3rd International Erlang User Conference

1997-Aug-26

Ericsson Software Technology AB

Erlang Systems

Box 1214

SE-164 28 KISTA phone: +46-8-719 0000
SWEDEN fax +46-8-719 8940

http://www.ericsson.se/erlang/

Programme

08.30Registration opens

Opening

09'000pening speech by Bernt Ericson V.P. Research & Technology, LM Ericsson.

User presentation: Next generation high speed internet access using Erlang by Martin
09.30],. .
Rinman, Ericsson Telecom (nowdays at Erlang Systems)

User presentation: A distributed application in Erlang on Windows-NT by Jirn Svendsen,
LM Ericsson A/S (Denmark).

10.00"Use of Erlang and Windows-NT in a distributed environment. Load and security considerations
from a real life telecom product with high availability requirements. Windows-NT what to
onsider? Configuration of Windows-NT and the network."

10.30{Coffee

User presentation: SwitchBoard - default hardware for Erlang by Ulf Svarte Bagge, Ericsson
usiness Networks AB.

"SwitchBoard is a modular high capacity switch capable of handling a large number of E1/T1
ports. It is designed as a general telecom hardware controlled via an API in Erlang. Main
features: Scalability: Scalable from small to large at a linear cost, one or several identical
modules (SwitchBoards) interconnected via an optical "backplane" Fault tolerance: Physically
distributed switching without central part and with low level redundancy control Other features
such as small physical size, low cost, termination of layer 2 on board, generation of tones,
simultaneous switching of different bandwidts, alternative physical interfaces or resources on
mezzanine boards and much more."

11.0

User presentation: Erlang and a new paradigm for software engineering by Prof. Fergus
10 ‘Brien, Software Engineering Research Centre (SERC) - Australia. The presentation will be
given by Helen Airiyan, SERC.

"The paper presents an approach to the complete life-cycle of major software projects based on
11.30jthe incorporation of non functional requirements from the initial problem definition stage. A
historic perspective is used to develop the rationale for such an approach, and its use as a model
for further Software Engineering developments. The practical implementation of this approach is
illustrated through a system that has been built using Ericsson functional language environment,
Erlang. The ongoing research and future directions are also outlined. "

LUNCH

Menu: To be announced.
12.00 i

If you have any special requirements such as vegetarian food, please let us know in your advance
registration.

User Presentation:Using Erlang for ATM-switch control by Ulf Wiger, Ericsson Telecom.

13.15/"This presentation covers experiences from using Erlang in the development of broad-band
switch control software."

13.45|Future directions for the development of Erlang System/OTP by Mike Williams.

14.15

CORBA enabled Erlang by Peter Lundell, Ericsson Telecom.

"A CORBA package for Erlang System/OTP is under development. The presentation covers its
features, usage and implementation. The package will soon be available as an alpha release to
interested users."”

14.45|Coffee

15.15

To be confirmed: INETS, the Internet package of Erlang System/OTP (Java connectivity, HTTP
[server, etc)

15.45

Towards an Even Safer Erlang by Dr. Lawrie Brown, Australi¢h Defence Force Academy and
[Dan Sahlin, Computer Science Laboratory - Ericsson. a

" This talk discusses on-going research into extending the Erlang system to better support
constrained and partitioned execution of code. This could be used to support mobile agent,
applet, or outsourced code execution, or simply for improved fault tolerance. Extensions adding
a hierarchy of nodes, and capabilities for nodes/pids/ports are being prototyped.”

16.15|Short break

16.3

Erlang type-system by Joe Armstrong, Computer Science Laboratory - Ericsson.

"A type system for Erlang has been developed in a collaboration between the Ericsson Computer
Science Laboratory and Phil Wadler and Simon Marlow from Glasgow University. The type
system can detect inconsistencies in Erlang programs and can be used to verify that Erlang
programs are well-typed. Well-typed programs are guaranteed never to fail with run-time type
errors, all such errors are detected at compile time. In addition the type notation can be used as a
|useful design tool. The talk gives a brief introduction to the type system."

16 Solzerformance of the current implementations of Erlang appears to be below that of good

Etos: an Erlang to Scheme compiler by Prof. Marc Feeley and Martin Larose, University of
Montreal.

"The programming languages Erlang and Scheme have many common features, yet the

implementations of Scheme. This disparity has prompted us to investigate the translation of

rlang to Scheme. In this paper we describe the design and implementation of the Etos Erlang to
Scheme compiler and compare its performance to other systems. On most benchmark programs,
|[Etos outperforms all currently available implementations of Erlang."

17.10Prof. Ignac Lovrek , Department of Telecommunications, Faculty of Electrical Engineering,

(IUSTITIA - Erlang based load balancing experiments by Sasa Desic, Zrinko Kolovrat and

University of Zagreb - Croatia.

17.35[construction of high-end scalable systems it is desirable to enable the Erlang runtime system to

Running Erlang on multiprocessor systems by Pekka Hedqvist , Erlang Systems.

"Erlang processes are parallel in nature, as is many telecom applications. Multi-processor
computers is becoming commodity hardware for a range of applications. To ease the

execute Erlang processes in parallel. A multi-processor Erlang runtime system has been
developed - current results are presented and discussed. An "FoU" release is scheduled this
year. "

18.00iConclusion and questions.

