobile" will be used to
identify an Erlang process which simulates a mobile. Each
mobile is simulated by a unique Erlang process which is
identified by its Mobile ldentifier. All "mobiles,, communi-
cate with the RNC via the processes which constitute the
BTS portion of the tool. As soon as a "mobile,' is assigaed
a¡ IP address by the PDSN, it communicates with a packet
thrower and requests a data dorrnload on the down liuk
at a pa,rticula^r rate. The packet thrower routes the data
download to the "mobile" via the pDSN and the RNC call
processing software. An inter-BTS handofi is simulated by
migrating the corresponding Erlang process from one node
i.e. BTS, in the distribution to another.

3. ERLANG/OTP MODULES USED
The main building block used in HELGA is the genJsm be-
haviour which is used to simulate the protocol stack at the
mobile. A mobile is simutated by a genJsm and uses its
Mobile Identifier as its registered name. All mobiles also
join a common group, which is created using the pg2 mod-
ule. All communication within HELGA is done usiug the
Erlang inter-process communication and communication be-
tween HELGA and the RNC is done using the gen_tcp and
gen-udp modules. AII message exchanges between va¡ious
compoûents of HELGA use bina¡ies. A portion of the state

HELGA can be configured to simulate a stand alone BTS or
a.s paxt of a distributed set of interconnected base stations.
The configuration data for each instance of HELGA includes
the details of the BTS, its neighbours, the number of calls
to be setup, the location ofthe packet thrower etc. It is also
possible to turn on or turn off handoffs at the BTS level. All
the configuration data is read from a file and the parsing of
this file is done using the parse-erl_exprs function of tbe io
module.

information for each mobile is stored in ETS tables for quick
lookup.

At each state of the genJsm, a decision is mad.e by the Er-
laag process simulating a mobile about performing a hand-
off. This is done by generating a r?.ndom number which
is used to decide whether a handoff needs to be simulated.
This number is also used to determine the kind of hand-
ofr which will be simulated i.e soft handotr, softer ha¡doff or
vi¡tual soft handoff. While simulating a virtual soft handoff,
a mobile picks a neighbouring BTS at ra¡dom and spawus
a copy of itself on the node representing the selected BTS.
The spawaed process is passed a copy of the state informa-
tion stored in the spawning genJsm. Ouce the new pro-
cess is spawned, the old process cleans up and exits and the
new ptocess continues on the neighbouring BTS. A soft or
a softer ha¡dofr is simulated by randomly choosing a sector
either from the same BTS or from a neighbouring BTS or
from the list of sectors in the mobile's active set and then
indicating to the RNC that a sector has been added to or
dropped from the call.

HELGA also provides periodic snapshots of the through-
put received by each mobile under a BTS. This is done by
periodically sending a snapshot request message to all the
genJsms in the system. The gathering, processing and pre-
sentation ofthe periodic snapshot data in a human readable
form are made simpler by a judicious combination of higher
order functions a¡d pattern matching. The snapshot d.ata
axe used to study the behaviour and performa¡ce of the
RNC under different call loads.

3.1 Using HELGA for testing
\il'hen sta¡ted, HELGA reads its configuration file and ini-
tializes the BTS compoú.ent, which in turn establishes TCp
connections with the RNC. HELGA then spawns as many
genJsms as there a¡e calls defi¡ed in the configuration flle.
Each genJsm then initializes its protocol stack and proceeds
to setup a call q¡ith the RNC. When its call setup with the
RNC completes, a genJsm negotiates with the PDSN to set
up a PPP tunnel. After a genJsm sets up a tunnel, it is
assigned a¡ IP add¡ess by the PDSN. Once it receives aa Ip
address, a genJsm sends a request for a data download at a
particular rate to the packet th¡ower.

4. EXPERIENCES \ryITH ERLANG
Before HELGA was developed, Perl[3] was used for develop-
ing simulators. The following axe some of our observations
on using Erlang/OTP

o Lea¡ning curve - The learning curve for Erlang is short
aûd steep when compared to languages like C++ and

3

Perl. Programmers very quickly staxt gettirg produc-
tive with Erlang.

o Development Time - The time taken to translate a de-
sign to its implementation is much shorter with Erlang
than it is with Perl. The time taken to implement test
tools in Erlang is less than half of the time taken to im-
plemert simila¡ tools in Perl. The use of OTP modules
like behaviours significantly reduces the development
time.

¡ Speed - Erlaag code runs faster than Perl code. Erlang
code appea^rs to be approximately five times as fast as
Perl code implementing simila¡ functionality.

o Scalability - It is easy to convert a sta¡d alone appli-
cation into a distributed application because the lan-
guage (as well as OTP) has constructs which support
distributed applications.

o Extensibility - Since the language supports hot code
load, it is easy to do incremental development, without
even having to resta¡t the tool. Features can also be
added or twea^ked in real time.

5. CONCLUSIONS
The built in functions of Erlang which support distributed
commuuication a¡d behaviours from OTP helped in radi-
cally changing the development cycle. Fewer resou¡ces had
to be committed to develop a tool in Erlang. Since the tool
was developed in a¡ incremental wa¡ with functionality be-
ing added iteratively to enhance the tool, bugs in the code
were detected very easily. This had a direct impact on the
quality of lhe tt¡ol both in terms of stâbllity and in terms
of performance. It was easier to run load tests using Erlang
code than it v¡as with Perl code.

6. REFERENCES
[1] 3GPP2. cdma2000 high rate packet data air inrerface

specification. Version 2.0, October 2000.

[2] J. Armstrong, R. Virding, C. \üilkstrom, and
M. Williams. Concur'rent Programming in ERLANG.
Prentice Hall, Englewood Cliffs, NJ, 1996.

[3] L. Wall, T. Ch¡istiansen, and R. Schwa¡tz.
Programming PerL O'Reill¡ Sebastopol, CA, 1996.

i-,1! |)ìlÌ,

.\
:

The AXC105 Fibre Switch

Hans Nilsson
hansGerix. ericsson. se

The access system
This talk:

!

.

¡

2

Photos

Rack
installation

Mounted on a wall
with fibres to the
users

Inside the local node

. Network processor
. Assembler

. PowerPC
. Linux
. Erlang/OTP (35 k lines)
.C(l0klines)

r Hardware

' Some strange things...

L

3

What does what

PowerPC

. Erlang

oÇ

o Linux

&
Tables,
registers

n

ill Network Processor
Ethernet
Frames

Ethernet
Frames

i

l

Experiences

. Bad
. Linux:

. Not completely
perfect

, Allergic reactions ...
. Erlang:

. Nothing bad @

. Allergic reactions ...
. Network Processor

. Expensive

. Allergic reactions ...

. Good

' Linux:
. Much available out there
. Many experts

. Erlang:
. High level

, Very short development
time

. Network Processor
. Flexible

3

I

Mobile Afts Telecom Platform
19 November 2002

Fh Jt¡ i .r
il\ ,t'i F1 ti:t $ ¡, ,-ì.
fi\.f i: r ii ill--üs'rtUt\Jlt-Lt ,&rÐs

www.mobilearts,se

Content

Mobile Afts Introduction

Mobile Arts Telecom Platform
r' OveÌview
/ Technology & Characteristics

ÜSome great Erlang Open Source applications
z ¡nets
r' xmerl
/ ucs

A.:'i-gMcbiie

L

2

Mobile AËs

ÜFounded in February 2001

ÜHQ in Stockholm
r' Branch office in London

10 employees
/ 1 Doctor of Science & 9 Master of Science
r' Leading edge competence in and experience (>> 125 man-

years) from development of GSM/UMTSffelecom products
. MSC/VLR/HLR, Mobile SSF, Mobile SCF, UMTS MSC, WAp

Gateway, SMSC, MLC, etc.
. Standardisation(ETSl/3GPp, WAp Forum, LIF, etc.)

Mobile Â nt=

Strategy

Õ Concentrate on doing what we know best
z Development, GSM/UMTS and other related standards

Õ Focus on Indirect Marketing & Sales Channels
r' Mobile Arb will not build-up a large internal marketing and sales

organisation
/ We have established a number of strong partnerships with System

Integrators and/or Resellers

Õ Work closely and actively together with partners and support
their marketing & sales activities

Õ lt¡ob¡le Arts has been financed entirely through consulting (no
loans, no venture capital)

Mcbi;e

L

3

19 November

Õ ¡¡obile Arts provides state of the art Mobile Network
gateway products for Messaging, Presence and Location.

Cl Our products provide Mobile Operators with the key
elements required to enhance existing applications as
well as launch new applications in various areas, such
as SMS, Instant Messaging, Games, Entertainment and
Information.

Õ Mobile Arts products are compatible with GSM/IJMTS
networks all over the world, regardless of local
signalling standards,

Business fdea

Mobiie

i

19 November

Messaging
Network
Presence

Mobile
Locat¡on)oo(

Mobile Arts Tool-kit

Pêrfomnæ
llanag€ment

Conûgurâl¡on
llanag€msnt

Fault
llanago¡nent

Sêcurity
lranag€mcnt

fralñc
Itanagement

L¡cense
llanag€msnt

Log
ùlana9€rrent

Graphlcål User
lnterlacês

Prôtocol
Handlels

S€alab¡llty DlsHbuüon Redundancy

Præs€s Hardwårê Documcntat¡on

Product Architecture

Mobiie Ants

3

4

19 November

Mobile Afts Telecom Platform

Billing
System

Mobile Arts
Telecom Platform

Network
Management

System

MAP

GSM/UMTS/SS7
Network

(sMsc/HLR fúsc/scsil)

Mcb¡ie

(conl\r-

/4----J\< Wob lnterfae >\r--,/
.H\r------1l
/4------N(s¡ruruz)\r---1,/
.¿-N(rrp¡scp)\-rl

System Overuiew

Ç) Traffic

\.-2 Management

19 November

üProcessor
r' Currently SUN (e.9., Netra T1 AC 200 or Fire V12O)

ÜSSZ Stack
/ Er¡cssonffieto-Enator SS7 pCl-boards (one for each host)

that each supports two El links with up to 16 signalling
channels

/ Full SS7 redundancy (Sfp/SRp load sharing)
r' Considering Ericsson "Stack-on-a-C-ard" SS7 boards
¿ Why Ericsson? Name!

Hardware

Mobile

5

19 November

CJ Operating System
r' SUN Solaris I (2.8)

Ü Rdd¡t¡onalsoftware
r' Ericsson SS7 stack
r' Erlang OTP (including Mnesia)
¿ OPenSSL

Ü Application sofü¡rare
¿ Mainly Erlang OTP (drivers to SS7 stack in C)
/ Full soft^/are redundancy with multiple hosts
r' Current size approximately 5500 línes of C, 130000 lines of Erlang

and growing...

Sofürare

Mobiie

i
j
I,

{

ì.

19 November

HTTP/SMPP
server

Service Logic

SS7 stack
adaption

o&M

DB

.HTTP server

.XML parser

.SMPP server

.ASN 1 encoding/decod¡ng

.SS7 stack adaptation

.Service logic

.o&M

.Database

Platform Overuiew

Mcb¡ie A¡1:s

6

19 November

Mobile AÊs Telecom Platform

C) Configuration management and system administration
r' Web based GUI
/ command Line Interface
¿ TTP/SCP

r' Local or remote access

Cl SNMPv2

/ Fault management
r' PeÉormance management

Cl Advanced tailoring of Measurement Reports

Cl Different¡ated Operator access rights
r' Operator Roles with differentiated Rights

OAM Featurcs

Mcbiie

19 November

Mobile Arts Telecom System

ÜCapac¡ty
/ -L00 requests/sec (360000

requests per hour) on a single
node SUN Netra T1 system

. (dead slow, but cheap
machine)

r' XML request and XML
response

r' Seruice Logic: Single FSM MAp
operation

HTTP/SMPP
server

Service Logic

SS7 stack
adaptionH

o&M

DB

(sMsc/HLR/MSC/SGSN)

Tech nology & Character¡st¡cs

Mobiie

(

7

Content

Cl lvlob¡le Arts Introduction

Mobile Afts Telecom Platform
r' Overuiew
r' Technology & Characteristics

f some great Erlang Open Source applications
,t ¡nets
r' xmerl
/ ucs

Mobiìe A.rEs
I

l

f.'
I

i

jnets - HTTP client and HTTP server

ÕnffP client features include
r' Syncronous/asyncronous request interiace
r' Persistent connections
/ Pipelines
./ Pto>(y support
r' + more (but lots missing also...)

Why jnets HTTP seruer?
/ Bacl<ward compatible with inets 2.6
/ Standards compliant
/ Fast core, flexible configuration

Mobiie Ants

8

jnets peÉormance test 1

Üsimple GET request against a small static HTML file.

Setup:
/ 1 client machine/l server machine
r' Oient makes a new request immediately after a response

was received

ñ/-Èir-

Results 1:

Õro be done....

Mobiie AnÈs

I

19 November

jnets peÉormance test 2

xmedn??
based

application

HTTP
sefver

XML request

XML response

Mobiie

Ü"Web sery:¡sh" example

l

j

t'

i
i
I
I

g

19 November

Results 2

Mcbiie

Clro be done

9

10

xmerl - The Erlang XML processer

ÜWritten by Ulf Wiger, now maintained at
http ://sowap. sourceforge. net
r' Latest release xmerl-0.18

Õl-ate developments:
r' Improved export functionality.
/ Support of DOM and SAX style parsing of XML document

'/ Many bugfixes

lrlobile
^

nÈc

ucs - Erlang Unicode suppoft

ÜTranslates Unicode number to Mnemonic

ÕConverts from viftually any character sets to Unicode
and vice versa, given that there exists a mapping!!
r' Sometimes very slow

ÕConverts between IANA defined character set names
and corresponding MIB number/character set aliases

Õtlr¡s does NOT give generic Unicode support in
Erlang (strings etc)

l-c

On Reducing lnterprocess Communication
Overhead in Concurrent Programs

Erik Stenman
Computing Science Dept.

Uppsala University, Sweden

happi@csd.uu.se

ABSTRACT
We present several different ideas for increasing the perfor-
mance of highly concurrent programs in general aad Erlang
programs in particular. These ideas range from simple im-
plementation tricks that reduce communication latency to
more thorough code rewrites guided by inlining across pro-
cess bounda¡ies. We also briefly discuss the impact of dif-
ferent heap architectures on interprocess communication in
general and on our proposed optimizations in particular.

Categories and Subject Descriptors
D. 1.3 [Programming Techniques] : Concurrent Program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features- concurt'ent programming structures;
D.3.2 [Programming Languages]: Language Classiûca-
tions-appl'iø,táae (functi,onøl) languages, concunent, d,is.
tributed, and, pørallel languages

General Terms
Languages, Performance

Keywords
Concurrent languages, process scheduling, Erlang

1. INTRODUCTION
Large software systems can conceptually be split into sev-

eral sepa.rate and semi-independent tasks. Concurrency tries
to provide a convenient form of abstraction for such situa-
tions. Hence it is not surprising that ma.ny modern progra¡n-
ming languages (such as CML, CamI, Erlang, Oz, Java, and
Cf) come with some form of built-in support for concurrent
processes (or threads). Unfortunately many of these lan-
guages only provide very crude lowlevel support for concur-
rency; for example interprocess communication is often im-
plemented with shared data structures. Promoters of these
designs often motivate the low-levelness with the need for
Permission to make digital or hard copies of part or all of this work for
personal orclassroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice a¡d the full citation on the ñrst page. Copyrighs for components
of this work owned by orhers rhån ACM must be honored. Abstracting wirh
credit is permined. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior speciñc permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869{481, or
permissions@acm.org.
Erlang Workshop'02 Pitsburgh, USA
Copyright 2m.2 ACM l -58 1 l 3-592-0102000 1 ...$5.00.

Konstantinos Sagonas
Computing Science Dept.

Uppsala Unlvers¡ty, Sweden

kostis@csd.uu.se

speed, using pretty much the same arguments that adver-
sa¡ies of garbage collection for a long time have been argu-
ing for the need for prograrnmer-controlled memory man-
agement.

'We believe that a higher level of support is needed, not
only for memory management, but also for concurrency. A
language should provide highJevel concurrency primitives
and it should be up to the compiler and runtime system to
implement these constructs as efficiently as possible.

With a more natural way to handle interprocess cortmu-
nication, such as through explicit message passing, the pro-
grammer can concentrate on what to communicate instead
of how. This higher level of abstraction does however come
with a price: data sent from one process to another is not au-
tomatically there in some shared data structure to be used
by the other process directly. Instead, the other process
must also receit¡e the data; this typically requires that a
schduler prompts the receiving process to aÆcess the mes-
sage and to possibly ta,l<e some appropriate action. Schedul-
ing and switching between execution environments of pro-
cesses do come at a cost and in this paper we will present
some ideas for reducing this cost.

Our goal is to eventually have truly lightweight processes
where message passing is at least as efficient as method in-
vocation in a modern object oriented language.

We have been experimenting with different extensions to
Erlang and different designs and implementations within the
HiPE system [3], a native code compiler extension to the Er-
lang/OTP system provided by Ericsson [6]. The rest of the
paper begins with a description of some aspects of this sys-
tem (Section 2). We then present our three main ideas: a
resched,ul'ing send (Section 3), a di.rect dispatch sezd (Sec-
tion 4), and i,nterprocess inlining (Section 5). We end with
some concluding remarks.

2. ASPECTS OF CURRENT ERLANG
IMPLEMENTATIONS

Although some of the ideas we explore in this paper have
also been dealt with by the operating systems (OS) commu-
nity, it is important to note that our context is different since
the concurrency in Erlang is not provided by the underly-
ing operating system. Instead the Erlang runtime system
itself is assumed to provide much of the functionality often
associated with an OS. For example, the runtime system of
Erlang/OTP contains its own scheduler, memory manager,
code loader, interface to the fiIe system, and an emulator for
BEAM code.

t

!

2

Cleariy the implementation of the runtime system will
have an impact on the performance of concurrent Erlang
programs. Let us therefore describe some aspects of the
current impiementation.

2.1 Erlang processes
Processes in Erlang are extremely light-weight (lighter

than OS threads), their number in typical applications is
quite large, and their memory requirements vary dynam!
cally. Erlang's concurrency primitives-spaûD.,,,!', (sead),
and receive-allow a process to spawn new processes and
communicate with other processes through asynchronous
message passing. Any data value can be sent as a message
and processes may be located on a¡y machine. Each pro-
cess has a mailbox, essentially a messa,ge queue, where each
message sent to the process will arrive. Message selection
from the mailbox occurs through pattern matching. There
is no sha¡ed memory between processes and distribution is
almost invisible in Erlang. To support robust systems, a
process can register to receive a message if another one ter-
minates. Erlang provides mechanisms for allowing a process
to timeout while waiting for messages and a catch/throw-
style exception mecha¡ism for error handling.

Note that Erlang processes differ from both OS processes
and OS threads: An OS-process usually has a sepa.rate ad-
dress space implemented in ha¡dwa¡e resulting in the need of
TLB flushes and the like, while OS threads usually contmu-
nicate through shared memory. Finalty, OS processes and
threads a¡e ofben implemented in such a way that they can
be executed in parallel.

Erlang processes on the other hand are handled by the
runtime system scheduler, which selects a process from a
read,y queue. The selected process is assigned a number of
red,uctions to execute, called its time-sl;i,æ,. Each time the
process does a function cali, a reduction is consumed. The
process is suspended when the time-slice is used up (i.e.,
the number of remaining reductions reaches zero), or when
the process reaches a receive and there are no matching
messages in its mailbox.

The scheduler is implemented in C as a function that can
be called either by the BEAM emulator or directly from
native compiled code. The scheduler takes as arguments the
process that has been running and the number of executed
reduction steps, and returns the next process to execute.

2.2 Heap architectures
Tiil the fall of 2001, the Ericsson Erlang implementation

had exclusively a memory a¡chitecture where each process
allocates and manages its own memory area. In this a¡chi-
tecture, since each process has its own heap, message passing
is implemented by copying the message from the heap of the
sending process to the heap of the receiving process. After
the message is written, a pointer to the message is inserted
into the message queue of the receiving process.

