
3rd International Erlang User Conference

1997-Ãug-26

-

ERLANG

Ericsson Software Technology AB
Erlang Systems
Box I2I4
SE-164 28 KISTA
SWEDEN
http ://www. ericsson. se/erlang/

phone: +46-8-719 0000

fax +46-8-719 8940

O

T

o

o

Programme

speech by Bemt Ericson V.P. Research & Technology, LM Ericsson

ser presentation: Next generation high speed internet access using Erlang by Martin
Ericsson Telecom at

ser presentation : A distributed application in Erlang on windows-NT by Jöm svendsen,
Ericsson A/S (Denmark).

10 se of Erlang and Windows-NT in a distributed environment. Load and security considerations
areal life telecom product with high availability requirements. Windows-NT what to

Configuration of Windows-NT and the network."

0.

ser presentation: - default hardware for Erlang by Ulf Svarte Bagge,Ericsson
Networks AB.

SwitchBoard is a modular high capacity switch capable of handling a large number of El/Tl
It is designed as a general telecom hardware controlled via an API in Erlang. Main

t1
: Scalability: Scalable from small to large at a linear cost, one or several identical

(S witchB oards) interconnected via an optical "backplane" Fault tolerance: Physically
switching without central part and with low level redundancy control Other features

as small physical size, low cost, termination of layer 2 on board, generation of tones,
switching of different bandwidts, alternative physical interfaces or resources on

boards and much more."

ser presentation: Erlang and a new paradigm for software engineeringby prof. Fergus
'Brien, Software Engineering Research Centre (SERC) - Australia. The presentation will be
ven by Helen Airiyan, SERC.

paper presents an approach to the complete life-cycle of major software projects based on
11 incorporation of non functional requirements from the initial problem definition stage. A

perspective ls used to develop the rationale for such an approach, and its use ¿ts a model
further Software Engineering developments. The practical implementation of this approach

through a system that has been built using Ericsson functional language envronment,
The ongoing research and future directions are also outlined. "

CH

To be announced.
t2

you have any special requirements such as vegetarian food, please let us know in your

by Ulf Wiger, Ericsson Telecom.

13.t the development of broad-band

ßTjltruture directions for theder-,elopmgnt of E4ang S
RBA enabled Erlang by Peter Lundell, Ericsson Telecom.

4.t A CORBA package for Erlang System/OTP is under development. The presentation covers its

, usage and implementation. The package will soon be available as an alpha release to
users.tt

i4.¿slconee

ls.rslro b"
ßerver

confirmed: INETS, the Internet package of Erlang System/OTP (Java connectivity, HTTP
, etc)

an Even Safer Erlang by Dr. lnwrie Brown,Australif;h Defence Force Academy and

S ahlin, Computer Science Laboratory - Ericsson. &

5
This talk discusses on-going resea¡ch into extending the Erlang system to better support

and partitioned execution of code. This could be used to support mobile agent,

or outsourced code execution, or simply for improved fault tolerance. Extensions adding

hierarchy of nodes, and capabilities for nodesþidsþorts are being prototyped."

t6.1SlShort break
type-systemby Joe Annstrong, Computer Science Laboratory - Ericsson.

A type system for Erlang has been developed in a collaboration between the Ericsson Computer
Laboratory and Phil Wadler and Simon Marlow from Glasgow University. The type

16. can detect inconsistencies in Erlang programs and can be used to verify that Erlang
are well-typed. Well-typed programs are guaranteed never to fail with run+ime type

all such enors are detected at compile time. In addition the type notation can be used as a
design tool. The talk gives a brief introduction to the type system."

an Erlang to Scheme compiler by Prof. Marc Feeley andMartin Larose, University of

programming languages Erlang and Scheme have many common features, yet the

1
of the cunent implementations of Erlang appears to be below that of good

of Scheme. This disparity has prompted us to investigate the translation of
to Scheme. In this paper we describe the design and implementation of the Etos Erlang to
compiler and compare its performance to other systems. On most benchmark programs,

outperforms all currently available implementations of Erlang."

t7.L
fIUSTITIA - Erlang based load balancing experiments by Sasa Desic, Zrinko Kolovrat and

$Prof. Ignac Lovrek, Department of Telecommunications, Faculty of Electrical Engineering,
lUniversity of Zaereb - Croatia.

Erlang on multiprocessor systems by Pekka Hedqvist, Erlang Systems.

processes are parallel in nature, as is many telecom applications. Multi-processor
is becoming commodity hardware for a range of applications. To ease the

t7 of high-end scalable systems it is desirable to enable the Erlang runtime system to
Erlang processes in parallel. A multi-processor Erlang runtime system has been

- current results are presented and discussed. An "FoLJ" release is scheduled this

1 S.OQConclusion and questions.

o

I

O,

o

o

o

o

o

Erlang User Conference 1997

ANx
Network Overview

Web
server

Video
server

STB = Set-Top Box
NT = Network Terminal
PSTN = Public Telephony Network

Router

ANx
node

Erlang User Conference 1997

7-ltrl
ER,TANG

ANxMS

AAS

AAS AAS

AAS

ANx
Building blocks

7-ttd
E N,IANG

Erlang User Conference 1997

ANx
ATM Access Shelf (AAS)

7-ltu{
ËR,TANG

Erlang User Conference 1997

POTS

ISDN

ADSL

-1MHz- 0.4 MHz
freq

ADSL
Principles

7-ltrl
ERTANG

Erlang User Conference 1997

ANx DSL
Network Overview

ANxMS

AAS

AAS AAS

o
=¡!