Erlang User Conference 1997

ANX

Network Overview

Web
server

Router

STB = Set-Top Box
NT = Network Terminal
PSTN = Public Telephony Network

Erlang User Conference 1997

ANX
Building blocks

ANXMS

Erlang User Conference 1997

ANXx
ATM Access Shelf (AAS)

Erlang User Conference 1997

ADSL
Principles

A

i R
ISDN
ADSL
POTS
~ 0.4 MHz ~1 MHz

- freq

Erlang User Conference 1997

ANx DSL

Network Overview

Filter

ANxMS

cpP

AAS

Erlang User Conference 1997

ANx DSL

Network Terminal

mp—

L

,_
>
4
(1]

Erlang User Conference 1997

ANx DSL

Network Interfaces

Erlang User Conference 1997

HFC
Principles
A Upstream Downstream
Channels Channels
MNNC N1 [[
CATV
pass through
J freq
o
5 45 450 860 [MHz]
1.6 MHz wide 6/8 MHz wide

\ i

m
»
e
>
z
@

Erlang User Conference 1997

ANx HFC

Network Overview

ANxMS

Erlang User Conference 1997

ANX
Speed

[MBit/s] ~35
81

Il Downstream
B Upstream

ISDN ANx DSL ANx HFC
1 user

\ s

m
=
-
>
z
(2]

Erlang User Conference 1997

ANXx

Processor Hierarchy

Shelf
controller

:---—---——--—--

- e]

[

[

Network
terminals

Erlang User Conference 1997

ANXx
CP Application SW

SNMP agent

MRS - API

UNI signalling

t—p~ ATM IF

Internal Communication System

shelf controllers

\ b

m
=
-
>
=
@

Windows NT and Erlang

— bW
. 3

" ERICSSON 2 avonaiestee oeva

Jorn Svendsen

Windows NT and Erlang

ERICSSON ﬁ LMIVIZN-O7; 143 Uen Rev A

! . - v
ERICSSON Z nvmimie e era

orn Svendsen

Windows NT and Erlang

ERICSSON 22 0@mmmoniss v keva

‘orn Svendsen

Windows NT and Erlang

ok

ERICSSON ? LMINTAN.97:143 Uem Kev A

ERICSSON 2 ta/maniio e eva

1 Svendsen

Windows NT and Erlang

THz Pentium 5
- PC 150 MHz Pentium 9

ERICSSON ; LMIVT/N-97:145 Uen Rev A

i - .= T - y o 3 . Rt st e

ERICSSON 2= iuvimanias v feva

orn Svendsen

Windows NT and Erlang

" ERICSSON = LN e e A

Jorn Svendsen

Windows NT and Erlang

ERICSSON g LMIVIZNA7:143 U Kev A

rn Svendsen

SwitchBoard Modular
e Modular with only
Overview one type of module Flexible
« Different physical interfaces or
recources on daughter boards

Sg(a:!aalla)éele o very 4 PCM interface 4 PCM interface ° Backplane independent
L] r N o ™
small to very large at SRS N (N S S SN N N B ‘ o
linear cost | ; Agr\:an_celcli sdvyntqgmgd
' : * Physically aistribute
i Physical interface Physical interface i non-blocking switch
E or resources or resources i 3 SWltChlng Of Varlable
: i]] E bandwidths
Reliable LI I I I 2
» Distributed functionality ; i
without central part Optical { —_ >< — } Optical
e Low level redundancy interface | =i <— [interface
: 7oy I Upgradable
N { : * Built with RAM based
_ A g ¢ - Moo iore : programmable logic
Optional BX i Eg::t:rc?i;n ¢ i 7|terminators I e Software downloadable
e Optional P A R ! i to flash
recources on board 5 1 ;
Powerful S Hlijgh capac:Ity sitg_;nallfiri!gk
e Powerful processor * Dynamic allocation of lin
executing distributed Erlang layer terminators
 Communication to external e Allow different link layer
S world via ethernet protocols

ERICSSON Z

SwitchBoard

Scalability

ace 4 PCM interface 4 PCM interface 4 PCM interface 4 PCM interface 4P
- e S ey ey ey —
__________ T_____-_|_—~1----t‘—_t--‘“----‘_-_1____}-_-}____---T_---”--r--‘l-_-1-__1-_-____--r___1--Hiﬁ--—t-____-_r_---_-- B
1] I
1) 1 1
i s i | L
rface E Physical interface Physical interface E Physical interface Physical interface E Phys
es ! or resources or resources ' or resources or resources ! or
]]]
()] 1
A i A 4 4) [} 1} A i [O} ') i A
| ; Yy ¥ VvV V¥ Yy ¥V] i Yy VY VvV Vv Y ¥ v %y : |
: t AN A : Q AN J ! t
P maeeteans Y A SR Y i e
i E- Tone i : i- Tone if ; i Ton
1 1
UG i i generation & CPU af 32 HDLC E i generation & CPU 3 32 HDLC ! i gener
nators H i d . ' 7lterminators H ' , i 7|terminators H 1
H I detection 1 i ! detection | ' i detec
- Lmmmmeee o ' : [' H (I
[}] [}
1] I 1
H £ v

961003

Ethernet

Ethernet

ERICSSON

A\

SwitchBoard
API

External applications

SwitchBoard API

SwitchBoard applications

The external application can run either on the SwitchBoard or on another
computer connected to the SwitchBoard via TCP/IP.