'We have implemented a sha,rd, heo,p memory architecture
for Eriang processes [4, 7], which is already included in the
current Erlang/OTP reiease. Concurrently with that work
of ours, Feeley [1] argued the ca.se for a unified memory a^rchi-
tecture for Erlang, an a¡chitecture where all processes get to
sha¡e the same stack and heap. This is the architecture used
in the Etos system [2] that implements concurrency through
a call/cc (æ,ll-with-cunent-conti,nuøti,on) mechanism. The
biggest advantage of a sha¡ed heap architecture is that send-

ing a message does not require copying. On the other hand,
ga.rbage collection stop times might become longer since all
processes sha¡e the same heap. A shared heap a^rchitecture
also opens up some other opportunities for optimizing an
Erlang system. We exploit some of them in this paper.

2.3 Behaviours
The Erlang/OTP system comes with the powerful concept

of. behat¡íours. A behaviour can be seen as an implementa-
tion of a design pattern. The OTP library supplies a number
of predefined behaviours such as øpplication, gen_serler, and
superui,sor.

With these behaviours the programming of concurrent ap-
plications can be taken to a higher leveì since behaviours
suppiy general solutions to common programming tasks. For
example, the programmer does not need to get involved in
the details of programming a fault-tolerant server that sup-
ports code upgrades.

The drawback of using behaviou¡s is a slight loss in effi-
ciency; since the solutions are general, behaviours tend to
employ a number of runtime tests to find the specific solu-
tion. Unfortunately there is no formal specification of be-
haviours, and they a.re implemented entirely in Erlang. This
means that with the current implementation the compiler
has no real gua.rantees about the behaviour of a program
that uses behaviours. (The only check that is done is by the
linter which gives a wa.rning if any callback function needed
by a behaviour is missing. There is no guarantee that the
callback function does what it should do, and hence cur-
rently the compiler can not trust the behaviour decia¡ation
for optimization purposes.)

If behaviours became more formally specifled, an optimiz-
ing compiler could use the behaviour decla¡ation as a hint on
where to look for certain types of opportunities for optimiza-
tion. Fo¡ example, an application based on the gen_serter
behaviour does indi¡ect (via function calls) message pass-
ing and pattern matching on the message. In essence: all
messages to the generic server pass through a call function
that tags the message with an atom defining the message
type and the server then finds the appropriate handler by
pattern matching on that tag. In the abstraction of the
behaviour the information of the message type is lost, and
it can not be found by e.g. conventional partial evaluation
since message passing is involved.

This common pattern was actually one of the inspirations
to interprocess inlining; we feel that users should be abie to
use this powerful behaviour without worrying about ioss in
performance.

3. RESCIIEDULING SEND
Interprocess communication in Erlang is asynchronous,

and the seud operation is non-biocking. However, these are
actually conceptual aspects on the language level, and there
are several ways to implement them in the underlying run-
time system.

The current Erlang system is implemented in the natu-
ral way, that is, the seud operation just places the message
in the ¡eceiving process' mailbox and then the sending pro-
cess continues executing until it either blocks in a receive
statement or has exhausted its time-slice.

In most cases, when a process sends a message it is because
the application wants the receiver of that message to act
upon the sent information. Hence, it would probably be in

L

3

the best interest of the sender to yield to the receiver in this
case, and let the receiver act on the message. We wiii refer
to this type of seûd as a rescheduling send, operation.

We therefore propose to implement this by letting the
send operation, at least in some cases, also suspend the
sending process. This would hopefuily lead to lower mes-
sage passing latency since the receiver can sta¡t executing
directiy when a message is sent. We also expect that in many
cases the cache behavior would be better since the receiver
will get the message while it still is hot in the cache.

In a private heap system, since the message has to be
copied, the whole message should be hot in the cache right
after the send. Hence, it is important to directly switch to
the receiving process before the sender starts producing new
data. In a sha¡ed heap system, the message does not need
to be copied but as it is likeiy to have been created recently,
it is also likely to be hot in the cache.

The real benefits of this design will probably depend both
on the underlying hardwa.re and on the communication cha¡-
acteristics of the Erlang program. We do not believe that
the benefits of this optimization will be very significant in
isolation, but the ability to suspend a process directly a^fter
a send can open up possibilities for further optimizations.

4. DIRECT DISPATCH
The idea to let the send operation suspend the process

can be taken one step further by completely bypassing the
scheduler. Since it is often the case that the sender is sus-
pended waiting for the receiver to react on the sent message,
a natural action for the sender to take is to contribute its re-
maining time.slice to the receiving process hoping that this
will lead to a faster response. We therefore propose a ilircct
d:ispatch send operation: After se¿d has placed the message
in the mailbox of the receiver, any reductions ieft could be
passed to the receiving process, which could be woken up
directly (ignoring the ready-queue).

With this approach, some overhead of the scheduler could
be eliminated and the latency of message passing would be
reduced even further. Since this approach would also gua.r-
antee that it really is the receiver of the message that will
execute next, the effects of having the message in the cache
wiil hopefully also become more evident.

As with any process, the receiver is allowed to execute
until it blocks in a receive, or the reduction count reaches
zero, or it performs a direct dispatch send of its own. If
the receiver was taken from the ready queue and becomes
suspended because any of the two latter reasons (i.e. it is
still runnable), it is important to reinsert it into the ready
queue in the same position as it was taken from, lest it might
starve.

If the receiver performs a direct dispatch send back to the
original sender then that sender ca¡ get back the remaining
reductions and can keep on executing as usual. This way the
common case, where one process sends a request to another
and then receives a reply to the request, can be almost as
efficient as a function call.

5. INTERPROCESS INLINING
To take these optimization ideas even further, we wouid

like to not only change the behavior of the send operation
in the runtime system, but actually optimize the code ex-
ecuted before a send and after the accompanying receive.

The goals ofthis optimization a¡e to reduce the overhead of
message creation (for example, by avoiding enclosing parts
of a message in a tuple), reduce context switching overhead,
and open up possibilities for further optimizations by con-
sidering the code of the receiver in combination with that of
the sender.

The optimization is performed on a pair of functions, the
function containing the send and the function containing
the receive. We will refer to these functions as / and 9
respectively, and the pair as a cand,id,ate po,ir. The code at
the point of the receive statement in g is inserted into the
code of / at the point of the sead. The resulting code is then
optimized using standard compiler optimization techniques.

To perform this optimization we have to respect the fol-
lowing requirements:

1. Find a program point where a send is performed.

2. Find out at which receive statement this message is
received.

3. Ensure that, at the time of the sead, the receiving
process is suspended at the receive statement found
in step 2.

4. Ðnsu¡e that the mailbox of the receiving process is
empty.

Since this process communication behavior can be hard
to analyze statically - in any concurrent la^nguage and in a
dynamically typed language such as Erlang in particula^r -we propose the use of profiling and dynamic optimization to
implement this interprocess code merging.

To do this we take adva.ntage of two features of Erlang:
hot cad,e load,áng atd concuttency. The presence of concur-
rency malces it possible to implement supervision and re-
compilation in processes in a way which is sepa.rated from
the application. Support for hot code loading ensures that
there a¡e methods for linking and loading re.optimÞed code
into a running system in an orderly way. We also use a spe-
cial HiPE extension that makes it possibie to replace code
on a per function rather than on a per module basis.

'We first iûstrument the system in order to proûle the as-
pects that can trigger a recompilation. During normal exe-
cution a supervisor process monitors the profiIe. When the
profile indicates that a part of the program should be rs.
compiìed, the supervisor sta,rts a sepaÌate process for the
compilation.

The gathered profile information is then used to choose
candidates for inter-process optimization. These candidates
consist of pairs of program points; one program point refers
to a seûd statement, and the other refers to the correspond-
ing receive statemetrt. These pairs a¡e found by proûling
each send to collect information during execution. The col-
lected information has two components: information about
the desüination (Desú), and the number of times the instruc-
tion is executed (Tírnes). The Desú ûeld is initialized to
none, and the Ti,mes ûeld to zero. When the send is exe-
cuted, the Times freld, is increased and the receiving process
is checked. If the mailbox of the receiver is empty then the
prograrn couûter (PC) of the receiver is checked; if the PC
is equal to Dest or if Dest is equal to none then Desú is set
to PC. Otherwise Desú is set to unknown.

In the case where a send has only one receive destination,
the sead/receive pair is considered as a candidate for the

3

f-Head

Send

f-Ïail

ffi

Restore

copy
tg ¡r....rr..

4

f !,
F-Head

L;rearc
messâde

Send

pTail

g-Heaó

Reæive

g:fail

Figure 1: Before the merging, function f is executed
by o and function g is executed by É. After the
merging, /' is executed by a.

optimization. On the other hand, if a sead has more than
one destination, even if it is just two different destinations,
then the profiler will classify the send as unlcnowtu and no
optimization will be performed.

When a frequently executed candidate pair is found, the
functions containing the se¡d and the receive are compiled
to intermediate code. The intermediate code fragments of
the two functions a¡e then merged. In short, the merging
is done so that the progra^nr point of the seod statement
is connected with the program point of the receive. The
resulting code is optimized and compiled to native code.

To ensu¡e correct behavior, execution of the optimized
version is guarded by a run-time test. This test checks that
requirements 3 and 4 in the above iist hold; otherwise the
original unoptimized version is executed.

5.1 The transformation
We will refer to the sender (the process executing "f) a.s a

and the receiver (the process executing ò æ 0.
For a given send, the function / can be divided into the

following abstract blocks of code:

1. Head (code preceding the send)

2. Message creation

3. send

4. Tail (the rest of the code)

The function g is divided into:

1. Head (code preceding the receive)

2. receive

3. Tail (the rest of the code)

The intention of the transformation is to allow process o to
execute code that would otherwise have been executed by
process B. Thus, the resulting code for o, function //, will
contain fragments of the code from g; see Figure 1.

The merged function J' is a copy of the function / with
these six additions:

1. Test - A test is inserted before the send in tr. This
test checks whether B is suspended at the right pro
gram point (at the receive in 9) with an empty mail_
box. Ifthis test succeeds the execution continues with
the optimized code (item 2), otherwise the execution
continues with the original code of /.

2. (Message copying) - In a system with a private heap
architecture the message is copied from the heap of
process a to the heap of process p using an explicit
copy operation. (In a shared heap system, no copying
is needed.)

3. Restore state - All live p-tempora.ries are read from
the stack of p. (This is done by consulting a maÞ
ping from intermediate code temporaries to stack po.
sitions.)

4. Code from g - The code from g that is suitable for
external execution is then executed.

5. Save state - All live p-temporaries a¡e written back
to the stack of p.

6. /-tail - A copy of the tail of / is executed.

Since we rely on a subsequent optimization pass to clean
things up, performing the merging is straightforwa.rd. The
subsequent optimization pass, which performs a generalizel,
ænstant propagation and ilead,-e¡d,e elimination [5], will re.
move unused paths from g.

In our context, the generalized constant propagation prop..
agates not only true constaûts, but also Erlang terms such as
ljsts and tuples with dynamic elements. The propagated in-
formation is then used to fold tests and element extractions
on these structures. When the tests are folded a¡d short-
circuited, we perform dead code elimination and removal of
uûreachable code.

Often in Erl¡¡g, parts of the messages a,re just used for
switching on the type of message. Interprocess optimiza-
tion together with generalized constant propagation helps
us avoid the copying of these pa,rts of the message.

The code from g has to be rewritten so that it can be ex-
ecuted "externally", that is, from within process o. This
mea¡s that the primitives we want to inline have to be
rewritten for external execution.

'We can extract almost all instructions from g for merging
with f, as long as the code futÊlls four prerequisites:

1. There has to be some v/ay of ensuring that we do not
get code explosion.

2. The code may not suspend.

3. The control flow may not be passed to code that is not
adapted to external execution.

4. The extracted code must terminate otherwise process
o might hang.

To make sure that these prerequisites a¡e fulfilled some in-
structioûs a¡e not e:<tracted:

1. A call to another function, a meta call (app1y), or a
returû can not be extracted since the control could be
passed to code that is not adapted for external execu-
tion.

5

2. Instructions that lead to the suspension of the pre.
cess, such as the explicit suspension instruction or a
leceive.

3. Some built-in functions a^re large and uncommon and
not worth the effort to adapt for external execution.

4. Non-terminating code is unacceptable. If some bug
in B makes it loop forever, we do not v¡ant this bug
to propagate to the process o. To ensure that the ex-
tracted code terminates, we do ûot accept any loops in
the control flow graph of the extracted code. Note that
this is not such a harsh restriction as it may sound,
since the only way to get a loop in the intermediate
code is by making a taii-recursive call where the caller
and the callee are the same. If there is a loop it will
probably contain the receive that caused the extrac-
tion in the first place. In this case the control-flow
graph will be cut at this point a¡d the loop will be
broken.

The instructions in the g-tail that do not belong to any of
the categories listed above are extra¿ted. A control flow
path that contai¡rs an instruction that is not extractable is
cut just before that instruction.

To propagate changes in the state of p we have to save
the new state at the end of the extracted code. To this end,
we write all live tempora¡ies ba,ck to the stack at the end of
each path of the extracted code. At the end of each of these
paths, the continuation pointer ofp is set to point to a stub
containing the instructions from that path that could not
be extracted from g.

To simplify optimization we duplicate the tail of /. At
the end of each path of the extracted control flow graph we
insert a junp to this copy. This ensures that when the code
in the copy is reached, the execution is guaranteed to have
passed through the code extracted from g.

5.2 Further considerations
In a runtime system architecture where each process allo-

cates its private heap, the garbage collector typically relies
on the fact that a"ll data structures accessed by a process
a¡e ailocated on the heap of that process. This inva¡iant is
temporarily broken while the process o accesses the state
of process p, but since v¡e have controi over when o is sus-
pended and when garbage collection is triggered, we can
ensure that the inva¡iant is maintained at these points. In
a sha¡ed heap a,rchitecture, this is not a problem.

Our inter-process optimizer will change the scheduling be-
havior. One might suspect that this could lead to a change
in the concurrency semantics of the progra¡n. However, note
that since in the optimized code we do not allow the code
from g to loop and count each reduction that wouid have
been counted before the optimization, the observable be-
havior will remain unchanged.

The inter-process optimizer will merge code from two func-
tions (J and g). If the module of g is updated with hot-code
loading, old code from g will remain inside / (actually in /').
However, this code will never be executed, since the run-
time test in /' only succeeds when the receiver is suspended
from old code. (If the module containing / is replared then
all optimized code is removed and in this case there is no
problem at all.)

5.3 Retum messages
The situation where the receiver of a message sends a mes-

sage back to the original sender is so cornmon that v¡e have
decided to ha¡dle this situation specially. The technique we
have devised requires the following criteria to be fulfilled:

1. There is a se¿d in g-tail.

2. The destination of the sead in g is the process o.

3. All paths through /-tail contain a rêceive.

4. The mailbox of o is empty.

We ensure these criteria by first of all always check that the
mailbox of o is empty before we use the optimized code. By
doing this check in the beginning, v¡e get a very simplified
control flow graph for /'.

In a private heap system we just copy the message from
the heap of process É to the heap of process o, if the desti-
nation of the send is o. In a shared heap system no copying
is needed, the pointer to the message can be put directly in
the temporary containing the received message. Now, the
nice thing is that by vsing genernli,zel, constant propagati,on
we can often remove the runtime tests completely. Depend-
ing on how the message is used, we might also get rid of the
copying between the processes completely even in a private
heap architecture.

5.4 Potential gains
With interprocess inlining y¡e can reduce the overhead of

process communication in four different ways:

1. Short-circuit switches on messages
We can use the information about the form of the
message to short-ci¡cuit the pattern matching in the
receive. Since the switching usualìy is made up of
several tests on heap allocated data, short-circuiting
results in a control flow path with fewer 1oad, conpa¡e,
a¡d bra¡ch. i¡structions.

We also expect tbat this will also ma^ke the hardwa¡e
prefetching mecha¡isms work better. If the receiver
can receive several different messages that have the
same frequency, then the switch will go in different
ways each time rendering the prediction useless, which
results in pipeline stalls.

2. Reduce messâge passing
It is quite common in Erlang programs that a process
creates a message, sends it to another process, which
subsequently performs some matching on the struc-
ture of the message, accesses some components of the
message arìd never looks at the whole message again.

By short-circuiting switching on the message we can
avoid the creation of the message (and also save time
in the garbage collector).

3. Reduce context switching
We can, in the cases where the receiver immediately
answers, remove the context switch completely. This
not only means that the receiver does not need to be
scheduled, but it also mea¡s that the executing pro-
cess does not need to be suspended. Measurements
indicate that in many concurrent Erlang programs the
processes do not exhaust thei¡ time.slice but they are

¡

5

i

I

6

instead suspended on receive. If the sender can keep
on running until the time-slice is used up then the ex-
pensive scheduler would be executed less. Letting the
same process execute longer also results in better cache
behavior.

4. Enabling of further optimizations
The most significant gain can come from the ability
to do optimizations on the merged code, just as the
real gain from procedure inlining comes from the opti-
mizations done after the inlining. We get the possibil-
ity to do, for example, constant propagation, common
subexpression elimination, and register allocation, on
merged code from the sender a¡d the receiver.

6. CONCLT]DING REMARKS
We have presented several different methods for cross-

process optimization aiming to reduce the overhead for in-
terprocess communication. These methods also enable fur-
ther optimizations across process boundaries, such as con-
stant propagation and more global register allocation. The
context switch ca¡ be completely eliminated in some cases,
reducing the overhead for concurrency.

These optimizations will speed up existing Erlang pro-
grams without requiring any modifications to the source
code. Since the use of processes will be less expensive, the
usefulness of concurrency is extended, mal<ing it possible to
use processes in cases where it previously has been consid-
ered too expensive.

Acknowledgments
We thank Sven-Olof Nyström for interesting discussions on
the implementation of interprocess inlining. This resea¡ch
has been supported in part by the ASTEC (Advanced Soft-
ware Technology) competence center with matching funds
by Ericsson Development.

7. REFERENCES
[1] M. Feeley. A case for the unified heap approach to

Erlang memory ma¡agement. In Proceeilings of the
PLI'01 Erlang Workshop, Sept. 2001.

[2] M. Feeþ and M. La¡ose. Compiling Erlang to Scheme.
In C. Palemidessi, H. Glaser, and K. Meinke, editors,
Principles of Declarøtiue Programrning, number 14g0 in
LNCS, pages 300-317. Springer-Verlag, Sept. 1998.

13] E. Johansson, M. Pettersson, and K. Sagonas. HipE: A
High Performance Erlang system. ln Proceeilings of the
ACM SIGPLAN Conferenæ. on Principles and practice
of Declamti,ae Programming, pages 32-48. ACM press,
Sept. 2000.

[4] E. Johansson, K. Sagonas, a¡d J. Wilhelmsson. Heap
a¡chitectures for concurrent languages using message
passing. In Proæed,ings oJ ISMM,Ù002: ACM
SIGPLAN International Symposium on Memory
Managemenl pages 8&-99. ACM Press, June 2002.

[5] S. S. Muchnick. Aituancd, Compiler Design €!
Irnplementatior¿. Morgan Kaufman Publishers, San
Fransisco, CA, 1997.

[6] S. Torstenda,hl. Open Telecom Platform. Eri,csson
Reui,ew, 75(1):14-17, 1997. See also:
http://www.erla n g.se.

[7] J. Wilhelmsson. Exploring alternative memory
a¡chitectures for Erlang: Implementation and
performance evaluation. Uppsata master thesis in
computer science 2i.2, Uppsala University, Apr. 2002.
Avaiiable at http://www.csd.uu.se/projecrs/hipe.

6

Distel: Distributed Emacs Lisp (for Erlang)

Luke Gorrie*

November I0,2002

Abstract
Distel is an Emacs-based user-interface toolkit

for Erlang. We introduce "Emacs nodes" us-
ing the Erlang inter-node distribution protocol,
and make communication natural by extending
Emacs Lisp with Erlang's concur¡ent program-
ming model. The extensions are intended for
creating Emacs front-ends to Erlang ptogra¡ns?
in combination with Emacs's traditional user in-
terface facilities.

'We present an introduction and tutorial on
Distel programming, and show how to rvrite
a complete Erlang process matrager in Emacs
Lisp. We then present a suite of Emacs
extensions for Erla,ng development called the
erlang-extended-roode, and describe the imple-
mentation of the Distel runtime system.