961003

ERICSSON

\

P~

\

The Integration of Functional
and Non-Functional
Requirements

Professor Fergus O’Brien
Director, Software Engineering Research Centre

Presented by Helen Airiyan,
Software Engineering Research Centre

History

e NATO Conferences 1967, 1970
e Core Elements for Software

¢ General Engineering Lessons

The Engineering Model

e Functionality specified

* Physical laws as constraint set

The Software Engineering Model

* Functionality Specified

* Non-functional requirements
< Performance
% Reliability
< Maintainability

New Software
Engineering Paradigm
Non-Functional Requirements = Physical constraints
Definition of Non-Functional Metrics
Techniques for On-line Metrics
Use Techniques throughout life cycle

Use for control/recovery

Example of
Performance Metric

Define Application Domain as Use-Cases

Specify Performance per Use-Case

Budget across Modules

Monitor per Module per Use-Case

Metrics Researched

e Service Level Agreements
Performance in C

Reliability

Maintainability

Clarity

The Framework Project
Commenced 1995

Overall architecture for parallel handling
of functional and non-functional
requirements

Based on Erlang

MP Pentium implementation

Patent Application Framework

Organisational Implications

Functional Code - development group

Non-Functional Code - QA group

Seamless development to maintenance

Proactive project management

Erlang Engine - Helatlonshtp

MP Erlang Engme COTS System

OUTSOURCED SOFTWARE
(EALANG)
C C+

ERICSSON CORE SOFTWARE SOFTWARE
(ERLANG) 1 GRAPHICS

KERNEL [le] —

vo UNIX TCP
COMS
HIGH SPEED INTERFACE P

| I RP Bus |

Futures

e Erlang Engine Prototype end 1997
e PhD for Framework end 1998

e Development of Paradigm

Using Erlang For ATM-Switch Control '
Contents

Basic Architecture
Runtime Architecture

Performance Considerations

Call-Control Architecture

How to write fast code in Erlang
Performance Progress
Software Supply Flow

ETX/B/XBS UHf Wiger 719 8195 ETXUWIG-07:081 (PA1 [l 1997-08-21 W 1(8) |

Thometele/documengeucdT/ul_wigerim

Basic Architecture

External Exchange Switch Control
ATM Network Terminals Core Processors

' - Call Handling
- Operation &
Maintenance

Communication

ETX/BMES Uil Wigor 715 81 95 B ETXUWIG-97:081 [PA1 | 1957-08-21 [2(8) |

Ioomafeliadocurmm tieucITAuN_wigerim

e
Using Erlang Fo. .~ TM-Switch C...rol

ATM

Runtime Architecture

Network BICI

UNI SNMP, HTTP
PNNI-S FTP, NTP

System
Ciz

ol update

pvc req
charging
pvc data

config data
heartbeats

ET

ETX/B/XBS Ul Wiger 719 81 95 ETXUWIG-97:081 (PAT |

. wiga b

ERICSSON 2
Performance Considerations

Up to 30,000 connections
— can’t have one permanent process/call

RPC is costly
— centralize call handling

Errors must be confined within one call
— store state information in ETS tables

Switching between C and Erlang is costly

All software must handle takeover with minimal
loss of service

Flow-control needed for communication

ETUBXBS Ut Wiger 713 8195 ; [FAT— i®)

omafigliafdocurment/sucT/u_wigar. fm

Using Erlang For _ M-Switch Co.__Jl

Using Erlang For ATM-Switch Control

Call-Control Architecture Performance Progress

° March '96: 250 ms
— BISDN prototype from P3A

o May ’96: 40 ms — Modified BISDN prototype

quked—in
driver (signalling port

(May '96: Start of major development)

B-number
analysis

timers ‘ linked-in

CS0
resource ctrl L
dpCom server driver

. Oct '96: 65 ms (90 ms JAM)
— First bare-bones UNI implementation

Feb '97: 52 ms — Full-functionality UNI
Aug ’97 predicted: 35-38 ms
Mid-"98 pred.: 5-10 ms on UltraSPARC 2i

NS
linked-in
driver

ETXE/XES UNf Wiger 719 8195 ETXUWIG-97:081 (AT | (5@) | ETE/XES U Wiger 719 81 95 [PA1 |l 1997-08-21

homaaiin'documanysuci7hd_sigerim Momeeliadocumanveuca/ul_wigerim

Software Supply Flow

How to write fast code in Erlang

° First make it work — then make it fast We have built tools to streamline testing, delivery and

. Model to reduce: \ handling of our product line.
Clearmake

Design Integration &
Integrate tool O Q Test

SW Management (~ 40 designers) (~ 10 people)
PRIM/GASK Update tool (not yet)

. Context switching
° Database updates

. Data conversion/packing/unpacking
Rapid feedback — educate designers
Detailed profiling

Factory Install Packages UPACKs on CD

Rewrite - measure - rewrite
New Sites Existing Sites

|

ETX/B/XBS UHt Wiger 719 8195 [PA1 | 8(8)

ETX/B/XBS UK Wiger 719 81 95 I ETXUWIG-57:081 [PA1 |l 1997-08-21 6(8)

Momefelie/dosurmtiaucITAN_wigar fm omaplia/dacummentieus§7/uK_wigar fm

"The goal of the project is to deliver an Object Request
Broker environment in erlang compliant with the CORBA
2.0 specification 971201. "

“ s

e

adaptoriforErlang

afl

e

; Owmm@uﬁwrmmrﬁh?ribm.mmmemjﬁ;gm "__ o it

- Standardized mappings toimplementation langtages, C, C++; Smalltalk

lai

Pt

ust,

iﬁ»r«- .