1 Introduction
Distel (rhymes with "crystal") is intended for
controlling Erlang [1] [2] pro$ams with Emacs.
The idea is to take the most essential features of
Erlang and integrate them into Emacs Lisp [3], so
that the tv¡o can communicate in a natural way.
The features we selected a^re processes, pattern
matching, a^r¡d distribution, and they are repro.
duced faithfully at a high level, though many de-
tails difer. In general, higher priority is given to
neat integration with Emacs Lisp than to exact
reproduction of Erlang semantics.

The core of Distel is essentially an Erlang dis-
tribution library, much like the erl-interface
for C in OTP [2], extended with ideas from the
Etos [4] Erlang-to-Scheme compiler. Whereas
Etos implements a complete Erlang compiler and
runtime system in Scheme, Distel is a hybrid sys-
tem, and implements "just enough" of Erlang to

suppofi concurrent programming in Emacs Lisp.
In particular, Distel is implemented only with
normal Lisp functions and macros, and has no
special interpreter loop or compiler.

This paper is orga"nised as follows. Sections
2-4 describe the Emacs Lisp programming ex-
tensions, and Section 5 uses them to present
a small but complete process-manager applica-
tion, as a tutorial for Distel application devel-
opment. Section 6 describes the implementa-
tion of Distel itself. Section 7 describes the
erlaag-extended-mode and the development
tools it includes. Sections 8-10 discuss the past,
present, and future of Distel, Section 11 describes
related work, and Section 12 concludes.

2 Processes

Emacs Lisp processes axe the fundamental fea-
ture of Distel, and are provided with a set of
Lisp functions and macros that correspond to
Erlang's Built-In F\¡nctions (BIFs) and language
constructs. In fact, the programming interface
for Emacs processes is similar enough to Erlang
that the best introduction is to see how a simple
Erlang process can be rewritten in Emacs Lisp.
A message-counting Erlang process is shown in
Figure 1, and an Emacs Lisp version in Figure 2.
The simila¡ities of the programs should heip to
shed light on how the Emacs Lisp process works
- we'll fill in the details as v/e go along.

'We can test the Emacs message counter by
spawning one and sending it some messages:

(er1-spawn
(spawa-counter)
(erl-send tcounter'one)
(erl-send'counter,t¡¡o)
(erl-send'courter,three))

1

* luke0b1uetai1 . co¡

2

sParÍn_countero ->
spawn(funO ->

register(counter, self O),
counter_1oop(1)

end).

counter-Ioop(Count) ->
receive

Msg ->
io:fornat("Got msg #-p: -p-4",

[Cor¡¡t,]lsgJ)
end,
counter_Ioop(Count + t).

Which will produce the following reports in the
ttr,Messages *tt buffer:

Got nsg #1: one
Got nsg #2: two
Got nsg *3: three

(erl-spawn ...) creates a new process. It is
a macro, and the enclosed code is executed in
the new process. The process has its own buffer,
which can be used in any way - contain text,
use modes, or visit files. The buffer isn,t dis-
played automatically, but can be made visible
with Emacs functions like display-buffer. Be.
cause each process has its own buffer, buffer-local
va¡iables are effectively process-local - they can
be used to store process state, much like the Er-
lang process dictionary.

(erl-sead who m,essage) sends a message to
a process. The who a^rgument accepts the same
types as Erlang's ! operator: a PID (local or
remote), a registered name denoted by a symbol,
or a remote registered name denoted by a [nane
nodel vector. (Here, as elsewhere in Distel, vec-
tors are used where Erlang uses tuples.)

(erl-regis1..er name) assigns the current
process a registered nanne, Iike the register/2
BIF in Erlang.

(erl-receive saued-uars clauses after...) r*
ceives a message by pattern matching (it is more
complicated tha^n Erlang's receive, due to im-
plementation trade-offs discussed in Section 6.)

(defun spawn-connter o
(er1-spawa

(erl-register, counter)
(&cor¡¡ter-loop 1)))

(defun &cou¡ter-loop (count)
(erl-receive (count)

((nsg (ness¡ge 'rGot nsg *%S: %S,'

count nsg)))
(&couuter-loop (+ count 1))))

Saaed-uørs narnes the local r¡ariables that will be
used once a message is received (other local vari-
ables become unbound.) Clauses specifies which
messages ca¡ be received and how they are han-
dled. The synta:c for each clause is (pattern
body...), v¡here pattern is an Erlang-style pat-
tern (described in Section 4), and bod,y is one or
more Lisp expressions to run when the pattern is
matched. There are also zero or more after ex-
pressions, ¡vhich run after a message is handled,
regardless of which clause matches.

Most importantly, erl-receive neuer returns.
Instead it bundles up the execution state and
throw's it directly back up to a scheduler loop,
bypassing any code on the stack. This is
the biggest difference from Erlang programming
style: in Erlang a receive means "handle a mes-
sage and then return," but erl-receive mea,ns

"this process state is complete - here is the next
one." This is an important point for program-
ming with Distel, and leads to writing Emacs
processes in continuati,on-passing süyfe [5] [6],
where "what to do afterwards" is given explicitly
to erl-receive instead of relying on the stack.

Because erl-receive doesn't return, and nor
do functions that call it, they should only be
tøil-calleil - called as the last thing a function
does. This rule is made explicit in Distel pro-
grarns by the convention of naming each function
that leads to erl-receive with an "&" prefix, so

Figure 1: Message counter process in Erlang Figure 2: Message counter process in Emacs Lisp

2

3

that we know to only call it in tail position. The
& naming is applied to a^ll functions that call ei
ther erl-receive or another &-function, except
when the calls are wrapped in an erl-spawn, be.
cause erl-spawn catches the tbro¡¡ and returns
normally.

Returning to Figure 2, we can see that
&cou¡rter-1oop is specially named because it di-
rectly calls erl-receive, while spaÍn-courter
is not because although it calls an &-function, it
does so inside an erl-spawn.

3 Distribution
Emacs processes can communicate directly with
actual Erlang processes in other nodes, via the
Erlang distribution protocol [7]. Like in Erlang,
most BIFs accept either local or remote PIDs,
for example erl-send, erl-link, erl-exit, and
so on. The Erlang method of sending messages
to remote registered processes also works, so to
achieve:

{foo, bar@cockatoo} ! Message.

'We write the equivalent:

(erl-send lfoo bar@cockatoo] nessage)

This simple mecha¡ism suffices to bootstrap
full communication, because normal Erla^ng
nodes automatically run a set of useful regis-
tered servers. The RPC server, registered with
the name rex, is the most handy - it receives re.
quests to apply a function with some arguments,
and sends back the results. This server is used
throughout Distel programs to make RPCs to Er-
lang nodes.

Of course, when a message is sent from Emacs
to Erlang (or vice-versa), it is necessary to trans-
late the data in the message between languages.
In other words, we need a mapping bet¡yeen Er-
lang types and Emacs Lisp types. For Distel we
have chosen a mapping that is convenient to use,
though not complete or symmetric.

Some types map perfectly: lists, atoms with
symbols, tuples with vectors. Integers are
mapped directl¡ but the mapping is partial
because Emacs Lisp integers are only 27 bits

(Emacs has no bignums.) PIDs, Ports, and Ref-
erences are mapped onto vector-based structures,
and tagged with a special uninterned symboll to
distinguish them from the vectors used for tuples.

Mapping strings from Erlang to Emacs Lisp is
troublesome. The Erlang binary term encoding
includes a string type, but it is used loosely - you
never kno¡y whether an Erla^ng string will be en-
coded as a string or as a list of integers. To side-
step the problem, Erlang binaries are mapped
onto Emacs strings, and we always use bina¡ies to
reliably send text to Emacs. Emacs Lisp strings
are mapped onto Erlang strings.

Other types, such as floats and functions, are
not yet mapped, and attempting to send them
triggers an error.

4 Pattern Matching
Distel has three pattern matching macros, one
being erl-receive, which has already been in-
troduced. Each macro uses the same pattern syn-
tax, described below.

(mlet pattem object body...) matches object
with pøttem, and on success executes the body
forms with all pattern va¡iables bound. If the
match fails, an error is signalled. nlet is similar
to Erlang's = operator.

(ncase object clauses) matches an object with
a series of clauses, where the syntax of each clause
is (pattem bodU...). The first clause whose pøt-
úerr¿ successfully matches is selected, and its body
forms are then executed with all pattern vari-
ables bound. If no clause matches, an error is
signalled. ncase is of course based on Erlang's
case expressions.

4.L The Pattern Syntax

The pattern synta:< is very similar to Erlang,
though it lacks guards in the current implementa-
tion. The syntax is specified below, and followed
by some examples.

Tþivial: t, ni1 , 17 , 42,

Constants, matched literally.

lAn uninterned symbol in Emacs Lisp is like a ref in
Erlang, but it looks like a symbol.

3

il

4

Sequence: (patl ...), þat1 ...]

Sequence patterns match the ,,shape" of the
sequence, as well as each individual sub-
pattern. The pattern can be either a list
or a vector, and ï'ill only match a sequence
of the same type.

Pattern variable: var, my-variable, ...
Symbols denote va¡iables that the pattern
should bind. The first time a particular
variable is used it binds to the correspond-
ing value, amd then further occurrences must
match this bound value.

Following a successful pattern match, a Lisp
va¡iable is bound for each pattern va¡iable.

Constant: ,s¡mbol, ,(x y z)

Quoted constants a¡e matched titerally by
value.

Bound nariable: ,var
The pattern ,var matches the value of the
pre.bound Lisp variable var. This is like
using an already bound variable in a pattern
in Erlang.

\Mild card: - (underscore)

Matches anything, with no binding.

For example, the Erlang code:

case Result of
{ok, Value} -> Value;
{error, Reason} -> exit(Reason)

end

could be written in Lisp as:

(ncase resuLt
(['ok value] value)
(['error reasou] (erl-exit reason)))

and similarly,

{ok, Va}ue} = Result,
Value

could be written as

(ntet [,ok value] result
value)

5 A Process Manager
This section describes the design and implemen-
tation of a small but complete process-manager
application. The program does two things: it
presents a list of the processes running on an Er-
lang node, and it provides some commands to
operate on them. The process list is shown in
an Emacs bufier, with a one.line summary for
each process. The summary line shows the pID,
registered name (if any), number of reductions,
a¡rd number of unreceived messages, as shown in
Figure 3.

The first step in designing the application is to
divide up the work between Emacs and Erlang,
and decide how they will interact. The goals are
to do the work on the side that makes it the easi-
est, and to keep the program simple by minimis-
ing the interactions.

The task for the Erlang side of the process
manager is to create formatted summa¡ies of all
the processes in the system, ready for Emacs to
display. The Emacs side then must fetch a pro.
cess list, display it in a buffer, and provide some
commands for operating on the processes. The
interactions are driven from Emacs, using RPCs
to the rex server (mentioned in Section 3.)

5.L The Erlang Side
The Erlang side is implemented by the procmâñ
module of Figure 4, which exports the function
processJist/O. This function returns the PID
and a one-line summaxy of each process in the
node, plus an extra line containing column head-
ings to match the summary lines. Note that all
the text is returned as binaries, to avoid the prob-
lem with strings discussed in Section B.

Pid
<0.0.0>
<0.2.0>
<0.4.0>
<0.5.0>
<0.7.0>

Name Reds
init 3836
er1_prin_loader 45203
error_Iogger 245
application_contr 2414
<none> 59

llsgs
0
0
0
0
0

4

Figure 3: Process Manager "screenshot"

5

-nodule (procnan) .

-export ([process-list/O]) .

%% Returns: {ok, Header, lProcessf¡fo]]
%% Processlnfo = {Pid, Sr¡¡¡nary}
%% Header = Suromary = bi.naryo
,H,

%% Returns a one-line su¡lmary of each
%7. rua.ning process along with its pid,
%% plus a heading that natches the
%% sunnary for¡aat.
process-listO ->

{ok,
fmt-row(t'Pidttr ttN:mettr ttRedst'r ttMsgstt),

[{P, j.nfo(P)} ll P (- processeso]}.

info(Pid) ->
PidNane = pid_to_list(pid),
Reg = iten(Pid, registered_aame),
Reds = iten(Pid, reductions),
Msgs = iten(Pid, nessage_queue_Iea),
fmt-ror¡(PidName, Reg, Reds, Msgs).

iten(Pid, Iten) ->
case process_info(Pid, Iten) of

{Itern, Vatue} -) to-striag(Va1ue) ;
n -) rr(none)tt

end.

fmt_ro¡¡(A,B,C,D) ->
list_to_binary (

io-Iib:fornat(tt--t" --17s --10s -s-n",
[A,B,c,D])).

to-string(X) ->
io_l-ib:fornat(tt-ntt, [X]) .

Figure 4: Erlang side of process ma¡rager

(defun pnaa (node)

"Sho¡¡ a list of all processes on N0DE."
(i¡teractive (list (er1-read-nodena.ne)))
(er1-spann

(display-buf f er (current-buf f er))
(er1-send-rpc
node ,procpan ,process_list ,O)

(erl-receive o
((['rex [,ok header plist]J

(pnan-insert header plist)
(erl-idle))

([rrex [rbadrpc reason]l
(nessage 'iRFC failed: %S"

reason))))))

(defu¡ pmaa-iasert (header plist)
trlnsert all process info:matiou.
PLIST is a list of IPID SunmaryJ . "
(insert header)
(dolist (piofo plist)

(n1et lpid text] pinfo
(insert
(propertize text

'pid pid)))))

Figure 5: Emacs pman process

5.2 The Emacs Lisp Side

The job for the Emacs program is to call
processl-ist,/0 on some Erlang node a¡rd
present the result. It must also record an as-
sociation between summary text in a buffer and
the PID of the process it represents, so that later
we can rvrite commands to operate on the pro-
cess represented by a pa^rticular line of text. The
code for the Emacs process is given in Figure 5.

The comma¡rd pnan creates an Emacs process
and uses it to display the process list. The com-
mand takes one parameter, the Erlang node to
summa¡ise. The iuteractive declaration says
that when the command is called interactively
(by a key binding or M-x), er1-read-nodena.ne
is called to choose the node. This function is
predefined, and will either prompt the user for a
node or reuse the most recently chosen one from
a cache.

b

i
i

6

The body of the function is wrapped in an
erl-spawn, so it runs in a new process. Be.
cause an Emacs process has its own bufer, we
use display-buffer to sho¡r it on the screen di-
rectly.

Next, the process sends an RPC to the Er-
lang node to call procuarl': processl-ist O . The
predefined erl-send-rpc function is similar to
rpc:ca11,/4 in Erlang, its parameters are node,
mod,ule, function, and argurnents. The RPC
server sends back the result in a {rex, Result}
message, so we have an erl-receive with two
patterns: one to receive the summary informa-
tion on success, and one to handle any error on
the Erlang side (for exa,rrple, the procnaa mod-
ule not being available.) If the summary arrives
successfully, it is inserted into the buffer, and
then the p¡ocess calls erl-idle to enter an idle
loop. The idle loop is like a receive with no pat-
terns, meaning "schedule out indefinitely." If we
had just returned without entering a receive, the
process would terminate with reason nornal and
the user-interface buffer would be killed.

The pnan-insert function takes the data we
got from Erlang and puts it into the buffer for dis-
play. The header line is inserted at the top, then
each summary is destructured with the nlet pat-
tern matching macro and inserted. To preserve
the association between the summary text and
the process it represents, we use an Emacs fea-
ture called "text properties," which allows text in
strings and buffers to be tagged with arbitrary
key/value properties. The call to propertize
tags the summary line with a pid property, so
that later $/e can use get-text-propertyto look
up the PID belonging to a piece of text in the
bufier.

The process summary part is now complete,
and running "M-x pm"'" will display a summary
bufer as we showed in Figure 3.

What remains is to define a way to do things
with the processes. Figure 6 shows a com-
mand to kill the process on the current line. It
finds out which process we want to kill by call-
ing get-pid-at-point, which looks up our pid
property at the current location in the buffe¡
(i.e. where the cursor is). Then it sends the
process an exit signal with reason kill via the
built-in erl-exit function, which is equivalent
to erlang:exít/2.

(defun pnaa-kiI1 o
"Kill the process u¡der the cu¡sor.t'
(interactive)
;; send a¡ EXIT signal to tbe process
(erl-exit'kil1 (get-pid-at-poiut)))

(defun get-pid-at-point o
"PfD of the process at the point."
(or (get-text-property (point),pid)

(error [No process at point,t)))

Figure 6: Emacs kill process command

A command for displaying a process backtrace
is shown in Figure 7. This is more involved than
killing a process, because we must send a request
for the backtrace and then receive and display the
reply asynchronously. We achieve this by spawn-
ing a new process to request the backtrace, and
then display the result in its own buffer when the
reply arrives.

Before spawning the new process, we look up
the PID that we want a backtrace for. We do this
first because the code inside the erl-spawn will
run in the new process' buffer, and the lookup
has to be done in the buffer that has the pro-
cess list. Next the new process is spawned, and
uses pop-to-buff er to make its own buffer visi-
ble somewhere on the screen.

The process then makes an RPC to
erla¡.g:processjnfo(Pid, backtrace). The
return type is {backtrace, BacktraceBinary},
which is very convenient for our purposes, since
the binary will be received as a string. When
the result arrives, we simply insert the backtrace
text into the buffer, and enter an idle loop.

5.3 Summary

This procnaa application, though simple, is com-
plete and usefirl. The approach to design used
here is a good one: minimise the interactions,
and do things where they are easiest. It is of-
ten best for Erlang to spoon feed Emacs, just as
the procnan:processJist/0 function returns a
structure that is trivial for Emacs to display.

6

7

(defun pnan-backtrace o
"Sho¡¡ backtrace of process at cutsor.
The backtrace pops up in a buffer. "
(interact j.ve)
(let ((pid (get-pia-at-point)))

(erl-spawn
(pop-to-buf f er (current-buf f er))
(send-backtrace-rpc pid)
(erl-receive o

((['rex ['backtrace text]l
(insert text)
(er1-idle))

(['rex ['badrpc reason]l
(nessage "RPC failed: %S"

reason)))))))

(defun send-backtrace-rpc (pid)
"Send a¡ RPC for tbe backtrace of PID."
(erl-send-rpc (erl-pid-node pid)

t erlang
,process_info
(list pid,backtrace)))

Figure 7: Emacs "backtrace" command

6 Runtime System

The Distel runtime system creates and schedules
processes, delivers their messages, cleans up after
their errors, and communicates with other nodes
on the network. This section sketches the gory
details of the implementation, and is not required
reading for the rest of the paper.

6.1 Processes and Scheduling

An Emacs Lisp process is represented as an
Emacs bufier, with all of its identity and
state stored in buferlocal variables. The ac-
tual variables we use are erl-self (the PID),
erl-nailbox, erl-liaks, and so on. There
are also some cute mappings of process me-
chanics onto Emacs buffers, for example the
kill-buffer-hook is used to propagate eút sig-
nals, and registered narnes are implemented with
bufier names of "*reg nz,rne*'). Note that be-
cause all process state is stored in bufferlocal

variables, context-switching just means changing
bufers.

While a process is scheduled out, its state
also includes a continuation functior¿ that can
be called to resume execution from where it left
off. We only ever schedule a process out when
it blocks to wait for a message, so the continu-
ations are created by erl-receive. The extra
arguments that erl-receive requires reflect the
difficulty of capturing the control state in Emacs
Lisp, which lacks lexical closures and first-class
continuations.

Each time a new process is spawned, or a
message a¡rives from the network, the sched-
uler loops by invoking processes one at a time
until they have all terminated or blocked in a
receive. The scheduler invokes a process by
switching to its bufer and then calling the con-
tinuation function, which does what it does
and then either throws back a new continua-
tion via erl-receive, raises an error, or sim-
ply returns. If it returns a nev¡ continuation
then the process is scheduled out until a new
message arrives, otherwise it is terminated by
setting an erl-exit-reason va¡iable a¡¡d then
killing its buffer (which propagates an exit signal
via ki11-buffer-hook.) This simple scheduler
is based on a technique called Ttampolined Style
l8l.

While a process is scheduled in and running,
it can call BIFs to send messages and to do
other process-related things. The semantics of
BIFs are based on the Erlang 4.7 specification

[9], and their implementation is very simple, av-
eraging about 5 lines of code each. For exa,m-
ple, when (erI-send P M> is called, it either
passes the request to the distribution module (if
P is remote), or just switches into P's buffer,
adds M to the end of erl-naiLbox, and marks
the process as schedulable. Similarly, if process
P calls (erl-Iiuk 8), then Q is added to the
erl-links list of P, and either the same is done
with Q or the request is handed off to distribu-
tion, depending on $'hether Q is local.

6.2 Network Distribution
Distribution over the network is built from three
modules: a library for binary encoding, a frame-
work for writing network-attached state ma-

I

7

chines, and the state machine for the Erlang dis-
tribution protocol [7]. The binary coding library
is a straightfo¡ward implementation of the Er-
lang external term format [10] using the map
ping from Section 3. The networking framework
supports writing simple state machines and at-
taching them to TCP sockets, with the crucial
property of being purely event-driven and using
non-blocking I/O. It is necessary that all I/O
be done asynchronously, to avoid freezing Emacs
while a background task waits on I/O - an of-
ten lamented property of many other Emacs net-
working progra¡ns.

The Distributed Erlang state machine first au-
thenticates itself and negotiates features, and
then serves requests bidirectionally. The impl+
mentation is straightforwa¡d because the distri-
bution protocol is very high level - each message
maps neatly onto a BIF. The messages imple..
mented in Distel are:

¡ SEND(P/D, MSG)

o LINK(FfiOM, TO)

¡ UNLINK(FROM, TO)

r EXIT(FftOM, TO, nEASOlg

o REG-SEND(FfuOM, NAME, MSq
Send a message addressed by registered
narne. The PID of the sender is included
so that an EXIT signal can be sent back if
no such name is registered.

When a request arrives from another node, the
arguments are decoded and the corresponding
BIF is called. Similarly, when an Emacs BIF
is called with a remote process, the request is
encoded a¡rd forwarded to the node where the
process is running - perhaps first being queued
while a TCP connection is established.

Optional extensions, such as process monitor-
ing, have not yet been implemented.

7 Applications
The Distel software distribution includes a va¡i-
ety of applications a¡¡d tools for Erlang develop-
ment. These tools are unified with a minor mode

called the s¡fang-exteuded-mode, which com-
plements the standard erlâng-Bode. The ma-
jor features a¡e described below, along with their
comma¡rds and key bindings.

7.L Dynamic 36TAGS,,

Distel includes a small source code cross-
referencer for Erlang. The basic feature is to
jump from a function call in a progra^rn to the
deûnition of that function - for instance from the
text lists:sort(L) to the definition of sort/1
in lists.erl. The feature is similar to etags
[3], but uses ¿ur Erlang node to dynamically find
the right source files, instead of a statically gen-
erated database. The advantage is that running
an Erlang node is a lot easier than maintaining
a TAGS file, so the feature ca¡r be used all the
time.

erl-find-source-under-point (U- .)

Jump to a function definition. The defini-
tion will be chosen from the text at the point
- either a function call, or declaration in an
export list.

erl-find-sor¡rce-unwind (M-*)

Jump back from a function definition. This
is a multi-level way to backtrack after fol-
lowing a chain of function definitions.

7.2 Debugger

An Erlang debugger interface, called edb, is
a,lso included with Distel. This uses the same
interpreter-based back-end as the OTP debugger
application, but replaces the Tk-based front-
end with an Emacs interface. Erlang mode
buffers can use edb commands to toggle debug-
interpretation of a file, toggle a breakpoint on a
Iine, and to pop up a "monitor buffer" to view
and control debugged processes.

The monitor bufer shows all processes running
debugged code, and lets you "attach' to any pro-
cess that is stopped in a breakpoint. Attaching to
a process pops up a buffer containing the source
code of the process's current module, with a vi-
sual ma¡ker pointing to the current line. Flom
this buffer the process can be single.stepped, its
local variables ca¡r be inspected, and so on.

8

9

edb-toggle-interpret (C-c C-a i)
Toggle debug-interpretation of the current
file.

edb-toggle-breakpoint (C-c C-a U)

Toggle a breakpoint on the current line.

edb-rnonitor (C-c C-d ro)

Popup the debugger monitor buffer.

7.3 Process Manager

Distel includes a process manager based on the
OTP pnan application. This program is like the
procmãn exa¡nple of Section 5, but more polished:
it uses a major mode for key bindings, and sup-
ports tracing process events via the trace BIF.

erl-process-list (C-c C-d 1)

Pop up a process m¿mager buffer

7.4 Profiler

A front-end to the OTP fprof profiler is in-
cluded. The fprof command prompts for an Er-
lang expression to profile, executes it with profil-
ing on an Erlang node, and presents the results
in an Emacs buffer. The result summary shows
the time spent in each Erlang function, and can
"zoom in" on each function to show its callers
and callees.

fprof (C-c c-d p)

Profile an Erlang expression from the
minibuffer.

7.5 Dilber: The diskJog Viewer

Dilber is a viewer for Erlang diskJ.og files, in
the spirit of Unix rail. It is also the first ,,third
party" Distel application - written by Vladimir
Sekissov, and in on-going use as a system admin-
istration tool.

Dilber will be included in a future release of
Distel.

7.6 fnteractive Sessions

An Interactive Session buffer is to Erlang as the
scratch buffer is to Emacs Lisp - a scratchpad
where code snippets can be hacked and executed.
The advantages over the Erlang shell a¡e that ses-
sion buffers are random-access, a¡rd that local Er-
Iang functions câ¡r be defined individually in the
buffer. This is especially useful for playing with
code snippets for the erlâng-questions mailing
list - you can try Erlang functions without cre-
ating and compiling a real source file.

Interactive session buffers were conceived and
implemented by David Wallin, a¡rd a¡e included
in the Distel distribution.

erl-ie-show-session (C-c C-a s)

Pop up a session buffer, creating it if neces-
sary.

erl-ie-copy-buffer-to-session (c-c C-a c)

Create a session buffer, and copy the con-
tents of the cu¡rent buffer into it.

erl-ie-copy-region-to-session (C-c C-d r)
Create a session buffer, and copy the con-
tents of the region into it.

7.7 Miscellany
erl-er¡al-expression (C-c C-a :)

Evaluate an Erlang expression from the
minibuffer.

erl-reload-rnodule (C-d C-d L)

Reload an Erlang module, given by name in
the minibuffer.

I History
Distel represents the evolution of several at-
tempts at using Emacs as a user interface for
Erlang. The first was "erl-ext. e1", which be.
gan as an implementation of the Erlang external
term format and was later extended with TCP
socket communication. The drawback of this ap-
proach is that it needs a special TCP server to
run in the Erlang node, which turned out to be
too much of an obstacle for spontaneous use.

I

if

L. :.11 -r ,

|'.'.
Ìii

10

This was followed by Ermacs,2 a concurrent
Emacs clone written completely in Erlang. Er-
macs is fairly complete - it has major modes for
Erlang and Scheme progra^mming, a built-in Er-
lang shell, and support for efficiently editing large
files. However, once the core editor was complete,
it was obvious that GNU Emacs has an incredi,-
bly large set of wonderful features, and that ex-
tending Ermacs to include ,,enough,, of them was
completely out of the question.

The lessons learned from Ermacs lead to Dis-
tel, which continues where erlext left off. Ver-
sion 1.0 replaced erlext's custom socket proto-
col with the Erlang distribution protocol, added
very basic Emacs Lisp processes, and included
a small process manager application. Version 2.0
greatly improved the programming interface with
erl-receive and pattern matching, which made
it possible for later versions to include the sub-
stantial collection of Erlang development tools
available today.

I Implementation Status
Distel is a stable piece of software, compati-
ble with all recent versions of GNU Emacs and
XEmacs, and suitable as an Erla^ng development
tool without additional programming. The im-
plementation is free software, with development
hosted on SourceForges, and source code and
documentation available on the Distel homepage:

http: //distel . sourceforge. net/

At the time of writing, the implementation is
3,71"4 lines of Emacs Lisp and gg4 lines of Erlang.
It breaks down as follows:

¡ 608 lines of Emacs Lisp for the scheduler,
BIFs, and process representation.

. 1,231lines of Emacs Lisp for the distribution
protocol (264 for networking, BgS for encod-
ing and decoding, 99 for the port mapper
(epnd) client, a¡rd 473 for the distribution
protocol.)

. 1,489 lines of Emacs Lisp for the
s¡f¡ng-extended-mode (544 for the
debugger, 200 for interactive sessions, and
no clea¡ division for the remainder.) All
of the Erlang code is used for supporting
the erle'g-extended-node, Distel's core
doesn't require any.

The rest is made up of random examples a.nd
test suites.

1-0 Future Directions
Distel development is focused on the
erlaag-exteaded-node and related tools,
with language a¡d runtime system extensions
being made as they are needed. The plan is to
continue adding new applications and extending
Distel's capabilities as an integrated Erlang
development environment. It would also be
desirable to merge the useful features of Distel
that don't require the runtime system into the
standard (and wonderfuf) erlaag-node.

Using Distel for general Emacs-to-Emacs con-
current and distributed programming is another
exciting possibility. Today this would require
only an implementation of the port mapper
(epnd) and for Emacs to listen for incoming con-
nections,4 though it may be preferable to use a
completely different communications layer.

11- Related Work
The three main types of related work a¡e Er-
lang distribution libraries for other languages,
the Etos compiler, and other Emacs-based in-
tegrated development environments (IDEs).

Just like Distel has "Emacs nodes,', the OTp
applications erljnterf ace and Jive have C and
Java nod.es respectively. David Schere's ,,Erlang-

Python"s implements Python nodes, using a
binding to erl-interface. Others implementa-
tions may well also exist.

Etos [4] is a¡r Erlang to Scheme compiler,
which is related to Distel in that they both imple-

aAt the time of writing, this seems to only be possible
with the CVS version of GNU Emacs, or with an external
helper program to bind the listen socket.

6 http: / /starship.python.net/crew/gandalf/pyErlang/

2 http: //www. bluetail.com/ - luke/ermacs/
3http://www.sourceforge.net/

10

"t1

ment highlevel Erlang runtime systems in Lisp
dialects. Etos was a good source of inspiration,
and anyone v¡ho studies Distel owes it to them
self to see how much more neatly things can be
done with ûrst-class continuations.

Two popular and mature Emacs-based IDEs
a¡e the Java Development Environment for
Emacs (JDEE)6, and ILISP [11] for Lisp. We
hope that Distel will fill a similar niche for Er-
lang programmers.

Anders Lindgren's "Erl'em" program is said to
have been similar in scope and purpose to Distel,
but appears to have been swept away in the winds
of time.z Anders is the main author of the Emacs
erlaag-node.

LZ Conclusion
'We

have extended Emacs Lisp for concurrent and
distributed programming, a¡rd applied the ex-
tension to developing Erlang development tools.
This has been a practical endeavour, and the re-
sulting tools are immediately available to alt Er-
lang prograrnmers who use Emacs, as is a familiar
progra^rrming interface for writing more tools.

'We have also further demonstrated the power
and flexibility of Emacs. Several Distel applica-
tions are highly concurrent, particularly the edb
debugger which monitors and controls multiple
processes as they run, without interfering with
the user's editing. The ease with which these ap.
plications are written suggests that Emacs Lisp
is very easily extended into a powerful concur-
rent and distributed programming system - in
this case using Erlang's model, but it is easy to
envision others.

Is there anything Emacs ca¡r't do?

1-3 Acknowledgements

I would like to tha¡¡k Vladimir Sekissov, David
Wallin, and Mats Cronqvist for their Distel hack-
ing; Darius Bacon and Martin Björklund for their
help with Distel's design and invaluable reviews
of drafts of this paper (usual disclaimer applies);

6http://jdee.sunsite.dk
7If you have a copy of this ihat you are allowed to

distribute, please get in touch with me.

and all the colleagues and erlang-questions
readers who have installed Distel and helped to
iron out the (many) teething problems.

References

[1] Joe Armstrong, Robert Virding, Claes Wik-
ström, a¡d Mike Williams. Concurrent Pro-
gramming in Erlang. Prentice.Hall, second
edition, 1996.

[2] The open source erlang website.
bttp : / /wu. s¡fang. orgl.

[3] Bill Lewis, Da¡r Laliberte, and Richard
Stallman. The GNU Emøcs Lisp Reference
MønuøL. Free Software Foundation.

[4] Marc Feeley. Etos: an erlang to scheme com-
piler. August 1997.

[5] Daniel P. F]iedma¡r, Mitchell Wand, and
Christopher T. Haynes. Essentials of Pro-
gramming Languages. MIT Press, Cam-
bridge, MA, 1992.

[6] Gerald Jay Sussman and Guy Lewis Steele
Jr. Scheme: An interpreter for extended
lambda calculus. AI Memo 349, MIT AI
Lab, December 1975.

[7] Erlang distribution protocol. Described
in a text file included with the Er-
lang/OTP source distribution, under
lib/keruel,/ interaaÌdoc/.

[8] Steven E. Ganz, Daniel P. F]iedman, and
Mitchell Wand. Tlampolined style. In .Ín-
temational Conference on Funct'i,onal Pro-
gramming, pages 18-27, 1999.

[9] Jonas Ba¡klund and Robert Virding. Erlang
4.7.3 reference manual. Draft (0.7), Febru-
ary L999.

[10] The erlang extended term format. De.
scribed in a text file included with the
Erlang/OTP source distribution, under
ert s /enulator/ int ernal -do c / .

[11] Todd Kaufmann, Chris McConnell, Ivan
Yazquez, Ma¡co Antoniotti, Rick Campbell,
a¡¡d Pa,olo Amoroso. Ilisp user manual.

11

Static analysis of communications for Erlang

Fabien Dagnat
Laboratoire Informatique des Télécommuuicatioo

ENST de Bretagne, Technopôle Brest lroise, BP 832
29285 Brest, Flance

Fabien. Dagnat @ enst-bretagne.f r

Marc Pantel
Institut de Recherche eu Informatique de Toulouse

LIMA / ENSEEIHT, 2 rue C"-ichel
31071 Toulouse, Flance

Marc. Pantel @ enseeiht.f r

ABSTRACT
In this paper, v¡e present an insight of the two major contri-
butions of works made to build a static analyzer of ER¡,e¡,¡c
progrrms. First, we introduce a general framev¡ork based
on a process calculus (tbe configurati,ons). This formalism
describes concu¡rent aspects a¡d abstracts functional ones.
Obtaiuing the ERr,n¡.¡c semantics is then just instantiating
this framework v¡ith an adequate functional setting. The
second contribution is a sophisticated type system for ER-
LANc. This type system infers types and subtyping con-
straints for a progrr- and ensu¡es that the collected cou-
straints have at least one solution. This system detects usual
functional errors but also some of the communication errors.
More precisel¡ for each process, it cumulates all received
messages and all ha¡dled messages and ensures that the first
is included in the second. To do this, it borrows concepts to
the object (or record) usual typing in ML.

1. INTRODUCTION
The development of telecommunications industry and the
generalization of network use bring concurrent, distributed
and mobile computing into the limelight. In that context,
progrlmming is a hard task and, generall¡ the resulting
applicatious contain many more bugs tban usual sequential
centralized softwa¡e. Indeed, the indeterminism resulting
from the unreliability of networks and the size of the code
of such applications makes it difficult to validate aay dis-
tributed functionality using informal approaches. Ou¡ work
focuses on usiug static analysis, a kind of formal methods to
ea.se development.

As Erlang softwa¡e a,re mainly used in telecommunication
equipment that do not tolerate failure, their development
must be certified. More precisely every step toward the final
application must be oolidated (ideally automatically). O*
aim is to participate to this hard task, by building static
analysis of communications using type inference techuiques.

To give an abstract model to ERLANG programs, we use the
actor model developed by Agha in [1]. It is ba.sed on a net-
work of autonomous and cooperative agents (called actors
and simila¡ to ERLANc processes), wb;ich encopsuløte data
and progra-s. They communicate using an øsgnchronous
point to point protocol a¡d store each received message iu
a mailbox. Wben idle, a¡r actor handles the first message
it can in its mailbox. Besides those conventions (which are
also true for concurrent objects), a¡ actor can dynemically
(at run-time) change its interface. This property allows to

modify the set of messages âil actor can handle, yielding a
more accurate and widely usable progre-ming model. For
s¡ample, it can give a¡ abstract model to applets and dy-
na,mic code loading.

In a fi¡st approach, we defined type systems for the Cep cal-
culus described in [8], a primitive actor calculus derived from
asynchronous zr-calculus and Cardelli's Calculus of Primi
tive Objects. Two type systems were developed. The fi¡st
one [9], based on usual object type abstractions, catches all
usual functional and communicatioq errors (erroneous pa-
ra-eters) but only a subset of messages which will never
be handled. The second [7], detects all (safety) messages
not understood but requires a much more complex type ab-
straction and a new progra.mming discipline. These systems
were proved to be correct. In order to validate their practi-
cal use, the need for a progra^mming language implementa-
tion a¡ose. In a first approach, we developed a lab language
ML-Acr integrating à Iø ML progrâ.mming with actor prim-
itives a¡d including a sophisticated type system extending
the previous work on Cee (see [11]). Then, we studied En-
LANc, as it appears that, thought its functional a.spects have
a strongly different semantics (and typing) tha¡ ML-Acr
one's, their coûcurrent semantics and typing v¡ere simila¡.
Therefore, we developed a fremework abstracting the parts
of both languages having semantics (and typing) differences
(for exa-ple, functional aspects or mailbox semantics). It
beca,me possible to build systematically the semantics, the
typing and some properties about the typing, ouce provided
the functional setting. F\.rrthermore, this functional setting
cân use a well known classical one. For s¡ample, ML-Act
use the ML functional sema¡tics and typing.

This article gives an iatroduction to this abstraction and its
application to ERLANc. The fi¡st section provides a better
insight of the form of communication errors we wish to de-
tect and the ones ou¡ system captures. Then, we introduce a
simplified version of EnuNc and its formal sema^utics based
ou configurations, ¡. asynchronous r-calculus like process
algebra. Then, we def¡e our type system a¡d illustrate its
use on exâ.mples. Finall¡ we discuss scaling this system to
the full language and some possible extensions to our work.

2. COMMUNICATIONERRORS
In an usual concurrent settiag, a process P may receive a
message n (P ! n, in Enmxc). Supposing P is idle, there
a¡e t\¡vo possibilities, eithe¡ P ca¡ ha,ndle ¡n or it cannot. Our
works focus on the ea,rly detection of requests that may not

!

2

be handled (the second case). This problem is related to
the method not und,erstood errors of object oriented pro-
gra-ming. In the actor cortext, a message that may not be
understood by its receiver is called an orphan.

Typed object oriented languages determine the set of meth-
ods a¡ object P understands (typeof(p)) and ensures that
each method invocation P.m is correct by verifying that n
is pa,rt of the type of p (ro € typeof(p)). Fhrthermore, as
the type of an object does uot change, the veriûcation cân
be done when the method is invoked. Adapting this technic
to ERLanc (P becoming a process a¡d p.n becoming p!n)
raises tv¡o problems leading to a much more complex typ-
ing: a) the computation of the set of messages a process can
ha¡dle is dynamic and more complex and b) as the time
between sending a message and its reception by its ta,rget
may be important (the message may travel through la^rge
networks), the verification must be done upon reception.

-

The usual approach for actor languages is to dynamically
check for rnessa,ge not und,erstood errors. A process knows
the messages it can (immediately) handle and if a received
message does not conform to this interface, it raises a mes-
sage not understood error (see the initial actor model [1] or
the Vasconcelos and Tokoro object calculus [26]). Sut inis
approach reduces cousequently the set of progrems that one
may build. In fact, the progra,mmer must adopt a so¡t of
synchronous programming discipline to be sure that mes-
sages anive in right states. \üe think that this strategy is
too restrictive. ps¡ s¡a.mple, consider a printer device that
has trpo states: r¡orking (it accepts printing requests) and
stopped (it waits for initialization). A client must wait that
an initialization message has been sent to the printer before
printing. It would be much more flexible to enqueue all re-
quests received when the printer is stopped a¡d to process
all pending requests when it is initialized (possibly indepen-
dently by another process) which is the usual behavior of
unices print spoolers.