%
and event services

- Concer

tual view

%= More real view,
" jectsiuse the Orbis

Conceptual vie

Y ’%g
i

st sy~ L ol
sobjects are on different chhl_nes)

3 ' I

&

Presentation missing at time for producing precedings

Towards an Even Safer Erlang

1. Towards an Even Safer Erlang
O Dr Lawrie Brown
B Australian Defence Force Academy
Dr Dan Sahlin
B Computer Science Labs, Ericsson Telecom
2. Introduction
O want an even safer Erlang system
O constrained and partitioned execution
O ideally with
W minimal (user) visible language changes
B minimal (if any) impact on performance
O currently proof-of-concept research
O two prototypes - SafeErlang, SSEr]
3. Rationale
O mobile agents
W server lets agent code migrate to it
O applets
M client requests applet load and run
O outsourced code
B run application but control access
O fault isolation
B isolate application components
4. Limitations
O on a current Erlang system (node)
O processes have same "world-view"
B modules, names, resources, servers
O pids/ports too powerful
B forgeable
B unrestricted control over resource
B eg can kill any process on system
O code always uses "local" context
5. Safety Issues
O constrained & partitioned execution of code within an Erlang system
O support for "remote" code loading and execution in context
O security of links and data transfer between Erlang systems
6. Safer Execution in Erlang
O language has intrinsic benefits
O want custom world-view
W implement a hierarchy of (sub)nodes
W registered names
B modules available
B resource limits
O need controlled access to processes and external resources (ports)
B make these data types capabilities
7. Nodes
O each Erlang system to support a hierarchy of (sub)nodes
O provide a distinct context
M registered names

M control which servers are accessible
B modules available
B module name aliasing
M support remote loading, safety renaming
B resource limits on processes
B partition & constrain use of system resources
8. Capabilities
O unique, unforgeable resource name with associated rights to use
B <Type,Node,Value Rights,Private>
O for nodes/pids/ports/user capas
O possible implementations
B crypto hash check, validated by node
B password (sparse) key to table of valid capabilities managed by node
9. SafeErlang
O Naesar & Sahlin, Uppsala
W Masters project, late 1996
O subnodes provide distinct context
W custom modules, resource limits
O capabilities control access
B encrypted (must decrypt for all use)
¥ nodes & pids only
O remote module loading (mids)
B for mobile agents
10. SSErI
O Brown, ADFA
M sabbatical research, 1997
O subnodes provide distinct context
W distinct names
B module aliases
O capabilities control access
W nodes, pids, ports, user capabilities
H both crypto hash & password
O remote module load (coming)
11. Remote Code Execution
O want support for "remote” code loading and execution in context
W to support mobile agents, applets
O module references in "remote” modules should be interpreted thus
B should load requested module from remote system, not from local system
O want code mobility whilst executing
B several processes, upon request
12. Other Issues
O link security
B need encryption/authentication (SSL) on links between Erlang systems
O registered names
B local - name on local node
B distributed - local name on given node
B global - hierarchy of names not flat
O module names and grouping
B functions in modules in projects???
13. Conclusions
O rationale & approach for a safer erlang execution environment

O to support mobile agents, applets, outsourced code, fault isolation
O a hierarchy of nodes & capabilities
O with minimal visible changes or performance impact
O aim to incorporate into ERTS
14. Questions
15. Types of Capabilities
O need capability data in clear
W for efficient guards/pattern matches
B <Type,Node,Value,Rights,Private>
O crypto hash check value
M node has private key to compute/check
W small vulnerability to search attacks
O password (sparse) value
B key into node table of valid capabilities
M any guess must verify with node
16. Performance Impact
O space
B expect approx same no capas as pids/ports now (user capas are extra)
W capas only a bit larger, not significant
B password capas do need extra table

B check value used on creation
W can tag "local" capas as checked
B "remote" capa use has comms delays
17. Global Names
O need hierarchy of names and name servers for scaleability
O suggest new "global" server which manages overlapping hierarchies
B with parents, peers, children as well as own registered names
B update all peers with changes
B client responsible for redirects between servers to locate name
18. Further Information
O see papers and software on web
B http://www.adfa.oz.au/~Ipb/TR/ssp97/
W http://www.item.ntnu.no/~lpb/ssp97.html

Lawrie.Brown@adfa.oz.au / 04-Jul-97

Erlang Conference 1997

The Erlang

type
system

Joe Armstrong

Computer Science Laboratory
Ericsson Telecommunications AB
Sweden
joe@cslab.ericsson.se

15 August 1997

Joe Armstrong
Ericsson Computer Science Laboratory

Erlang Conference 1997

e Credits.

e What is a type system?

e Types of type systems.

e The type notation.

e Subtyping.

e Examples.

e What else can the type system do?
e To do.