The second and opposite approach uever rejects a message.'When a process receives a message that it cannot handle, it
silently enqueues it. Notice that, in this context, a message
alay stay indefinitely ia a mailbox (their size is unbound).
This sema¡tics has been choseu by the btue calculus [4], ihe
join calculus [1a] and ERr,lNc.

'W'e believe that a combination of both approaches may be
much more appropriate. Such a system would reject pro-
grams that contains ,¡nessage neoer understood and would
accept all other messages warning the programmer that they
may never be handled. To achieve this goal, we use a power-
ful behaviorall type system to enforce the rejection of such
messages. Our type system detects all messages that a¡e
not in the set of messages the receiver may handle dur-
ing its execution. This means that typeof(p) cumulates
all the receive that P could execute. To do this the sys-
tem must follow the flow of functions catted by p. It is clea¡
that, in general, our analysis v¡ill answer T (top) to express
the fact that a process may assume an externally defined re-
ceive and therefore understands virtually everything. But,
we think that the results a.re generally already helpful and

we axe working on extending our techniques to those open
programs as will be discussed later.

po. syampie, a process P executing the fi¡st function of the
p"o_Sr?p below (piug) has a type containing ping, chaage
and all messages accepted by alt possible bebavio¡s f,. T[is
mea¡s that sending a message {chaage, pong} to p adds
pong to the type of P.

ping0 -) receive ping -> pingo;
{cbaage, F} -> appfy(F,[])

end.
pongO -) receive pong -> pongO end.

3. A SIMPLIFIED VERSION OF ERLANG
Following a common use in the definition of static and dy-
namic sema¡tics, we simplify the ERl,nNc language by sup-
pressing syntactic sugar and ignoring constructions that a¡e
typed orthogonally to our work (for ex¡.mple, exceptions,
lists or records). F\rrthermore, we do not address the seman-
tics of the real time part of the language which is complex
but do not add any specific problem to the type system. An
effort has been made to define precisely a small (but still too
big) language named ConB Enl¡,Nc ([5] or [6]). Therefore,
v¡e use a smaller versiou of the language named pErlang:

prg i:: ci..,ic. I c;...;c. prg
c
p
e

:- s(p,...,p) -> e
,:- I V I s | à I fp,...,p}::V I s I i | {e,...,e} | (e)
I e(e,...,e) | case e of / end

I::p-)e I p->eil
| "," I ele

receive f end
f

A pErlang progrâm is a set of function definitions includ-
ing a function n¡med nain. This main function is launched
to sta¡t the execution of the progtam. The rest of the lan-
guage is very close to ERr,eNc. Each function is composed
of clauses separated by semi-colons and terminated by a
dot. All clauses (s(p,...,p) -> e) must refer to the same
function uarne s a¡d have the same a.rity. Notice that this
language does include gua¡ds to simplify the semantics and
the type system for this paper. A pattern may be a joker
(always succeeding), a va¡iable V (atways succeeding and
binding the va¡iable2), an atom s, an integer i or a iuple.
An expression may be any of those values and add pareû-
theses, sequencing (,), message sending (!), function call,
choice (case) and message haudling operation (receive).
The choice (resp. the receive operation) matches an ex-
pression (resp. the mailbox of the current process) usiûg a
set of filters composed of a pattern a¡d an expression (/ is
named interface). Finall¡ some atoms represents built-in
functions, as for exa-ple, spara and self .

Notice that as CoRn ERr,eNG, we adopt lexical scopiug of
va¡iables to ease the presentation. Ou¡ prototype uses ER-
LANG strates' mixing dyn¡.mic and lexical scoping. There-
fore, the real system uses systematically an iuput and an
output environment for each expression. Again for sake of
simplicit¡ ¡rErlang does not include lists that are replaced
in application and spawning by tuples.

1By opposition r¡¡ith a more usual class nâme type system
as in C+* or Java.

L

2This is not true for ERlatc, but our system can easity
adopt Enlnxc policy.

3

4. FORMAL SEMANTICS OF ERLANG
Our rvork focuses on static aoalysis and more precisely on
typing. In order to prove the correctness ofour type system,
we need a formal semantics of ERL,c,l.¡c. To our knowiedge,
few works have addressed such a ha¡d task. Indeed, as ER-
LANc is a full fledge functional, concurrent, distributed a¡d
mobile language, its sema¡tics is complex. Some efforts have
been made to give an informal, but clea¡ and systematic de-
scription of its semantics ([3] and [6]). But, this is not sufr-
cient to build and prove some static verification system. It
seems that only two papers ([t2] and [i5]) try to build such
a formal semantics. These two papers define two Labeled
Tløns'i.tion Sgstem that does not suit ou¡ need (proving the
correctness of a type system). Inspired by those approaches
and our previous works on semantics for actors, we built our
own formal semantics by instanciating a general fra-ework
cùled confi,gurations previously build on a lab language ex-
tending ML to actors (ML-Act). This framework defines
a general syntax for concurrent actions and abstracts (in
the sense of taking as pa¡ameter) the fuactional pa^rt of the
studied language. With this approach, we cân reuse exist-
ing semantics and typing from the functional world. The
pErlang semantics is obtained by instantiating this fra-e-
work s¡ith an adequate functional sema¡tics.

'We a¡e not going to give all the formal definitions and jus-
tifications of this model that may be found in [10]. We are
only going to give insights on configurations to deduce the
pErlang semantics. Most rules are given in appendix for the
interested reader.

Configuration
A configuration is a term that represents a concurrent sys-
tem at a given time. Its definition is parameterized by three
sets : the name set o € A, the message set rr¿ e JvTess al.d.
the expression set e € árp with Ã C tcp and Mess C €rp.
The set of configurations noted W is built from the following
STamma^r:

u ::= elerrlua.wlwll .la<mla>e
d ::= *l(alñ)

A configuration looks like a r-calculus term with a send
operation, noteda<m (o is the receiver a¡d rn the message),
and a process, noted a > e (a is the identity and e is the
executed expression). Tbe identity of a process is either
unspecified * to model toplevel computations3 or, (a lfiá) a
pair composed of a name (pi,d, h ERl.l¡rc tradition) and a
mailbox (the tilde notation denotes sequence). As it is usual
in process calculi, we use a name binder y to simulate the
name creation and suppose that the corresponding notion of
free names and substitution are defined.

In the context of ¡^lErlang, trp represents the syntar< intro-
duced in the previous section, add¡esses a¡e built automat-
ically when the built-in function spavn is called and a mes-
sage can be any value (atom, integer or tuple).

A congruence is defined to state which configurations are
equivalents:

. (W,ll,e) is a commutative monoid, the order of sub-
configurations is not important and we can suppress

all occurrence of e.

. t¿ ll O"t : Err a,nd oÞErr = Err, errors are propagated
until the program evaluation stops.

. ua.u) : w if. ø is not free in w, vø.u : vb.lbla)w if b is
not free in tu and vaL.va2.'.n = va2.va,r.u ; those three
usual properties allow to forget the bindings ofunused
na^rrres, to rename a bounded na-e and to modify the
order of restrictions.

¡ the rest¡iction rule, uø.wt ll w2 : va.(u¡ ll wz) ff a
is not free in rr2, allows to enlarge the scoping of a
name. Combined v¡ith the previous rule, it enables
(up to a ren¡.-ing of ¿ in ur) to extend the scoping
a¡d to simulate nâme propagation in the medium.

. *Þu : e and va.((aløl>n) : e if rr is a value (it cannot
be reduced) ; therefore, a global computation (or a
process) which reduce to a value ca¡ be destroyed by
a garbage collector. Notice that the ptocess must have
arx empty mailbox and be inaccessible to the outside
world.

Notice that it is possible to add a rule to express the fact
that a stopped process waiting for a message, that do not
understa¡d any of its mailbox messages and is no more ac-
cessible from outside is au error. But, as our type system
ca¡not captu¡e all such messages (for exa-ple in a deadlock
case), we ca¡rnot prove its correctness with this rule.

The appendix contains all the conûguration reduction rules
Let us discuss only original rules.

As introduced in the second section of this paper, we try to
detect communication errors. To define those errors more
precisel¡ they a^re introduced in the semantics of configura-
tions. Therefore, when a process receives a message, it can
accept it (and put it in its mailbox) or reject it by raising
AI¡ ETTOT:

(almñ,)>e ifP(m,e)
Err elseþlñ)>ella<m-+

To abstract the choice of reaction, a (communication) po-
tential P(m,e) is defined. This predicate approximates e

to determine whether rn may be unde¡stood or not. This
allows the semantics of our fr¡-ework to behave differently
towa¡d such messages. It is possible, ¡o¡ s¡¡mpl€, to code
usual ER¡,lNc semantics with a predicate always true. In
the next section on typing, we will discuss more deeply this
subject.

Our general semantics includes a rule to specify the interac-
tion between functional and concu¡rent reduction:

a(fN@>e) ala, e\"st, ¿t

ll',)

{

d> e --> va Þ

'Where, we suppose that the functional reduction have the
given shape with o being a fresh na^me (a # fM(a>e))
that may be used during the expression evaluation and tt
being a configuration describing the concu¡rent effect of the
functional reduction step. In the rest of the paper, if the
Iabel of such a reduction is e, it is omitted. Notice that if
ø is unused, the third congruence rule enable to forget its
binding.sThose expressions cannot access receive or self

3

4

Functional reduction
A ¡lErlang progrâ.m is a set of function deûnitions a¡d its
execution corresponds to the reduction of the body of the
nain function in a context where all the other functions a¡e
defined. By consequence, the first step of the functional se-
mantics builds the function environment (noted .F). This
process will not be described here, its result is a¡ environ_
ment associating a.n atom and an arity to the body (all the
pattern matching couverted to a tuple matching) of the cor_
responding function. ps¡ e)c¡.mple:

{ii:r:;,:rÌ -:::'. produces (r,2) + {i;:.;:l -:z:'}
To simplify our presentation this set is abstracted and sup-
posed to be accessible in all rules. This could be done by
tagging each expression srith this environmerrt er and by
propagating it during reduction.

F\rnctional reduction uses the classic notion of evaluation
context. A context noted C[] is a,n expression with a hole
marking the sub-expression subject ofthe current reduction
step. The reduction C["r] --+" C[e2] reduce the expression
er and replace it by the result ez. The evaluation context
grammar is also given in the appendix, it expresses the fact
that the order of evaluation is undefined when evaluating
a tuple, a message sending or an application. On the conl
trary, evaluation of a sequence (resp. a choice) starts v¡ith
the fust expression (resp. the tested value). In addition
we suppose that an error cause the end of the evaluation
process: C[nr.] å B"t.

Va¡iables once defined have their values propagated by a
substitution noted o that we will not describe here. The
matching operator / uses a function match to compa,re a
pattern and a value and build the substitution of the va¡i_
ables in the pattern by their corresponding values. This
function either returns a substitution or fails. It tries to
match the first filter p -+ e. If matchþ,o) returns o, f rc-
turns ø(e). Else, if it did not matched, the process continue
with the remaiuing filters. At the end, if none of the filter
have matched, we get au enor.

Purely fuuctional evaluation is classic. The most origiaal
rules concerns application:

øl a, Clu(a1,...,an)l ---. o. [t:: if (o,n) / d'om(î)
'" *' lc[{rt, .-.,o"}/7(a,n)]

The called function must be in the current function envi-
ronment (.F). The result corresponds to the matching of its
body with the tuple of actual axguments. This rule ,uppor"
that the expression describing the function must reduce to
a valid atom and therefore, it extends slightly ERlnNc se-
mantics.

o Spawning impose that its second a¡gument is a tuple,
returns the name (gua^ranteed to be fresh by coucur-
rent reduction) of the future process and is labeled
by the configuration describing the newly created pro-
cess.This is only rules where the fresh na-e is used.

a l- o, C[spavn(a,ur,...,a^¡1 W@"\" a, C[a]

o A call to the built-in function self must be done in.
a process and is replaced by the n¡.me of the current
process:

øts (atInô), C[seu0] ---+" (a,lñ], C[a,]

o Accessing the mailbox is simila¡ to the choice except
that the order of matching is different. The process try
fi¡st to match each message with the first pattern and
try next pattelns only if none of the mailbox ¡nessages
successfully matched the fi¡st patterû. For this -e ose
a function matchmailbox that returns the resulting
mailbox and the reaction. Notice that if the mailboi
is empty no reduction can take place and by conse-
quence the process is stopped (until a message reaches
its mailbox).

al (a'lñ), C[receive / end] èu (a'lñ,), Clel

where matchmailbox(/, ñ) : ñ,, e

5. TYPING pErlang
\ühen building a type system to statically detect errors iu
programs. The fi¡st thing to do is to define precisely what
kind of errors, we wa¡rt to avoid. In a concurreût ietting,
tv¡o fa,milies of errors a¡ise: functionai errors a¡d concurren=i
erro¡s. The former fa,mily is usual in the sequential world
and correspond to the erroneous use ofa value (for s¡4ñple,
using an undefined va¡iable or using L as a function). ihe
latter is rather unusual and has been described in details in
the section 2.

A type system can provide several level of precision. Two
ptototypes have already been built for ERI¡.Nc (see [17] aud
[16]) that concentrates ou typing purely fuuctional coäpu-
tation by simplifying the language sema¡tics. Our a¡nbition
is to build a more usefirl system for ER¡,¡,Nc progrâms that
also a,:ralyzes concurrent parts. As we use simila¡ technics
for collecting and solving constraints, ou¡ work may be con-
sidered as a¡ extension of those systems.

þpe inference and Constraints
Our system allows the synthesis of the types of every pro.
gra,m entity v¡ithout requiring any type a¡rnotation from the
programmer. To do this, a fresh type va,riable is associated
with each uode ofthe syntactic tree ofthe progrâm a¡d con-
straints between those va¡iables a¡e collected. At the end of
this collect phase, a ¡esolution tool determines whether the
constraint set has solutions. If this is the case, the progra-
is decla¡ed well-typed. The schema of figure 1 describes this
process.

To type functions and give them widely usable types, ML
uses pa¡âmetric polymorphism. For sxa.mple, nap has the
type Ya, p (a -+ þ) + a list -> B tist meaniug that it
ca¡ be used with any type a and B. 'We advocate that in

The functional actions that are connected with concurrent
behavior have an original form and must be explained:

o Sending a message impose that the first argument is
a name, returns the seut value a¡d is labeled by the
configuration sending term:

Err if or /A
Clazl

ats a, Clulla2] 2!3u a, {

Analyser

5

Program types + contralnts

types + solved contraints

Figure 1: the analyzer schema

> safety enor(s)

+ << readable >> types

the concurreut context, this form of polymorphism becomes
too restricting. Our system adopts inclusion polymorphism
that intuitively means that the system ensures the correct-
ness only for all values used in the progrem as real arguments
(that is finite intersections rather than infi¡ite ones). There-
fore, in our context, we use the subtgping relation. A type
ú1 being a subtype of a type t2 (fu E ú2) if a value of type
fu læ,a! be used (safely) where a value of type t2 is required.
For ERlnNc, the main use of subtyping is oo process type:
a process that underst¡ods more messages and sends itself
less messages tha¡r a¡other process, can replace this one.
Typing an expression e under assumptions A will produce a
type ú and a subtypiag constraint set C: Al e: t, C, this
deduction being valid only if C has at least one solution.

Notice that usual ML type system such a.s SML or Oca.ml
carx be viewed as following the same process collecting equal-
ity constraints. But, when subtyping is needed (as for En-
LANG), the constraints become complex aûd theb resolution
Eust use sophisticated and powerful graph algorithm. We
refer the interested reader to the works of Pottier [19] or
Fåinhd¡ich [13]. Indeed, a constraint set is viewed as a graph
where type va¡iables a¡e nodes (with their upper and lower
bounds) and subtyping relation defines the edges.

The type of nap becomes (a -+ P) -+ a list -+ P list and
each application with an argument of type úr and another
of type ,2 produces the constraint set {ú1 E o -+ þ, t, E
a l'i.st, B list E t,\ v¡here ú, is the resulting type. This strat-
egy collects all possible axgument types and ensu¡es that
they can all be used safely:

{Uti C a + þ, l_JrZ C a ti.st, P tist clti}
i,ii

Potential and Errors
Before going on, Iet us look at the exa.mple below to precise
some vocabulary:

statel(V) ->
receive

{add,V1} -> statel(Vl + V);
{chaage,Vl} -> state2(V,Vl)

ead.
state2(V1,V2) ->

receive
{add,V3,V4} -> state2(V1 + V3, V2 + y4¡.
{rnute,F} -> Fo

end.
state3O ->

rece]"ve
kill -> true

e¡d.

nainO ->
case (spaun(state1,1)) of

P -> P ! {add,1,3}, P ! kill,
P ! {change,11}, P ! {¡nute,state3}

end.

A function may contain two forms of interfaces (the fi.lters
/ of a receive f end). One called immeiliate that is present
in the body of the function or in the body of a¡other called
function igooring received datas (in messages). And the
second category corresponds to interfaces received via mes-
sages. This notion is extended to processes, the set of im-
mediate interfaces of a process being the set of immediate
interfaces of its initializing function. In the example, statel
calls state2 and itself and state2 only calls itself. By con-
sequences, the immediate interfaces set of P is:

{{add,V1} {cbange, V1} {add, V3, V4} {rnute, F}}

The immediate interfaces may be vie$¡ed as the static au-
tomatoû describing our process and the others as some dy-
nemic part (in the exemple, ki1L).

Our type system captures all orphans that leads to error (in
the semantics) using the potential introduced in the previ-
ous section. It is possible to give a predicate that collects
all immediate interfaces (we refer the interested reader to
[10]). Such a potential would approximates the previous set
(keeping only labels) and rvould be defined by:

P(m,e) ê lUUet(rn) € {add change nure}) (*)

F\rrthermore, as we do not wa,nt to raise an error and forbid
the sending of the message kilJ., the potential of a processe
calling a received function accepts anything. The real po.
tential of P is then a¡ open potentiøl: P(m,e) L tte. ln
fact, the potential defined in (*,) would correspond to the
sâme process if we change state2's second filter body (the
mute reaction) to any code not cailing F.

Building the rules for such a system is already complex and
does not capture all errors that our type system detects.
Indeed, if in the s¡añpl€, we send a message sub to P, it is
not rejected because the potential of P is opened. Building a
more precise predicate (with respect to the captured errors)
is hard and in fact corresponds to a slight simplification of
the type inference. By consequence, we will not give precise

5

Solver

Printer

6

definition of the potential predicate and one can view it as a
simp-lification of the type. Each atom sent in nute message
is collected and its potential is added to the poteutial of p
which becomes:

P(m,e) ê ltaUet(rn) € {add change Eute kiu})
The message ki1l is not decla¡ed orphan but the message
sub causes a type error (it ¡aises a dynamic error if not
rejected).

\ile a¡e currently devising a new definitiou of errors based on
a dedicated a¡borescent temporal logic (see [25]). However,
this approach currently only haodle immediate interfaces.

Message and Process Types
An automatic analysis of the EueNc compiler code, its
sta¡dard libra¡ies and programs freely available on interneta
revealed that sent messages and ¡eceive interfaces are mainly
tuples where one element is an atom. This atom plays the
role of a label for messages. F\¡rthermore rule 5.2 from [22]
states that all messages should be tagged. Following the
pioneer work of [17], we impose to all programs this precept.
Notice that the only (less rare) exceptions are the use of
jokers or va¡iables to delegate the treatment of the message
to a choice instruction or to another process. These two
uses do not go against our precept since they just serve as
forwa¡der. Finall¡ a program not following this principle
may easily be adapted manually.

Those labels play a role similar to those of record label in ML
or of method names in objects (for exa-ple). We borrow
the row technology, used to type records, to approximate
interfaces. Rows a¡e aow frequently used for static anal-
ysis iu ML world (see for s¡¡-ple, exception analysis [1g]
or object typing in Oc"-l [20]). In our context, a process
type is a row, which is a partiat function from labels to pair
of types describing a.rguments the message contains. The
fi¡st one describes received messages content a¡d the secoud
handled messages content. Indeed, the originality of our
types is the fact that they contain both received a¡d han-
dled messages in the type of a process. A process receiving
messages labeled rn1 containing datas of type ?r and han-
dliug it with values of type 7z v¡ill have the following type:
@{rn1 : (Tr, Tz), i}. The (row) va,riable i expresses the fact
that the type of the process is only partially known. The
conversion from a tuple type T to a message type i (if it
is sent) or 7 1if it is nandlãd) is done in, a la,zy way and is
defined in the appendix. Either the system knows the form
of the type and converts it, or its structure is unknown and
the system q'aits. A message reduced to a¡ atom s has the
type s_aad correspond to the message type {s : (uni,t,T)}
or to {s : (L, uni,t)}. Meaning respectively that it is a seft
message (the handling part is meaninglesss) or a hand.led
message (the received pa,rt is meaningless). The conversion
of tuple message is simila¡. In the paper [12], the coaver-
sion was done for all tuples but we think that this is not
really necessa,ry. Back to our example, the process p has the

aThis represent 200 000 code lines.
sThe sens of the T or I will become clear when subtyping
will be defined. The intuition is that it is nothing.

following type if o and i a¡e variables:

r" ê O{.¿¿ : (1x3, intu(intxirzú)), chaage : (l!, int),
nute : (state3, T), lxl]..J- | (unit, a), i\

Where ? is the type of the function F taken as par¡.meter.
Notice that the unknown pa^rt i is related to the type ?.

The correctuess of the system is ensu¡ed by generating for
each spawn process a fresh interface type i verifying oi. îhis
predicate is true if each received &essage is understood and
is mathematicalty defined by:

o{m¿: (T¿,T!)}¿e¡ å Vi e I T¿ trTi
Applied on previous type ?p, we get:

{1x3 tr intl (intxint), tL E inú, state3 tr T, unit tr a)
'We have not yet defined subtyping but intuitively, one can
see that the two first constraints a¡e trivial. The complete
is discussed resolution after the presentation of types and
subtypiug.

þpes an"d Subtyping
In ERlenc, one of the dificulties, is that being untyped, an
expression may evaluate to values of really different struc-
tures (for s¡emple, a boolea¡ and a function). Therefore,
the type language must include a notion of union tt L_) tz
meaning that a value of this type may be of type tt or tz.
Moreover to get suficient precision, each constant has its
ov¡n type (for exa-ple, 1 is of type 1 subtype of the integer
int).

In ERllNc, any expression can execute a ¡eceive (i.e, ac-
cess the mailbox ofthe current process). Therefore, the sys-
tem use an indirect effect calculus inspired by [2a] to collect,
in the type of self, all interfaces matched against the mail-
box. This effect is then included in the type of a function.'When a process is spawned the effect of its initial function is
added to the process type. In o*

"¡çampl€r
state3 has the

following function type where the efiect is the superscript of
the arrow:

{Lir.l : (l-, ¿¿¡¿)}
unit true

The language of types needed for pErlang is built by the
following gr4mma,r:

T ::: rlTltlTuTlTnT
I ilint integers
I slatom atoms
I unit I T x...xT I tuple ruples

I rtT tuncrions
I @.I processes

I ::: {} I Tr I ¿ I {m: (7, T), I} interfaces rype

Subtyping is defined in the formula appendix, only three
rules a¡e unusual:

o Process types axe contrava¡iant because a process may
replace another one only if its interface is larger, @f tr
@f is equivalent to .I/ tr f.

o F\rnction types axe contrar¡a¡ia¡t on arguments as usual
a¡d cova¡iant on effect a¡d on result. Indeed, if a func-
tion must replace another one, it must have a smaller

t

{m: (71,72), I} tr {m
H

ca¡cel

Tí), I,}
TiAT¿CTzAICII

7

concurrent effect: ?r L f, Efi !+ fl æ Ti Ç
TtAItr I'AT2trTl

¡ Interface subtyping is cova¡iant on received type, con-
trava¡iant on handled type and compose covariantly.

o The result of this function is the name of a process
understanding caacel messages containing an add¡ess
that receives the ala¡m message.

¡ A call to ca¡cel must includes arx a¡gument that re-
ceives a cancellation message containing the add¡ess of
the current process a¡d returns this cancellation mes-
sa8e.

Those types are complex but very informative about the
behavior of these functions. For example, the system can
ensure that the pid returned by a call to timeout does not
receive messages other than cancellation. It can also ensure
that the process calling this function is able to receive the
alarm message.

Funcrtonal Typínç
Pattern matching cannot be treated in the usual ML way:
(ot -+ þt) u (az + þz) cannot be equal to (o1 tl o,r) +
(h U B2¡. In fact, the type system must include pattern
matching, to do this [2] introduced the notion of conditional
type tt?tz. This type means ú1 (if ú2 is diferent from I) or
I. For s¡e.mple, if e : t., case e of true -> 1; f alse -) f oo
is of type (int?(t" n true)) U (foo?(ú" F farse)). Our sys-
tem does not use this conditional type which enjoys good
algebraic properties but is not really readable a¡d leads to
the loss of the pattern matching structure. Instead, we use
a conditional constraint ct * êz meaning that if c1 is ver!
fied then the system must also ensure cz. This coastraint,
generated to approximate pattern matching, allows to keep
a high level of precision on the link between matched values
and results. Typing previous choice lead to the following set
of constraints: C: {ú" f true +,i,nttr tr, teC. false:}
foo E úr, f" E true LJ false) where t, is the result type.
Either the system knows the structure of f" and C ca¡ be
simplified, or it is decomposed in two sub-systems (because
the matching is composed of two branches):

o One, in which, l" is subtype of true and therefore C :
{úu E true, int Et,)

o Otherwise (due to thi¡d constraint), ¿e is a subtype of
false and C : {t" E false, foo Ç ú.}

As, in general, we do not know precisely the matched value,
all those decomposed sub-systems must have a solution.
This means that a n branch patterû matching fi¡es the res-
olution of rz sub-systems. However, the practice have shown
that this is not a real problem. Indeed, when applying a
patterû matching to a lalue, we often know more or less its
structure and many of the sub-systems âxe trivial.

The typing judgments have the following shape:

Environment l- Expression : Type, ConstraintSet

As, many typing rules a¡e classic, we limit our explainations
to sends, choices, receives and calls:

. Typing erlez retu¡ns the second sub-expression type
and the constraint set conta.ining all constraints pro.
duced by the typing of er and e2, plus a constraint
specifying that er must evaluate to a process that re-
ceives the value of e2:

tlet:tt,Ct tlez:tz,Cz

gi
Ttt

The intuition behind this rule is that the system must
keep the largest type T, of received messages and the
Iowest type ?1, of handled messages. The correctness
predicate o leads to T, Í ?" and any received con-
tent of type ? is gua.ranteed to be understood by any
receiver state ?/ because T tr T, tr Tu C Tt .

Attentive readers may have rema¡ked that the subtyping
on interfaces is defined only for rows beginning by the seme
message label. A complete algebraic theory edsts and proves
that it is the only needed rule. If one label of the left side
row is absent from right side row, the subtyping is clearly
false and once all left side labels a¡e treated, the system
reduces to {} f f which is an axiom.

Another acample
Before going into further discussion on this type system,
consider a function that realizes a timer waiting for a mes-
sage calcel or the end of a time specified at its creation to
throw an ala¡m:

tiner({Pid, Tine, AIa¡n}) ->
receive {ca¡cel,Pid} -) true
after Ti¡oe -> Pid ! Alarn
end.

A timeout fuoction spawns such a timer process using the
pid, of the cutrent process and returns the pid of the timer.
The sa-e process may cancel this timer using the returued
p'i,d,:

tineout({Tine, Alarn}) ->
spavn(timer, {se1f O,Time,Âlam}) .

cancel(Ti¡¡er) ->
Timer ! {cancel,se1f O}.

Supposing a,rguments of after (firoe) a^re integers, our sys-
tem infers:

timer: ãx,i,ntxa cuccl: (I,
true Ll a

¡Ö

¡

ti.meout intxa I @{cancet : (I, @â)}

@{cancel : (@/, T)} 4 caacel x @/

meaning that:

¡ The timer function takes tbree axguments: an address
(receiving the thi¡d argument), an integer a¡d a value
(a message). The result is either true or this value aad
the current process receives a c"'cel message contain-
ing (an address of) a process that receives the thi¡d
argument.

o Ala:n (of type a) must be a legal message (tuple be-
ginning by an atom).

o The process calling tineout receives the alarm (it ap-
peaxs in timeout effect). Ì

7

t I etlez : tz, Ct U Czu {tr tr

. Typing a choice consists in typing the tested value and
all patterns and associated expressions of the filter. A
reaction expression must be typed a,fter adding to the
current environment the envi¡onment resulting from
typing of the corresponding pattern:

tl e:t.,C" tlp¿:tf,, t¿ tUt¿l e¿:t¿,C¿

t F case e ot p1 1 Ø; ... : t, C" ul)Cru C

where the resulting constraints
"o-uUå

all already
calculated constraints a¡d those due to the choice (d).
C specifies that the tested value must be ta.ken into
account by one ofthe patterns and add all already ex-
plained conditional constraints (one for each branch):

c : {t. E lJríl u U({r" tr tî + t¿ :-t})
íi

This means that the result type ú will be the union of.
the type of each pattern that may match the tested
value.

. Typing the message handling may result in any possi-
ble branch type (hence the union) and adds all pattern
types to the current self type:

may produce a¡e added to the global constraint set before
resolution.

t I p¿:t¿, t¿ €Ut¿l e¿:t'¿, C;

tlø-+eti l-f{t, - t),l)c;

Going back to our example, the application of F leads to:

{
stateS ÇT, unit E a, T tr {state1, state2, state3},

)

á t- receive p\ + eL; ... r | .ltn, l){Cou C¡
17

. Typing an application is much more complex. First,
one must type the function expression and each argu-
ment expression.

ttse;t.,C" t.Fet:t¿rC¿
€ | e(e1,..., e,) : t, C" Ul)Cn U C

where C is composed of.t, tr ao*gr), (self) tr @/,
F\¡n(&-, tu,n) E (ú, *... xt,) 4 ú meaniag that:

- The function must be deûned.

- Its effect f is added to the current process efiect.

- All possible functions are subtype of a function
type accepting the n. actual arguments ú¿, having
an effect .I and resulting in ú (it is the result of the
application). To get the set of possible functions,
we use a function Fun which applied to (Tr,t.,n)
returns the union of all function types associated
to an atom (and the arity ø) of t" in ?r. Like the
transformation from tuple type to message type,
this function is lazy and waits to know the value
of ú" to perform its action.

For each possible functions of type o !+ p, the last con-
straint ensures that aII applications a.re legals because by
srrbstyping it leads to {ú1 x...xú, E a, I' E I, p tr t}.
Furthermore, all effects (resp. results) are cumulated in the
global effect .I (resp. result ú).

The function typing environment ?r results from the typ-
ing of all functions in f. A mapping (s, n) '+ / in .F adds
a mapping (s, z) '+ t¡ if the typing of / by the rule be-
low results in ú¡. And, We suppose that all constraints it

The first constraint combined with the fifth lea.ds to:
- {htu : (l-. u¿i¿ l} ÍUnøt:___:_:- .'+ true E Unitit

This imply that ?p tr @.f r @{kiu : (L, uni,t)} aÐd
true f ú. The fi¡st coustraint simulates (in the type sys-
tem) the reception of. uni,t message: (L, unit) tr (unit, a)
equivalent to {J- C unit, a C unit}. Adding this to the ini-
tial constraint set leads to a solvable constraint set (where
a: unit). This allows the system to guara,nùee the correct-
ness.

6. SCALING TO ERLANG TYPING
The simplified system presented here does not correspond to
the real prototype implementation. To scale to this system,
r¡e have to:

o extend the types by lists, characters, floating point
numbers and all other basic types (corresponding to
ER¡.lNc basic values). This extension a¡d the defini-
tiou of built-in function is straightforv¡a¡d but need to
add a lot of rules.

¡ change scoping rule policy. Our system needs to have
ao input a,nd an output envi¡onment for each expres-
sion. This is also boring routine.

o add gua¡ds to the pattern matching (again routine ex-
tension). Notice that in the prototype, it is one ofthe
constructions that contaias a lot of type informations.

¡ take ca¡e of dynamic patterns. Indeed, in ERl.lNc, a
va¡iable in a pattern is a definition only if the va¡i
able is not already defined. This small modification of
the semantics and more precisely of the sema¡tics of
patterns needs important changes in the type system
summa¡ized just below.

One of the biggest problem that we faced s¡hen typing En-
LANc is dyu¡.mic pattern matching. Indeed, in the patterns,
a va¡iable is not always a binding occturence, that is, if the
va¡iable is already bound, its value replaces the va¡iable be.
fore pattern matching is realized. ps¡ s¡ampl€, consider:

g(X) -> case 1 of L -> ok; - -) no end.

The term {g(1),g(2)} reduces to:

{case 1 of 1 -> ... , case L of 2 -> ...}
and then to {ok,no}. Usual typing of this function gives
o -+ t u¡ith the const¡aints:

{1 tra :+ ok Çú; 1 r (T\o) =+uo trú}

€lp6:t!
tUt¿le¿:t¿,C¿ Ci

c.
t9?

= {á(seLf) E @4}

B

9

Therefore, the application has type (ok U no) x (ok U no) be-
cause the two applications gives LlU2 tr a mearxing that both
branches may be used. The problem comes fiom the fact,
that the usual function typing impose to all possible real
axgument types to be simultaneously compatibles with atl
their potential use in the body of the fuûction. For this,
when typing the body of the function, the system collects
constraints of the form o E ú where o is the type of an axgu-
ment. And each call to the function produces coustraints of
the form f/ tr a u¡hich enable by transitivity to ensure that
¿' tr ú. But, in the body of a function, if a pattern includes
an axgument, the system generates a constraint ú f o incom-
parable r¡ith ú/ tr o. This means that we ca¡rnot gua.râ¡rtee
that the a.rgument respect one of the constraints required
by the function.

The type obtained for {g(1) ,g(2) } is not very precise (using
usual strategy) but above aJl, if the joker branch is not in the
choice, the program cause a.n error that ca¡rnot be detected
by the type system. To solve this problem, the system is
going to type each application of a function using a fresh
instance of its type. \Mith this strategy no ha¡mful flow (of
information) may happen between two application sites as
before. Indeed, the intuition behind this problem is tbat
when a function use one of its a^rguments in a pattern, each
application produces a new (and different) version of the
body (of the function). Therefore, the constraints it imposes
a¡e not the seme and the return type a¡e different too.

The typing of a function leads to a type a -+ P a¡d a con-
straint set C. Its calling ou a¡ argument of type ú will use
type ú -+ B' (where p' is fresh) and add lt/a, P' /P)C to the
global constraint set. Therefore, typing:

g(X) -> case 1 of X -> ok end.

gives o + ú with {1 tr a, ok tr ú}

{g(1),g(2)} is Ír xúz with {1 tr 1

t2) where the boxed constraint is
detected!

the type of

, okÇú1,

The drav¡back of this strategy is that the number of type
va¡iables and constraints grow more rapidly. To solve this
problem, in practice, the system apply this strategy only to
a subset of functions. More precisel¡ this strategy is applied
to the a^rguments of functions using one of their a¡guments
in a pattern. As this situation is not the most usual, the cost
to pay (for this strategy) is not too expensive (in general).

7. DISCUSSION
In this paper, we have proposed a formalization of the En-
LANc semantics using a two level reduction system. A first
level concentrates on concu-rrent aspects of the language us-
ing a formalism inspired by the zr-calculus, the configura-
tions. And a second expressing the functional semantics
(and its potential corcurrent effects) using a more classic
setting. FinaIIy we have introduced a type system for En-
LANc insistiûg in the original parts of our works: message
typing and the fact that the system try to stay close to the
language. The versions presented in this a.rticle represent
only insight of the complex system developed and the pro-
totype of static analyzer realized.

This work though not complete can be a good beginning to
reach a good formalization of the semantics of Enle¡.¡c. A
complete formalization of the whole language would require
a lot of work because one would have to:

e add the node (site) notion. For this, configurations
must be extended by a set of node ua-es and by a
construction (n I w). meaning that to is executed on
node r¿. A configuration describing a two nodes could
then be vnt,nz.((nr ¡ trr) ll (nz I uz)).

r implement dynamic code replacement. Each site
must include the envi¡onment of defined functions aud
the values of those functions could change: (n | € | w) .

¡ allow sending messâgle between sites. The target
of the message may be local keeping the same syntax
or remote on node n and the transit message could be
a@n<m.

r integrate the time notion. In ERleuc, the message
handling operation has a clause after that allows to
stop the execution of this instruction a.fter a specified
delay. One solution could be to add a notion of counter
to each node.

o add a notion of symbolic names and a dictio-
nary. A service can be abstracted by associating it
with a name. This decÌa¡ed name tepresent a process
(that caa change). Each node needs to maintain dic-
tionary: (n I t¡ I €. I w).

o add signals. ERlaNc use signals to propagate excep-
tions ¡mong processes. p6¡ s¡ample, we could add a
flag to the message making it possible for the receiver
to distinguish a signal from a message.

Some recent work on distributed process calculi like Dn (see

[21]) or the join calculus (see [1a]) can also help in such a
project of formalization of the semantics of ERr,¡,¡.rc. Notice
that those points are not all the problems that needed to
be solved, we refer the interested reader to the cbapter L0,
11 and 12 of [3]. Those three chapters does not include a
formal semantics but thei¡ informal systematic description
of Enl¿,Nc semantics enable to view alt possibilities.

Complete Erlang Typin7
To become a complete and widely usable tool our system
needs some extensions.

First, the ERllNc messages does not contain label so the
type of process must be retailored. The works on XMÀ (a
typed functional language used to manipulate XML docu-
ments) of [23] can be a good basis. Indeed, to type cor-
rectly the choices of XML, they buitd a typed À-calculus
including a notion of record without label. pe¡ s¡:ñple,
(1) * ('test") + (Ào.it ø then 1 else 0) is typed by
{i.nt; string; bool -> zrzf}. This adaptation does not seem
to be straightforwa¡d because the type system of XMÀ use
equality constraints and is based upon a notion of con-
straint implication. Therefore, its integÌation with the sub-
typing needed for ERr,a¡¡c ueeds studies about subtyping
constraint implication and to our knowledge, none of the
work made in this a¡ea have really achieved that goal yet.

okf
false. The error is now

I

l

¡
ì

)

I C.2

Formnl semantics of Erlang

Ia the context of telecommunication systems, exceptions are
very important to reach a certain level of quality for pro-
grams. Indeed, the reliability of such applications needs a
precise treatment of every possible exceptions. A type sys-
tem helping the programmer in this task would be a real
aid. It could estimate the set of potential exception caused
by every expressions of the progra- and ensure that they
a¡e treated. An extension of [18] may be a good start point
toward such a static analyzer.

Finally, the most difrcult point with ERr,nxc is that the
approximation made by this ideal type system should have
to be compatible with hot code swapping Indeed, in En-
LANG, a module is used by hundreds or thousands of nodes
that cannot be stopped or resta¡ted. An evolution of such
a module use dynamic code replacement and therefore, the
old version and the new one have to be executed simulta-
neously and must cooperate safely (at least for a temporary
period). Such a task is totally out of reach at the moment,
but a first step to its resolution could start from [22].

8. REFERENCES
[1] G. Agha. Actors: A Model of Concurrent Computation

in Distri.buted, Sgstems. Series in Artificial Intelligence.
The MIT Press, Ca^mbridge, MA, USA, 1986.

[2] A. Aiken, E. Wimmers, arxd T. Lakshma¡. Soft typing
with conditional types. In Proc- of POpL, pages
163-173, Portland, USA, Jan. 1994. ACM press.

[3] J. Ba,rklund a¡d R. Virding. ERlnnc l-7.5 Reference
Manual, February 1999. downloadable from
vru. erlang. org.

[4] G. Boudol. The zr-calculus in direct style. In proc. of
POPL, pages 228-241. ACM, Jan. 1992.

[5] R. Ca,rlsson. An introduction to core erlang. Erlang
Workshop. Principles, Logics, and Implemeutations of
HighJevel Progr¡.- a¡ag Languages. Florence, 2001.

[6] R. Carlsson, B. Gustavsson, E. Johansson,
T. Lindgren, S.-O. Nyström, M. Pettersson, and
R. Virding. Core Erlang 1.0.2, languoge spec,i,ficøtion,
Oct. 2001.