Joe Armstrong
Ericsson Computer Science Laboratory

page 1

Erlang Conference 1997 ‘ Erlang Conference 1997

What is a type system?

Phil Wadler

Was at Glasgow University now at inferno + ML groups at
Lucent (was "unix” group at Bell-labs)

e A type is a property of a program which can be
proved.

Simon Marlow !
Glasgow University

Joe Armstrong I

Joe Armstrong Joe Armstrong
Ericsson Computer Science Laboratory I Ericsson Computer Science Laboratory
page 2

page 3

Erlang Conference 1997

Types of type system

e Untyped - assembler - no typing at all. Bad
programs can dump core.

e Strong static typing - the pascal family, Java. All
types must be declared. Types are checked at
compile time. The type system cannot be broken.
Program cannot dump core at run-time due to type
errors. Usually monomorphic.

e Weak static typing - C etc. All types must be
declared. Types are checked at compile time. The

type system can be broken. programs can dump
core.

e Dynamic typing. Erlang, prolog, lisp, smalltalk. No
types are declared. Type checking is done at
run-time. The type system cannot be broken.
Programs cannot dump core due to type errors.

e Polymorphic strong typing. ML, haskell. Types may
be provided. If the type is not provided it is inferred
from the program. Types, if provided, are checked
against the inferred types. It is impossible to break
the type system.

e Soft typing. Erlang. As for polymorphic strong
typing but type incorrect programs can be compiled.

Joe Armstrong
Ericsson Computer Science Laboratory

page 4

Erlang Conference 1997

The type notation

Primitive types
e integer () - an integer - 123.
e float () - a real number - 3.14159.
e string() - a string - "hello world”.
e atom() - an atom - hello.
e Atom - an atom.
e pid() - a pid.
Type constructors:
e [X] - alist of type X

e {X,Y,Z} - a tuple of arity three, with given
argument types

e Atom{X,Y} - a tagged tuple (Type) where the first
item is the atom Atom.

e tuple() - a tuple of (unknown) arity

Function Types

e —~type map((A) -> B, [A]) -> [B]

Joe Armstrong
Ericsson Computer Science Laboratory
page 5 I

Erlang Conference 1997

Subtyping
Suppose
X =[1,2,3],
Y = [a,b,C],
Z =X ++ Y.

What is the type of 77
e X has type [int ()].
e Y has type [atom()].

e ++ (i.e. append) has type
-type append([A]l, [A]) -> [A]

Answer: A when A <= int(), A <= atom().

Joe Armstrong
Ericsson Computer Science Laboratory

page 6

Erlang Conference 1997

Example 1

Normal usage of the type system:

-module(ex1).
—export ([xand/2]).

xand (true, true) -> true;
xand(true, false) -> false;
xand (false, true) -> true;
xand(false, false) -> false.

Run the type checker

> tc_main:tc("exl.erl").

And look at the results:

> cat exl.types
-interface (exl1).

-type xand(false | true, false | true) —>
false | true.

Joe Armstrong
Ericsson Computer Science Laboratory

page 7

Erlang Conference 1997

Exampie 2

Try to call something in ex1.erl:

-module (ex2).
-export([a/0]).

a() -> exl:xand(true, false).
The result:

> cat ex2.types
-interface (ex2).

-type a() -> false | true.
Now call xand with bad arguments

-module(faill).
-export ([a/0]).

a() -> exl:xand(tru, false).
Type checking fails

> tc_main:tc("faill.erl").

faill.erl: 5: type error in 1ist argument
of call to exl:xand/2

inconsistent constraint:

tru <= false | true

error

Joe Armstrong
Ericsson Computer Science Laboratory

page 8

Erlang Conference 1997

Example 3

Correct and incorrect use of xand:

-module (ex3).
-export([a/0]).
a() >
case exl:xand(true, false) of
true -> 1;
false ~> 2

-interface (ex3).
-type a() -> integer().

-module(fail2). I
-export([a/0]).
a() —>
case exl:xand(true, false) of
tru -> 1;
false -> 2
end. I

> tc_main:tc("fail2.erl").

fail2.erl: 7: type error in pattern match
inconsistent constraint:

false | true <= false | tru

Joe Armstrong
Ericsson Computer Science Laboratory

page 9

Erlang Conference 1997

Example 4

Types as documentation:

-module (ex4) .
-export ([xand/2]).

-type xand(bool(), bool()) -> bool().

xand (true, true) -> true;
xand(true, false) -> false;
xand (false, true) -> true;
xand(false, false) -> false.

-interface (ex4).

-type xand(bool(), bool()) -> bool().

Joe Armstrong
Ericsson Computer Science Laboratory

page 10

Erlang Conference 1997

Example 5

Types as verification

-module(fail3).
-export ([xand/2]) .

-type xand(bool(), bool()) -> bool().

xand(tru, true) -> true;
xand (true, false) -> false;
xand(false, true) -> true;

xand(false, false) -> false.