17) J.-L. Colaço, M. Pantel, F. Dagnat, a¡d p. Sallé.
Static safety a,nalysis for non-uniform service
availability in actors. In Proc. of FMOODS, pages
371-386, Florence, Ital¡ Feb. 1999. Kluwer.

[8] J.-L. Colaço, M. Pantel, and P. Sallé. Cap: An actor
dedicated process calculus. fn Proc. of Proof Theory of
Concunent Object- Orienteil Programmirzg, May 1g96.

[9] J.-L. Colaço, M. Pantel, a¡d P. Sallé. A set-constraiut
based analysis of actors. In Proc. of FMOODS,
Canterbur¡ UK, July 1997. Chapman & Hall.

[10] F. Dagnat. A fr¡mework for typing actors and
concurrent objects. Ongoing report, available from
perso-inf o, enst-bretagne. frl-fdagnat, 2002.

[11] F. Dagnat, M. Paotel, M. Colin, and p. Sallé. Typing
concu$ent objects and actors. L,Objet - Méthod,es
formelles pour les oöjets, V.olume 6(1/2000):pages
83-106, May 2000.

[12] M. Dam and L. Fledlund. On the verification of open
distributed systems. In Proc. of the ACM Sgmposium
on Applied, Computing, volume 28, pages 592-540.
ACM, June 1998.

[13] M. Fahndrich. BANE: A tibrary for Scalable
C onstroint- B os ed, P rogrørn Analy sis. PhD thesis,
University of California at Berkle¡ 1999.

[14] C. Fouruet, G. Gonthier, J.-J. Lévy, L. Maranget, and
D. Remy. A calculus of mobile agents. In proc. of
CONCUil, Pisø, Italg, volume 1119 of .LIVCS, pages
406-421. Springer-Verlag, 1996.

[15] F. Huch. Verification of Erlang programs ¡siag
abstract interpretation and model checking.
Proceedings of ICFP '99,34(9):26I-2?2, Sepr. 1999.

[16] A. Liadgren. A prototype of a soft type system for
erlang. Master's thesis, Computing Science
Departement, Uppsala Universit¡ 1gg6.

[17] S. Ma,rlow and P. Wadler. A practical subtyping
system for ERr,tNc. In Proc. of Internati.onal
Conference on Functionnal Programming, June LggZ.

[18] F. Pessaux and X. Leroy. Type.based analysis of
uncaught exceptions. ACM Tîansactions on
Programm,i,ng Languoges ond, Systems, 22(2):540-BZT,
2000.

[19] F. Pottier. Simplifying subtyping constraints: a
theory. Infonnation $ C ornputation, 1Z0(2) : 158-183,
Nov. 2001.

[20] D. Rémy and J. Vouiìlon. Objective ML: Ao efiective
object-oriented extension to ML. Theory Anil Practice
of Object Systems, 4(1):27-50, 1998.

[21] P. Seç'ell. Global/local subtyping and capability
inference for a distributed zr-calculus. In, Proc. of
ICALP '98. LNCS 1l/¡3,pages 695-206.
Spinger-Verlag, July 1998.

[22] P. Sewell. Modules, abstract types, and d.istributed
versioning. In Proc. of POPL, pages 2J6-242, London,
UK, Jan. 2001.

[23] M. Shields and E. Meijer. Type.indexed ¡ows. In proc.
of POPL, pages 261 - 275, London, UK, Jan. 2001..

[24] J.-P. Talpin and P. Jouvelot. The type and efiecr
discipline. Informati,on anil Computation,
7Ll(2):245-296, June 1994.

[25] X. Thirioux, M. Pantel, and M. Colin. Multi-set
abstraction of non-uniform behavior concu¡rent
objects. Work in progress, Nov. 2002.

[26] V. T. Vasconcelos a¡d M. Tokoro. A typing system for
a calculus of objects. In Proc. of OTAS, Kanazawa,
Japon, voluøe 742 of LNCS, pages 460-424, New
York, USA, 1993. Springer-Verlag.

[27] M. Williams and J. Armstrotg. Progrøm Deuelopment
Using Erlong - Prograrnming Rules ond Conaentions.
ERICSSON, ma¡ 1996. Doc. EPK/NP 95:035.

10

l0

11

APPENDIX
Configurations reduction rules:

CowcRu¡1.¡cs :

w¡ = wl wl ---+ w'2 w| = wz

WL+W2

PeR¡,¡,Lnl :

1!1 --+ U2
ResrRrcrroN

ui. + w2
Accnpr

P(m,e)

R¡¡ncr :

not(P(m,e))

þlñ)>ella<m---+Err

ullq ---+ wllwz vo.wL -+ ua.u2 ("1ñ) > e ll ø < m -+ (alm ñ) > e

ExpResslow :

a (îN(a> e) al a, e 1. a', e'

a> e --+ va.(a' > e' ll w)

Evaluation context gramnrar:

Matching semantics:

F\rnctional reduction rules:

VeRlesln EnRoR :

al a, C[a] --4¿ e, Err

,/[ê p"'

u l$t uhen, g -+ e) :: f a {
if matchþ,u) : fail
if. rnatc}r(p,u) = o

C::=fi (C) l{A}lC,elCteletC lC(e,...,e) le(A) lcaseCof f endA:::Ile,AlA,e

alÍ
o(e)

Appuc¡,rroN :

øl a, Clu(at,...,u,)) --1e d, C[{rr,..., a"}lF(u,n)]

Sp¡rp ERnon : SBwD :

?r1 øA or€A
al a, C[u1!uz] -+u o, Err

Spnwx :

a F o, C[sparn (a,at, ..,,an)f

Snlp :

Cesp :

ø l- o, C[cas e u of f eud] -+. a, Clu I fl
Speww ERnoR :

o' is not a tuple
al a, Clqla2l Y3" a, Cla2] o F a, C[spalrn(o, u')] --rs d, En

SneuexcB :

ø ts a, C[u, e) ---+. a, Cle]

App¡,Icettolr ERRoR :

(n,n) I dom(F)
ats a, C[a(ur,...,oo)] --]s o, Err

Sslr ERRoR :

ø l- *, C[self 0] -+" *, nrr
(aløl>u(o1,...,øn

a, Clal

at (a' lñ), C[self0]---+" (ø'lñ,), Clø')
Rncprvp ERRoR :

ø F *, C[receive / end] ---)¿ *, Err

RBcerv¡
matchmailbox(f ,ñ,) = ñ,', e

a I (a' | frô), C[receive f end] --1" (a'lñ'), C[e]

Mailbox sernantics:

=j (Yi<j m¿lh:8,) m¡lfi:e (VieJ m¿/h:r;t")
matchmailbox(/1 :: -, (m¿)¿e¡) : (m¿)¿e¡\{j}, e matchmailbox(fi:: fl, , (rn¿)¿e¡) = matchmailbox(¡?, (rn¿)¿e¡)

Type Conversion:

î å {s : (unit, T)}
sxTîÌxT, a {r , (f, x...xT", T)}+^-l: lI

ffìn t¿,în
fljo zn,î,
^^^ci=A if a is a type variable
î ê p.t otherwise

s A {s : (L, unit)
sxft x ...xTn
l: IÌ

a {s: (I,
"rx...xZ;¡¡

Ì

úne_ltT,w!n,T
-À-d =d if o is a type va^riable
F ê et" otherv¡ise

n

Subtyping Deduction System:

L T ?trT {}gr r--T¡

T1x...xTn tr tuple

lyping Deduction System:

Va¡
V e dornf)

€FV:€(V),{}

Send
tlel:t7,Cy

12

T TT T tr.Tz T .-TL T C.Tz i€N s€At
T tr TtllTz

Yi T¿ETi
Tyx...xTn tr Tix...xT.

TÇTi TíETZ

Case

T tr Tt LJTz

I,CI
@/E @7

1tr. I,

T tTtT-JTz

ri ETt

i

1tr. I,

trint sCatom

Tz ETí

Consta¡t
ttsc:c,{}

{m: (Tv,T2), I} x. {m | (Tí,Tí), l}

T\rple Pa¡en
tle:,t,Ctle¿:t;,C¿

t I {e¡,..., eo} : t1x...xtn, l)C¿ ets trc

T, !TzEri t+ri

Sequence
tFet:h,Ct €le2:t2,C2

e ç I ey, e2 : tz, Ct lJ Cz

tlez:tz,Cz €le:t"rC. Ets p¿:t!, €¿ tUt¿l e¿:t¿,C¿
t F el ez : tz, Ct u CzU{t, E @íì} t F case e of pt - ett ... : t, C.lJl) C¿u {t. E Urll u U({¿" c tl +¿¿ tr ¿})

Application
tFe;t.,Cu tle¿:t¿,C¿

t I e(ey,...ren) : t, C.UU C;U {t" tr dom(?.l), t(setf) E @I, F\¡n(Zþ ,t.,n) tr (t, r... x1%) + ù

Receive
t ts p¿; tf,, t; €Ut¿l e;:t¿, C¿

t l- receive pt) e1 to, U(Cuu {á(serr) E @4})

l¡

Stand-alone Erlang
Stand-alone Erlang is a minimal Erlang distribution. It features:

o ecc - the Erlang compiler
o elink - the Erlang linker
O ear - the Erlang archiver
o escript - the Erlang scripting interface
o esh - the Erlang shell
o You can generate windows . exe files in Linux, and vice. versa.
o You can builds Erlang applications in very few files.
O Applications start very quickly.
o Applications have a small memory fooþrint.

Download.

Installation (Iinux)

Here is a typescript of a session where we fetch, inst¿Il and test SAE:

Fetching and inst¿lling SAE

$ wget htÈp: / /w¡tw.sics.se/-joe/sae-r9b0-1.tgz
$ gunzip sae-r9bO-t.Xgz
$ tar -xf sae-r9bO-l-.tar
$ cd sae-r9bO-1/dist
. /Instal-l-
installing executables in /home/joe/bin
installing code in /home/joe/1ib/sae
patching executables
rebase : /h.ome/joe/bín/ ecc as /home/joellib/sae
rebase: /home/ joelbin/el-ink as /home/ joe/lib/sae
rebase : /home/)oelbin,/esh as /home/joe/Iíb/sae
rebase z /home/1oe,/bin,/escript as /home/ joe/1ib/sae
rebase: ,/home/ joe/bin/ear as /home/ joellib/sae
ecc is ok
elink is ok
beam_evm is ok
Compiling and building a t,esÈ program
Running the test.
Running test
test worked

Test that we can find ecc and elink.

S which ecc
/home/ joe /bl-n/ecc
$ which elink
/home/ joe/bin/el-ink

Make the test programs

$ cd ../exampl-es
$ make
ecc test_hello.erl
ecc test_url. erl

I

2

ecc t,est_autoload.er1
ecc test_autol_oadl . erl
ecc test_dets. erl
ecc test_bug.er1
ecc test_include. erl
elink test_hello.beam
elink t.esÈ_url .beam
elink test_autoload. beam
elink test_dets.beam
el-ink test_bug.beam
elink test_include . beam
. /test_he11o
Hel-lo world
Àrgs= [' . /test-he]-lo" l
test_hel1o worked
.,/test_url
tesÈ_url worked
. /test_include
test_include worked
.,/test_dets
test_dets worked
. /test_autoload
Auto load test incomplete $ROOTDIR noÈ d.efined.
. /test_bug
aaaa
test_bug worked

Test that scripting works. Note: fibl is an interpreted script. fib2 is a compiled script.

$ cd../dist
. /factorial 20
factorial 25 = 1-551-l-21_0043330995984000000

$ cd . .,/examples
$ time . /ftb]- 24
fib 24 = 46368

real 0m2.603s
user 0¡n2.490s
sys 0m0.060s

9 time . /ftb2 24
f.íb 24 = 46358

real 0m0.451s
user 0m0.400s
sys 0m0.020s

Very quick start

Store the following in a file called he11o. erl:

-module (he]1o)

-export ([start/1])

start(Args) ->
io:format("Hel1o world-nArg's=-p-n", lArgs]),erlang:haltO.

L

Compile and run as follows:

3

$ ecc he11o.erl
$ elink hello.beam
$./hello L 2 3
Hello world
Args= [" . /he]lou, u1n,,'2,,, "3u)

The file hello is a2Y,,Byte executable which can be distributed together with the original system
files

Quick start (Linux)

To compile:

> ecc *. erl

This will compile all the . ert files in the current directory producing . beam files if the compilation
was successful.

To create a Unix application called myunixproø give the command

> elink -o myUnixProg *.beam

When the program is run in Unix with the command:

> myUnixProg Argl- Arg2

The function:

myUnixProg:start([Arg1-, Arg2, ...])

V/ill be called. All the arguments are Erlang strings.

Making windows executables

This does not work yet

Note: Windows executables can be built in Uníx or vice. versa

To create a stand-alone windows application called mywindowspros. exe give the following
command:

> el-ink -t windows -o myWindowsprog.exe *.beam

elink reference
> elink
elink [-shel1] [-windows] [-o OUTI.exe]l

[-s U] -m Ml.beam [M2.beam M3.beam ...]

Make an executable OUT
Excuting OUT will l-oad the code in Ml- M2 M3
The command >OUT[.exe] Arg1, Arg2
Will cause M:start(lArgt, Arg2, ...]) to be evaluated

¡

> elink [-m] M1 .beam M2.beam M3.beam

3

4

impliess=Ml-o=ML
> elink -o Mi[.exe] -m Ml.beam M2.beam

Mi must be in Ml- M2
implies s = Mi

> elink -s Mj -o Mi. [exe] -m Ml.beam M2.beam
Mj must be in M1 M2

> el"ink -r Dir Executable
Rehomes Executable to ERL EARS=Dir

elink examples

> elink al.beam a2.beam ...

Makes an executable called ar. The start function is a1: srarr (. . .)

> elink al.beam a2.beam ...

Makes an executable called a1. The start function is al_: srarr (. . .)

> elink -o a3 al-.beam a2.beam ...

Makes an executable called a3. The st¿rt function is a3 : srarr (. . .) - one of the beam files must
be a3.beam

> elink -o a3 -s a4 aL.beam a2.beam ...

Makes anexecutablecalleda3. The startfunctionis a4:srarr(...) - a3.beamânda4.beamrnust
be included on the command line

> elink -shell

Makes an executable that runs in a shell capable of understanding line editing commands. This is
useful if you want to write an interactive application that behaves like the Eriang shell.

> elink -r /home/joe/foo/bar /home/ joe/bing/bongo

Changes the environment $ {ERr,Ar\Tc_EARs} which is hidden inside the executable
/home/ j oe/bing/bongo to /home / joe / foo /bar.

The directory /home/)oe/f oolbar fttust contain the files erlang. ear and Ert-Boor_new. img - this
command is so obscure that you will probably never ever need to use it. If you got this far thJn no
manual will help.

Erlang scripts

escript is the scripting interface to Erlang.

Here is an example of a simple Erlang script:

! /usr/bin/env escript
-export ([main/ 1j) .

main([X]) ->
,J = List_to_integer (X) ,
N = fac (,I) ,
io:format("factorial- -w = -w-n", t,t, N])

5

esh

fac(0) -> 1;
fac (N) ->

N * fac(N-l-)

Make the file executable and run:

> chmod u+x .,/factorial
> . /faclorial L23
factorial- L23 = L21463 0 43 67 025329 67 57 6 624324L88L29 5855 45 42i.7 0 88
4833823l-5328918161-82923s8923621,67 66883 r_r_56960 6L2640202l_7073 583 s
22L29 4 0 41 7 82 5 9 1,0 9 157 0 41.L 6 5 t 47 2 L8 6 0 29 5 L9 9 0 62 6t 6 4 67 3 07 3 3 9 07 4L9 8r4
9s2960000000000000000000000000000

The script must export main,/l-. The directive -mode (compite) can be included to improve
efficiency.

esh is an interactive query shell. To stårt it:

> esh
Erlang (BEAM) emulator version 5.2 [source] lhipe]

Eshell- V5.2 (abort wiÈh ^G)
1>

ecc

ecc is the Erlang compiler.

> ecc *. erl

Compiles files. ecc accepts the following flags:

o -w Warn
o +compressed Make a compressed binary file.
o +srrip Strip the binary file

elink

elink is the Erlang linker.

eLink [-shel1] [-windows] [-o oUT[.exe]l
[-s Mod] [-m] tttl-.beam ...

Arguments can be pretty much in any order.

ear

ear is a command line utility for maintaining Erlang archives.

Erlang stand-alone applications use demand-code loading or static code loading.

The demand code loader loads code from Erlang archives (. ear files) - Erlang archives are created

5

6

with the ear conunütd.

In a statically loaded application all necessary code is loaded contained in the application.

The preferred method of buitding an application is to use demand code loading. The base
distribution includes a single archive erlang. ear which contains all the modùles and include files
in stati¡ kernel and compiler - this is sufficient for making a large class of applications.

Building and maintaining Erlang archives is done with the program ear

Shipping several applications \ilith your own personal library
If you have several applications you might like to proceed as follows:

Create a personal library

> ear -a
> ear -a
> ear -a

ear
ear
ear

Now distribute j oe . ear the installer must place this in the same directory âs erlans. ear, module
names in l oe . ear rmlst not collide with the names in erlans. ear

loe
joe
joe

PathToCompiledModulesl_ / * . beam
PathToCompiledModul es2 / *. beam
PaÈhToCompiledModules3,/ * . beam

(

I

¡

Use of Erlang in system test of AXD3OI
Karl Olsson

Erlang distribution
Tools

conf
sssg

xAXE
xMG
OTP test sen/er

dbe
loading of modules

Configr.ration tool
UNI traffic generator
AXE l0 ûafüc simulatorþenerator
Media gateway simulator
Automatic test tool

!

2

AXD301
2019l817161514l3¡2ll l0 9 8 7 6 5 4 3 2 I

ch om
stby

CP

SC

CB

control Processor,
Unix, Erlang
Switch core
Connection board
ATM (32¿Mb/s - 1x2,5 Gb/s)
CE (32xTl - l24xB1)
FR
MPLS

012 l6 30 3l

stby ch

Scalable l0cb - 160cb
0-4 CP pairs/subrack

Erlang distribution
2019lEl71615 1413 12 il l0 9 8 7 6 5 4 3 2 |

10.0.1.3 r0.0.1.2

HUB
rpc:calV4

I 0.0.1.254

'axdì01@cpl-19' 'axd30l@cpl-l

erlnode@sçc57
ws (sTPc)

-->
LAB LAN network

L

3

Tools - conf
AXD301 user interfaces

AMS (hrÞ)
snmp
NO command line interface

cat -------------
ttt block_boa¡d(Sù¡åck,StorNo,tlæ) ->
ttt ok I Other
tgt lrpuE: S$rack j,nEeger
$tt sloÈNo i¿Eeget
tl$ Dæe cp1, scz, clk2, qr19, sc20, clk2O, atb, cb
Stt tuEput I ok I O!Ì¡er
ttt &cepEionsr
ttg !Þscrj.pEion: blocks a boÂrd
gSg Udple: conf :btoclqboard(1, 11,atb).
$tS Mple: conf :bl.ock_board{1,19,cp19) ,

block*bard (Sù!àck,SlôtNo, tytÞ) ->
(Eoslot.Piusl.oÈ,Side) = ca6e D'æ of

cpl -> (1,1,1); 6c2 -> (2,2,!r; cIR2 -> 12,2,2.t;
cÞ19 -> (19,19,1I; sc20 -> {2,20,!lt ctk2} -> (2,20,2r,
atb -> (SlotNo,SlotNo,t); cb -> (SlotNô,SIotNo,2Ì

end,
sulmittucEions : { eqr¡hspru, sùlsit_openjiu),
SùiCReSesEs :

f (acrioa, eqDHi,piuÎòte, ISùr¿ck, N1or, pius].ot, Sidel , nul]'
((-Btock., ?,2, nul.I) L
[(e¡¡ols,ro¡.Ibåck) I)],

SübniEpropefties = ((Þagesource, {eqtupIu,oænjiu}}. (Fs*ccj,o¡, O}l

rpc_cä 1 1 (su¡ú¡i ttuc Eions , su¡mi EReques !s , sqbnj. t proper! ies ,

'block-boård -p -Þ -p SuccessfulL', [Sùbråck,SlotNo.T)æ],
'blocyltþard -p -p -p (NSUCCESSroL., {S!åck,SIocNo,t:¡¡Þl .
'block-board.) .

Tools - sssg

sssg

WS with SUN ATM board

LINI TiNI

LAB LAN network

-ATM

ethernet

qs82@qhiy

sssgl sssg2AXD3OI

STPC 6l¡odc@Þc

3

4

Engine Integral

DSS

Circuit emulation

-

ATM
ethemet

]J
TeS

RSS

PABX AXE 10 AXE 10

other

AXE 10

AXD3Ol

RSS

PABX
AXD30r

MG
AXD3O1

other

PC ER

xMG@sbix

STPC
XAXE

HUB

xMG ML

MGI MG2

LAB LAN network TOOIS - XAXE, xMG

@
ethemet
Control link H.248 (ATM)
Circuit emulation_ ATM

ML Mediatibn logic
MG Media gateway

xMG
WS with SUN ATM board

+

5

OTP test server

rpc:ealV4

gen_tcP

LAB LAN network

'axd30l @cpl -l'

'axd30l@cpl-l

'axd30l@cpl-l''axd30l@cp2-1'

'axd30t@cpl-19' 'axd30l@cpl-19'

testserver@stpcx slave@sçcySTPCx STPCy

i.t ,'; ,'
i.l ,,,:l .

@@
ethernet
Control link H.248
Circuit emulation_ ATM

Distribution
conflsnmP
sssg

XAXE
xMG
Erlang logs

STPCmI

xMG@shiy
999

xMG
ML

sg@sùix

sssg

MGI MG2

LAB LAN network

5

Highlights in Erlang S.2|OTP RgB
This document describes the major new features and changes in version R9B
of Erlang/orP. The changes are described as a comparision with the original
R8B release and some of them have already been delivered as patches to R8B
and/or R7B. For more detailed information, please refer to the release notes for
the individual applications. Interesting news in this release is that we have
integrated results from the ASTEC-HiPE research project as part of the
product. See Hipe and Packages below for more info on that.

signifïcantly updated or new applications in oTP R9B

Asnl
Comet aDuovDt)
Compiler
CosEventDomain Ntw
Erlang Runtime System (ERTS)

Et (Event Tracer) NEW
GS (Graphical System)
HiPE NEW
IC (IDL compiler)
Inets
Kernel
Megaco (H.248)
I\¡Inesia

Observer NEW
ODBC
Orber
OS_mon
Packages NDW
Runtime_tools
SNMP
srdlib
Tools

Applications with minor changes and bugfixes

The following applications have only minor changes in R9B:
cosNotification, cosTransactions, Debugger, Erl_interface, EVA @vent & Alarm),
Mnesia_session, Pman, SASL, SSL, Toolbar, Tv.(Table Visualizer), WebTool.

Asnl, compiler and runtime functions for ASN.I

2

New option optimize in combination with per_bin and ber_bin which makes the
encode/decode frrnctions much faster than before. ln rough terms the encode/decode is
2 times faster when optimize is used.
It is now possible to add options to the Erlang compiler to be used when compiling the
generated .erl file. Any option that is not recognized as a specific ASN.I option will
be passed to the final step like: erlc +debug_info Mymodule.asn or
asn 1 ct:compile('Mymodule', [debuginfo]).
The feature "multi file compilation" which compiles several ASN.I modules together
and produces one .erl file is improved.

Comet, COM client for Erlang (REMOVED)

The Comet application is removed from the product because we currently have no resources
to maintain it. We plan to make it available on the Open Source site. It still works on
Windows NT 4, but there are problems on Windows Xp.

Compiler

The documentation for the 'compile' module now lists several options that were
previously undocumented or only documented in the 'erl-lint' documentation. One
very useful option is warn-unused-vars, which also is improved in the compiler. Use
of this option can reveal bugs and dead code, it is highly recommended.
The endianess specification'native'has been added to the bit syntax. It will resolve to
either big or little endian at load time. It is specially useful for communcating with
linked-in drivers.

cosEventDomain, oMG Event Domain Admin Service
NE\ry

A new Corba service "cosEventDomain" is added as a separate application. cosEventDomain
is compliant with the OMG service CosEventDomainAdmin.

ERTS, Erlang emulator

The previous ha¡d system limit of 255 known remote nodes has been removed. With
the exception of node-name atoms, all data regarding remote nodes is now garbage
collected.
Major improvements regarding memory handling, intoduction of sl_alloc version 1

default and sl-alloc version 2 which makes it possible to tune the memory allocation
behaviour to best suite a cerüain system. A number of other memory handling
improvements are also added.
The endianess specification 'native'has been added to the bit syntä(. It will resolve to
either big or little endian at load time. It is specially useful for communcating with
linked-in drivers.
The ma:<imum number of Erlang processes within one Erlang node is increased to
2^18 -1 :262143, previously the limit was 32768. To enable the higher limit the +P
flag must be used when Erlang is started.

a

a

a

a

a

a

a

a

a

3

Et, an Event Tracer \Mith graphical viewing of trace data
NE\il
The two major components of the Event Tracer (ET) tool is a graphical sequence chart viewer
(et_viewer) and its backing storage (et*collector).
One collector may be used as backing storage for several simult¿neous viewers where each
one may display a different view of the same hace data.

GS, a Graphics System

GS is updated to use TcVTk 8.3.4. This is a major update since GS previously used an ancient
version of TcUTk.

HiPE, High Performance Erlang NEW

A number of useful and promising features from the HiPE project at Uppsala University is
integrated into this version of Erlang/OTP. The major features a¡e:

t.- 1

j.1.

i

l

I

a.: ...
f :: :,

a Native code generation for Sparc (Solaris) and x86 (Linux). The native option to the
compiler is used to select this codegeneration. It is then possible to run the generated
modules together with the ordinary interpreted modules on a standard OTP R9B
system.

The native codegeneration can give significant performance improvements especially
on sequential code. See http://www.csd.uu.se/orojects/hipe/hipe.html for more info.
This feature is intended for evalu¿tion and may be supported in future versions.
Feedback is velcome.
"Shared heap" a new approach to memory handling within the Erlang emulator where
all Erlang processes share a common heap. This way of handling memory is very
interesting and have a potential to reduce memory consumption an improve
performance. A separate emulator is built to support "shared_heap", it is started with
'erl -shared'. This feature is intended for evaluation and may be supported in future
versions. Feedback is velcome.

a

lC, an IDL compiler

A number of minor improvements and corrections.

Inets, HTTP server and FTP client.

A HTTP client is added to the application. Author: Johan Blom of Mobile Arts AB. It
is provided as is with very limited documentation in this version but we plan to
support it fully in coming versions of lnets.
Updated to handle HTTP/l.l.

a

a

3

Kernel

4

The set-netjicktime/[1,2] and get-net-ticktime/0 functions has been added to the
net-kemel module (see net-kernel(3)) which makes it possible to change the net¡ick
time during operation.
There are new functions bchunk/2,3 in the disk-log module that are to be used like
chunk/2,3 but return objects as binaries.
The loading of BEAM code at start-up of embedded systems has been optimized: if
the thread pool is non-empty (see the system flag +A in erl(3)) and files are read from
a file system (the default, see the value efile of the -loader flag in erl(3)) disk seek
times have been reduced.

Megaco, a Megaco[H.z48 protocol stack

. The binary codecs ber_bin and per_bin is now both compiled with the +op1¡p¿"
asnl-compiler flag for better runtime performance.

' The previously included tool, et, has been moved out of the Megaco application. It is
now provided as a separate application called Et.

Mnesiao a heavy duty real-time distributed database

. The table fragmentation functionalrty in Àdnesia has been improved.

- Select and match-object is done in parallel which should improve performance.
- A new concept of hash modules has been introduced. This means that a user norü can
define its own mapping between record keys and the actual table fragment hosting the
record.

Improved table loading performance during startup. ltdnesia should be able to utilize
the network bandwidth better, and l\¡Inesia also uses new dets firnctionality to improve
the loading of disc_only_copies tables, if possible.

a

a

a

a

a

Observer NE\M

Observer is a new application with various facilities for "observing" a live system with
minimal disturbance. The application is fully functional and supported, but the firnctionalþ
and API's are still in beta-status i.e they can be changed in the next versions. We are very
interested in feedback from users regarding the functionality in observer.
Observer currently contains two different parts:

. Trace Tool Builder , a base for building frace tools for single node or distributed
Erlang systems.

' Erlang Top, a tool for monitoring of Erlang processes similar to the UNIX top utilþ

ODBC

The Erlang ODBC application consists of both Erlang and C code. The C code is now
delivered as a precompiled executable for Windows and Solaris.
Various optimizations.

5

New API that has an Erlang/OTP touch and feel instead of being a C-interface with
Erlang syntâx. The old interface is deprecated and will be removed in Erlang/OTp
Rl0.

Orber, a CORBA Object Request Broker
. Support for fragmented IIOP-1.2 messages.
. Possible to add and use the IOR component TAG_ALTERNATE_IIOP_ADDRESS.
. Unique VMCID:s assigned to Orber by the OMG.
. Supports the Fixed datatype.
. Possible to add new initial references.
. The NameService can be configured to be stored on disk.

' It is now possible to set Orber's configuration parameters in, for example, an Erlang
shell.

' Possible to list which port numbers Orber may use locally when connecting to another
ORB.

. Improveddocumentation.

. Several new debugging facilities:
o Two IIOP hace interceptors included (different verbosity).
o Type checking within an Erlang node.
o orberweb, which is an extension of the webrool application.
o IOR dump.

os-Mon, monitoring of disk usage and os resources

' cpu-sup:utiVO and cpu-sup:utiVl which returns information about cpu utilization have
been added. For further information see cpu_sup(3).

. Nodename is now used as key in loadtable (os_mon mib).

' The loadCpuload5, loadCpuloadl5 values has been added to the os mon mib.

Packages NEW

This is an extension to Erlang with structured program module packages, in a simple,
staightforward and useful way. The implementation is done by Richard Carlsson from the
HiPE team at Uppsala University and is intended for evaluation. This or a slightþ modified
solution may be supported in future versions of Erlang/OTP. The debugger -igfr, have some
problems with the naming of modules when packages are used. See

for more info. There is also a paper about
Packages at http : //www. it. uu. se/research/reports/2 00 0-00 I .

Runtime Tools

. Trace ports can now be opened on remote nodes

' It is possible to use the local node as a "trace control node", i.e. üace only remote
nodes.

. The function dbg:i/O now prints information about all naced nodes. Added a number of functions for conûolling tacing on remote nodes.

¡l

I

5

6

SNMP

Minor additions and bugfixes.

STDLIB, Erlang standard libraries

. A number of improvements in dets.

. The function ets:select_covntJ2 is added to the stdlib application.

. New functions sofs:extension/3 and sofs:partition/3.

. A new module ms-transform which implements a parse hansform that ûanslates 'firn'
syntåx into "match specifications". This simplifies writing of "match specifications"
used in ets:select and in dbg.

. The undocumented and deprecated modules bplus-tee and unix has been removed.

Tools

There is a new tool cprof , a call count profiler. It is something inbetween cover and
fprof , and can be used to get a picture of which functions are most frequentþ called.
See Tools User's Guide and Reference Manual.

(

Erlang/OTP User Conference 2002 - Participants

F-*

joe@sics.se

johan.blom@ mobilearts.se

goran.bage @ mobilearts.se

Fabien. Dagnat @ enst-bretasne. fr
bjarne@cs-lab.org

magqus.eklund @ cellpoint.com

luke@bluetail.com

seif@sics.se

bagi@lucent.com

fredrik.linder@ cellpoint.com

thomasl_47 I I @yahoo.com

kenneth.lundin @ uab.ericsson. se

hans @ erix.ericsson.se

mickael. remond @ erlan g-fr. org

kostis@csd.uu.se

happi@home.se

tv@blueposition.com

klacke@bluetail.com

@cbe.ericsson.se

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Brest, France

Huddinge, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Bangalore,India

Stockholm, Sweden

Stockholm, Sweden

Alvsjö, Sweden

Kista, Sweden

Paris, France

Uppsala, Sweden

Uppsala, Sweden

Copenhagen, Denmark

Stockholm, Sweden

SICS

Mobile Arts

Mobile Arts

ENST, Bretagne

Cellpoint

Alteon \MebSystems

SICS

Lucent Technologies

Cellpoint

Cellpoint

OTP Unit, Ericsson

Ericsson

erlang-fr.org

Uppsala university

Uppsala university

BluePosition

Alteon WebSystems

Chairmen and
Ioe Armstrong

Johan Blom

Göran Båge

Fabien Dagnat

Bjarne Däcker

Magnus Eklund

Luke Gonie

Seif Haridi

Bagirath Krishnamachari

Fredrik Linder

Thomas Lindgren

Kenneth Lundin

Hans Nilsson

Mickaël Rémond

Konstantinos Sagonas

Erik Stenman

Thomas Verner

Claes Wikström

ö, Sweden

DenmarkluePosition

Andersson

peppe@erix.ericsson.se

ingela @ erix.ericsson. se

marcus@arendt.se

thomas.arts @ituniv.se

Gosta.Ask @ etx.ericsson. se

mia.berg@st.se

jb@bluetail.com

hasse @ erix.ericsson. se

kent@ erix.ericsson.se

pascal.brisset @ cellicium.com

mikael.m.bylund @ telia.se

richardc@csd.uu.se

francesco @ erlang-consulting.com

mats.cronqvist@ etx.ericsson. se

Niclas.Eklund @ uab.ericsson.se

magnus@bluetail.com

catrin @ erix.ericsson. se

Par.Grandin @ uab.ericsson.se

@erix.ericsson.se

@home.se

pegu2945@csd.uu.se

b,i orn @ erix.ericsson.se

siri @ erix.ericsson.se

rlvsjö, Sweden

Sweden

Alvsiö, Sweden

Sollentuna, Sweden

Göteborg, Sweden

Älvsjö, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Alvsiö, Sweden

Älvsjö, Sweden

Bagneux, France

Uppsala, Sweden

Uppsala, Sweden

London, UK
Älvsjö, Sweden

Älvsjö, Sweden

Stockholm, Sweden

Alvsjö, Sweden

Älvsjö, Sweden

Stockholm, Sweden

Stockholm, Sweden

Uppsala, Sweden

ö, Sweden

Älvsjö, Sweden

OTP Unit, Ericsson

OTP Unit, Ericsson

Marcus Arendt AB
IT-university of Gothenburg

Ericsson

Sjöland & Thyselius Telecom

Alteon WebSystems

Alteon WebSystems

OTP Unit, Ericsson

OTP Unit, Ericsson

Cellicium

Telia Promotor

Uppsala university

Cesarini Consulting Ltd

Ericsson

OTP Unit, Ericsson

Alteon WebSystems

Bricsson

Ericsson

Alteon WebSystems

OTP Unit, Ericsson

Uppsala university

OTP Unit, Ericsson

OTP Unit, Ericsson

Peter Andersson

Anderton

s Arendt

Thomas Arts

Gösta Ask

Mia Berg

Johan Bevemyr

Martin Biörklund

Hans Bolinder

Kent Boortz

Pascal Brisset

Mikael Bylund

Richard Carlsson

Francesco Cesarini

Mats Cronqvist

Niclas Eklund

Magnus Fröberg

Catrin Granbom

Pär Grandin

Joakim Grebenö

Dan Gudmundsson

Martin Gustafsson

Per Gustafsson

Björn Gustavsson

Siri Hansen

f" lv

t^j
UJ

per@bluetail.com

pekka@home.se

Sean.Hinde @ rmobile.co.uk

Henrik. Jonasson @ etx.ericsson. se

micael.karlbqrg @ ericsson.com

bertil.karlsson @ uab.ericsson.se

hakan.karlsson @ ericsson.com

mikael.karlsson @ creado.com

eleberg @ cbe.ericsson.se

hakan.larsson @ ericsson.com

tord@bluetail.com

jabba@ees2.oulu.fi

roli6207 @csd.uu.se

Erik.Lindblom @ etx.ericsson. se

lisper@it.kth.se

matthias @ corelatus.se

ann-marie.lof@st.se

anna.lofgren@st.se

luca.manai @ ericsson.com

hakan @ erix.ericsson.se

hakanm @ nortelnetworks.com

Chandrashekhar @t-mobile.co.uk

telia.se

@erix.ericsson.se

etxnora@ cbe.ericsson. se

Stockholm, Sweden

Stockholm, Sweden

Borehamwood, Herts, UK
Stockholm, Sweden

Älvsjö, Sweden

Alvsjö, Sweden

Kista, Sweden

Stockholm, Sweden

Stockholm, Sweden

Kista, Sweden

Stockholm, Sweden

Oulu, Finland

Uppsala, Sweden

Stockholm, Sweden

Västerås, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Älvsj<i, Sweden

Stockholm, Sweden

Uppsala, Sweden

Borehamwood, Herts, UK
Uppsala, Sweden

Alvsjö, Sweden

Alvsjö, Sweden

Alteon WebSystems

PH IT Konsult

T-Mobile

Ericsson

OTP Unit, Ericsson

OTP Unit, Ericsson

Ericsson

Creado Systems

Ericsson

Ericsson

Allgon WebSystems

University of Oulu

Uppsala university

Ericsson

Mälardalens Högskola

Corelatus

Sjöland & Thyselius Telecom

Sjöland & Thyselius Telecom

Ericsson

Ericsson

Alteon WebSystems

T-Mobile

Telia Promotor

OTP Unit, Ericsson

Ericsson

Per Hedeland

ist

Hinde

Jonasson

Micael Karlberg

Bertil Karlsson

Håkan Karlsson

Mikael Karlsson

Bengt Kleberg

Håkan Larsson

Tord Larsson

Iani Launonen

Tobias Lindahl

Erik Lindblom

Björn Lisper

Matthias Läng

Ann-Marie Löf
Anna Löfgren

Luca Manai

Håkan Mattsson

Håkan Millroth

Chandrashekhar Mullaparthi

Hans Nahringbauer

Raimo Niskanen

Annika Nordqvist

-Þ

etxarnu @ cbe.ericsson.se

pan@erix.ericsson.se

iann@it.uu.se

svenolof@csd.uu.se

etxlnas @cbe.ericsson.se

anders.a.ramsell @ telia.se

erik.reitsma @ eln.ericsson.se

tony@bluetail.com

Per.Romin @ ebc.ericsson.se

dan@fatburen.org

schulte@imit.kth.se

Christer. Skeppstedt @ etx.ericsson.se

hakan. stenholm @ mbox304. swipnet.se

Per. Sternas @ ebc.ericsson.se

erandig @cbe.ericsson.se

lars @erix.ericsson.se

tobbe@bluetail.com

etxmweg @cbe.ericsson.se

ulf.wiger@ etx.ericsson. se

lesperw@csd.uu.se

chris.williams @ ericsson.com

mike @ erix.ericsson.se

ö, Sweden etxerac @cbe.ericsson.se

öhman & Telecom Sweden lennart.ohman@st.se

2002-1 1-12

Älvsjö, Sweden

Älvsiö, Sweden

Uppsala, Sweden

Uppsala, Sweden

Alvsiö, Sweden

Uppsala, Sweden

Riien, The Netherlands

Stockholm, Sweden

Nacka, Sweden

Stockholm, Sweden

Kista, Sweden

ö, Sweden

Stockholm, Sweden

Sweden

Älvsiö, Sweden

Älvsjö, Sweden

Stockholm, Sweden

Sweden

, Sweden

Uppsala, Sweden

ö, Sweden

Älvsiö, Sweden

Ericsson

OTP Unit, Ericsson

Uppsala university

Uppsala university

Ericsson

Telia Promotor

Ericsson

Alteon WebSystems

Ericsson

Sahlin Innovation

lT University

Ericsson

Ericsson

Ericsson

Ericsson

Alteon V/ebSystems

Ericsson

Ericsson

Uppsala university

Ericsson

Ericsson

Arto Nummelin

Patrik Nyblom

Jan Nyström

Sven-Olof Nyström

Leif Näs

Anders Ramsell

Erik Reitsma

Tony Rogvall

Per Romin

Dan Sahlin

Christian Schulte

Christer Skeppstedt

Håkan Stenholm

Per Sternås

Robert Ïarnström
Lars Thorsén

Torbjörn Törnkvist

Mats \ü/esterling

Ulf V/iger

Jesper Wilhelmsson

Christopher rù/illiams

Michael C \Villiams

Þ