> tc_main:tc("fail3.erl").
fail3.erl: b: signature for

is not an instance of the
inconsistent constraint:
false <= true

Joe Armstrong
Ericsson Computer Science Laboratory

xand/2

inferred type

page 11

Erlang Conference 1997

Example 6

Adding types declaration is a good idea, because
the following program is well-typed, but does not
have the type we expected:

-module(ex5) .
-export([xand/2]).

xand(tru, true) -> true;
xand (true, false) -> false;
xand(false, true) -> true;
xand (false, false) -> false.

-interface (ex5).

-type xand(false | tru | true, ())
-> false | true.

Joe Armstrong
Ericsson Computer Science Laboratory

page 12

Erlang Conference 1997

What else can the type system do?

e Enforce abstraction boundaries

e Verify that programs are type-correct at compile
time (i.e. you get no run-time type errors)

e —~deftype bool() = true | false
e —exportdeftype([t/N]).
e —unchecked_type foo Type —-> Type

e Provide formal documentation of functionality

Joe Armstrong
Ericsson Computer Science Laboratory

page 13

Erlang Conference 1997

4 e Cannot check all code (-unchecked_type ...).

e There are some existing Erlang programs (c. 10 %)
which run correctly and produce the expected results
but which are not well-typed. This code must be

| re-written to get it through the type checker, or

| annotated with unchecked declarations.

e Cannot check some generic code, but this is not a
problem.

‘ e s slow.

I e Difficult to understand error messages.
: e No course material.

e [s a prototype.

Joe Armstrong
Ericsson Computer Science Laboratory

page 14

Motivations

Etos: an Erlang to Scheme compiler e Erlang and Scheme have common features
— functional
. — dynamic typing

— data types & GC

e Scheme has good compilers
Marc Feeley and Martin Larose 5 — pseudoknot: 5 times faster

Université de Montréal e Several Scheme compilers available

— Gambit, Bigloo, Chez-Scheme, Stalin

Portability vs. efficiency

Summary Etos:

= .. e Written in Standard Scheme
e Portability vs. efficiency

e Generates almost standard Scheme code
e Data types

— macro definition file to exploit Scheme
implementation’s non-standard features

Binding and pattern matching

Direct translation when possible
e Limitations

e Interfacing Erlang, Scheme and language

. extensions
e Performance comparison

e Easy to debug
e Future work

e Fair comparison between Erlang and Scheme
compilers

Data types 1

Erlang

integer
float
atom
list
tuple
function

Scheme

exact integer
inexact real
symbol

list

vector
procedure

Binding and pattern matching

Example: [X|Y] = foo:f(A), X+bar:g(Y)

(let ((v7 ~a))
(let ((v5 (foo:f/1 v7)))
(let ((v6 v5))
(if (erl-cons? v6)
(let (("x (erl-hd v6)))
(let (Cy (erl-tl v6)))
(let ((v1 v5))
(let ((v2 °x))
(let ((v4 ~y))
(let ((v3 (bar:g/1 v4)))
(erl-add v2 v3)))))))
(erl-exit-badmatch)))))

(let ((v5 (foo:f/1 ~a)))
(if (erl-cons? v5)
(erl-add (erl-hd v5)
(bar:g/1 (erl-tl v5)))
(erl-exit-badmatch))))))

Benchmark programs

Limitations e integer arithmetic

. A — fib, huff, length, smith, tak
e Macros, records, ports and binaries &

. . floatin oint arithmeti
e Process registry and dictionnary 9p '

— barnes, pseudoknot

Dynamic code loading

list processing
Built-in functions and libraries

— nrev, gsort

Distribution

® processes

— ring, stable

Compilers

e Hipe 0.27

e BEAM/C 4.5.2

e JAM 4.4.1

e Etos 1.4 and Gambit-C 2.7a
— generates portable C code

— extensions to Scheme standard (includes
a C-interface)

— function inlining, float unboxing, bound
interrupt checks

— stop & copy GC, dynamic heap resizing

— efficient call/cc

Results I

= Sun UltraSparc 143 MHz with 122 Mb

Etos | Time relative to Etos
Program (secs) | Hipe BEAM JAM
fib 31.46 | 1.16 — 8.33
huff 9.94 | 1.45 4.43 24.75
length 11.54 | 2.08 3.36 34.61
smith 11.47 | 2.02 2.63 12.07
tak 13.27 | 1.12 o 13.33
barnes 1591 | 1.18 - 2.24
pseudoknot | 20.66 | 1.83 — 2.58
nrev 24.81 .78 — 8.21
gsort 16.32 .87 — 14.85
ring 124.58 .30 .29 1.71
stable 21.40 | 1.13 — 1.79

10

Results II |

e Integer arithmetic | Future work

— up to 2 times faster than Hipe

Full compliance to Erlang 5.0

e Floating point arithmetic

Access to Gambit-C C-interface
— 1.18 to 1.83 times faster than Hipe

. , Gambit-C tuning for Etos’ code generation
e List processing

— space usage (3 words per pair)

Native code back-end for Gambit

— interrupt checks
P — factor of 2 performance boost

— tail-recursion in C

Hard real time and generational garbage
e Processes collector

— intermodule calls and call/cc interface

11 12

Conclusions

e Outperforms all other compilers on most
benchmarks

e Process management needs improvement

e Scheme is well suited as a target language
for Erlang

13

p=——=——1 . .
Department of Telecommunications

Faculty of Electrical Engineering
University of Zagreb, Croatia

=

Tustitia - Erlang Based Load
Balancing Experiments

Sasa Desic
Zrinko Kolovrat
Ignac Lovrek

Department of Telecommunications
Faculty of Electrical Engineering and Computing
University of Zagreb, Croatia
HR-10000 Zagreb, Unska 3
tel: +3851 612 97 51
fax: +3851 612 98 32
e-mail: sasa.desic@fer.hr

Erlang Users Conference
Kista, August 26", 1997

_= . .
Department of Telecommunications

Faculty of Electrical Engineering
University of Zagreb, Croatia

F==
Overview

Introduction

Problem Statement

Load Balancing

Distributed Erlang Features
TUSTITIA - Basic Characteristics
IUSTITIA - Processes

Erlang experience

Department of Telecommunications Department of Telecommunications
Faculty of Electrical Engineering Faculty of Electrical Engineering
University of Zagreb, Croatia University of Zagreb, Croatia
F= F=3
-]
Problem Statement (1/2)

Introduction

Place - Distributed system

.. . Distributed system
Problem - Request rejection because node overloading

Solution - Load balancing !

Experiments - Erlang based package for load balancing
simulation

Call and service requests

Distributed system - network of processing and communicating
nodes

Processing requests arrives from the outside world in independent
streams

Call and service environment represents distributed system load

Stochastic nature of calls and services causes network fluctuations
and imbalances of load

Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia

F=3

Problem Statement (2/2)

Distributed
system

Incomming
requests

Y Environment
Rl'e'jécted

requests

Imbalances of load causes situation where some nodes are below
capacity while others are simultaneously overloaded

Part of incoming requests will be rejected because processor’s
overloading

We consider problem of load sharing, load balancing and
increasing processing capabilities

l Processor queue

Incomming N Finished
requests work

Y

Request Q
rejection

A
L

I—————1 . 5
Department of Telecommunications

Faculty of Electrical Engineering
University of Zagreb, Croatia
=
= Load Balancing (1/2)

Load Balancing - moving of load from overloaded node
(processor) to underloaded one

S; - system node
Q; - queue size on node S;
L and H - system parameters

Node statuses are defined as follows:
1. A site S; is underloaded, if Q; <L

2. A site S; is overloaded, if Q; > H
3. A site S;i1s normal, if L <Q; <H

processor's queue size

time

Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia
F=3 Load Balancing (2/2)
==

Possibility for load balancing - when there is at least one
underloaded and one overloaded node

Node time

Aim of load balancing - fair distribution of load through all system
nodes

Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia
F= Distributed Erlang Features

1. Queue size measuring

l Processor queue
Erlang: — > F'cv'::‘ked
statistics (runqueue)
—p
Q,
2. Measuring of queue execution time
l Processor queue
Erlang: Finished
— = —3
oE e work
utilization()->
{Start,_}=statistics(runtime), « >
End= utilization(500), t

Start-End.

utilization(0)->
{End,_}=statistics(runtime),
End;
utilization(N)->
utilization(N-1).

- Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia

F=3 IUSTITIA - Basic Characteristics (1/4)

M Justitia - Load balancing experiment

" Authors: Sa

M Distributed run-time system simulation

14 modules
1200 lines of code
GS module for graphical presentation

Y Department of Telecommunications

Faculty of Electrical Engineering
University of Zagreb, Croatia

FER IUSTITIA - Basic Characteristics (2/4)

- Built-in load balancing mechanisms (self-balancing)

- Artificial workload simulation (stochastic environment
simulation)

- Scheduling engine is:

e global (we have the problem of deciding where to execute
a arrived task)

e dynamic (assignment decisions are made in run-time)

e physically distributed (the work involved in making
decision should be physically distributed among the nodes)

e cooperative (each processor has the responsibility to carry
out its own portion of the scheduling task, but all processors
are working toward a common system wide goal)

e source-initiative (the node where job is arrived, according
the collected information, decides where to send the job or
to execute locally)

- Fault tolerant system with self-recovery functions

@ Graphical user interface with on-line monitoring

Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia

F== IUSTITIA - Basic Characteristics (3/4)
Supervisor }\
Load sharing Monitoring

Distributed
system

e Processes as the main unit of model's structure

e Global and Local Supervision process

e Global Supervisor (keeping the whole system working property,
administrating purposes)

e Local Supervisor (organizing and monitoring processes on the
local level)

e Register process (node bookkeeper, queue size measuring)
e Balancer process (heart of balancing engine)
e Generator process (synthetic workload generation)

e Graphics process (graphical user interface)

Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia

=

IUSTITIA - Basic Characteristics (4/4)

LAN
- (__TCPIIP protocol j C TCP/IP protocol)
" e ;
Erlang node \\ : Erlang node \ :
Supervisor| - ' Supervisor
Register Register
\‘Generator B;a_lalcer L(%-G_I:Iirator Ba'ancer :
UNIX node UNIX node

Department of Telecommunications

Faculty of Electrical Engineering
University of Zagreb, Croatia

F=3

Main node

Local Supervisor

IUSTITIA - Hierarchical Organization

N an

(T
' Graphical user
,' interface

3

Remote node

Local Supervisor

Remote node

Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia

F=3 IUSTITIA - Process Supervisor

TR,

Global Local
Supervisor Supervisor
~ Other e "‘"_'
processes ;
& If!e_;mote node: ey

e System starts from main node (Graphics and Global Supervisor
process)

e Global Supervisor starts Local Supervisors processes on remote
nodes

¢ Local Supervisor starts other processes on the local level
(Register, Balancer, Generator)

e User controls system through the main node
e Global Supervisor watches Local Supervisors processes (fault
detection and self recovery)

¢ Local Supervisor watches other processes on the local level

— Department of Telecommunications ™ Department of Telecommunications
Faculty of Electrical Engineering ' Faculty of Electrical Engineering
University of Zagreb, Croatia University of Zagreb, Croatia

F=3 IUSTITIA - Process Generator F== IUSTITIA - Process Balancer (1/2)

U

Local supervisor
| receives incoming
' tasks

I
b

Generator asks
Balancer for place
of job execution

Monitoring

Nodes status
determination

Balancer desides
to execute job
locally or to sent
somewhere else

_9(Register gives

information about

local and remote
node status

h 4

-
Post-mortal
k analysis

bt

Database
storage

7N\

Transport and
Job execution on fiob

e Each 750 ms checking of queue size (represents workload) local node execut;zn 0 J% on
another node

S - I

e Process responsible for tracking nodes current load

\

e Results from tracking are saving to a file and could be used for
latter analysis

—— Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia
EE=S IUSTITIA - Process Balancer (2/2)
—

FOCUSED ADDRESSING

In this approach each site keeps state information about other sites.
When a newly arriving process enters the system at a local site, the
local site queries its information and may immediately select a site
for transferring the process.

SENDER DIRECTED

When a site has more processes than it can handle it becomes a
source of work. To reduce its workload it may randomly select a
site to send a work, or perhapes sequentially select a site o send
work. The key idea behind this approach is the lack of interaction
between the source and system.

RECEIVER DIRECTED
The server when idle, solicits work from system.

BIDDING

In this approach local site determines if processes sholud become
candidates for movement. At the local site, a request for bids is
sent out to remote sites. These remote sites bid on the candidate
and return the bid to the requsting site. The bid is evaluated and
the candidate processes is either kept or transferred base on
evaluation.

- Department of Telecommunications
Faculty of Electrical Engineering
University of Zagreb, Croatia

FE=I IUSTITIA - Process Generator

TR
P !'

* Artificial workload generation
e Call and service environment simulation
e Three types of workload

, Execution times Type 1
Ly,

» Execution times Type 2
N A

» Execution times Type 3

Department of Telecommunications . Department of Telecommunications
Faculty of Electrical Engineering Faculty of Electrical Engineering
University of Zagreb, Croatia University of Zagreb, Croatia

FE= F=R

IUSTITIA - Monitoring Erlang experience

A

i(s)

=

e it’s easy to build distributed system
¢ adding and removing node from the system

140

130

e concurrent processes
¢ useful for building independence part of system
= e simultaneously information processing

120

T

. 8 e capability of handling queue size (queue size is the main
measure in our program)

ks

* gs module - very easy to build graphical interface (comparing
with pxv module)

Aol N
%

Node monitoring
glavni@tmiku.tel.fer hr

Je

Utilization factor
Queue size
N I
i
10 20

2504
2004
1504
100
50

0

Erlang on multiprocessor

3rd Erlang User Conference, August 26t 1997 ERICSSON =

Introduction

3rd Erlang User Conference, August 26th 1997 ERICSSON =

Page 1

Motives

“More rea] -time through native OS
threads

3rd Erlang User Conference, August 26th 1997 ERICSSON =

3rd Erlang User Conference, August 26th 1997 = ERICSSON =

Page 2

Hardware

‘mLarge systems can be created by
~ interconnecting MP boards. =~
- mMainly driven by server/database
market.

@ﬁé..

3rd Erlang User Conference, August 26th 1997 ERICSSON =

LA

m Simpler torewriteto -~ M
MT safe eitt s te

Jrd Erlang User Conference, August 26th 1957 ERICSSON =

Page 3

Design Choices

" mScales (‘7) better 50 well

3rd Erlang User Conference, August 26th 1997 ERICSSON =

Implementation

3rd Erlang User Conference, August 26th 1997 ERICSSON =

Page 4

Messages and Signals

3rd Erlang User Conference, August 26th 1997 ERICSSON =

Mixed Scheduling

3rd Erlang User Conference, August 26th 1997 ERICSSON 2

Page 5

Different parallelisms

-

3rd Erlang User Conference, August 26th 1997 ERICSSON =

Current results on MP machine

- /O system slow on
i i Qe e i
i, S - s

b 8 e 8 P
- = No NT work don

3rd Erlang Ussr Conference, August 26th 1997 ERICSSON =

Page 6

3rd Eriang User Conference, August 26th 1997 ERICSSON =

Page 7