AAS

Erlang User Conference 1997

ANx DSL
Network Terminal

7-ltrJ
E R, tANG

;-ltul
E R, tANG

.:

tr
i.i
i
I

i'

ti.

Erlang User Conference 1997

ANx DSL
Network lnterfaces

t
E

-ld
R, tANG

Erlang User Conference 1997

I

CATV
pass through

6/8 MHz wide

freq

450 860 HzI

Downstream
Channels

545
1.6 MHz wide

HFC
Principles

Upstream
Channels

r-r\rl
ER,tANG

Erlang User Conference 1997

ANx HFC
Network Overview

ANxMS

AAS

AAS AAS

AAS

Erlang User Conference 1997

7-ltrl
ER,tANG

I

ì
l
t,
I

F
l'r

!i

I
i.
I

li
I

ANx
Speed

[MBiUs] -35

I

I Downstream

f Upstream

2
1

ANX DSL ANx HFC
1 user

ISDN

7-lLrl
E N, LANG

Shelf
controller

rf

I
I
¡
Itl

ANx
Processor Hierarchy

Erlang User Conference l99Z

Erlang User Conference l9g7

7-ttrJ
É R.I.A NG

lnternal Communication Syslem

SNMP agent

ATM IF

MHMMHM

shelf

ANx
CP Application SW

7-ttul
ERTANG

o

o

o

o

o

o

a

o

Windotas NT and Erlang

1lørn Saendsen

Windows NT and Erlang

¡

2ørn Saendsen

Windows NT and Erlang

3'ørn Suendsen

Windows NT and Erløng

i;1

4
¡rn Saendsen

Windows NT and Erlang

5ørn Saendsen

Windows NT ønd Erløng

t

i

¡ì

6lørn Svendsen

Windows NT and Erlang

l

7'rn Saendsen

o

o

o

o

O

o

o

o

SwitchBoard Modular
. Modular with only
one type of moduleOverview Flexible

. Different physical interfaces or
recources on daughter boards
. Backplane independentScalable

. Scalable from very
small to very large at
linear cost

4 PCM interface 4 PCM interface

f-
Advanced switching
. Physically distributed
non-blocking switch
. Switching of variable
bandwidths

Reliable
. Distributed functionality
without central paft opticar
. LOW leVel redUndanCy interface {)

Optical
interface

Upgradable
. Built with RAM based
programmable logic
. Software downloadable
to flash

Tone

Optional
. Optional PBX
recources on board

generation
detection

I
L -l

Ethernet
High capacity signalling
. Dynamic allocation of link
layer terminators
. Allow different link layer
protocols

Powerf ul
. Powedul processor
executing distributed Erlang
. Communication to external
world via ethernet

Physical interface
or resources

Physical interface
or resources

CPU

jt
32 HDLC

terminators

961 003

ERICSSON ,

SwitchBoard
Scalability

ace 4 PCM interface 4 PCM interface 4 PCM interface 4 PCM interface 4P

t r------ r

rface Phys
ores

----l r
I
I
I
I
I
I
I
L

DLC
l+lr lOllê r ïone

generation
detection

Ton
gener
detec

loeneration
tr
¡ detection

¡
L---------t L

I
_l

Ethernet Ethernet

I
lt

or resources
Physical interface

tt
or resources

Physical interface

It

or resources
Physical interface

tt
or resources

Physical interface

32 HDLC
termin

CPU
32 HDLC

CPU

961 003

ERICSSON ,

SwitchBoard
API

The external application can run either on the SwitchBoard or on another
computer connected to the SwitchBoard via TCp/Ip.

SwitchBoard applications

External applications

SwitchBoard ÀpI

961 003

ERTCSSON ,

a

o

o

o

o

o

o

o

The lntegration of Functional
and Non-Functional

Requirements

Professor Fergus O'Brien
Director, Software Engineering Research Centre

Presented by Helen Airiyan,
Software Engineering Research Centre

History

. NATO Gonferences 1967, 1970

. Core Elements for Software

. General Engineering Lessons

N

1

The Engineering Model

. Functionality specified

. Physical laws as constraint set

The Software Engineering Model

. Functionality Specified

. Non-functional requirements
* Performance
* Reliability
* Maintainability

N

l.
I

i.
::

2

N

New Software
Engineering Paradigm

. Non-Functional Requirements
=

Physical constraints

. Definition of Non-Functional Metrics

. Techniques for On-line Metrics

. Use Techniques throughout life cycle

. Use for control/recovery

N

Example of
Performance Metric

. Define Application Domain as Use-Cases

. Specify Performance per Use-Case

. Budget across Modules

. Monitor per Module per Use-Case

3

N

Metrics Æesearched

. Service Level Agreements
Performance in C

. Reliability

. Maintainability

. Clarity

The Framework Project

. Commenced 1995

. Overall architecture for parallel handling
of functional and non-functional
requirements

. Based on Erlang

. MP Pentium implementation

N

4

N

Patent Application Framework

Organi sational Im pl ications

. Functional Code - development group

. Non-Functional Code - QA group

. Seamless development to maintenance

. Proactive project management

5

OUTSOURCED SOruARE
(ERLANô)

ERICSSON CORE SOFTWARE

(ERLANG) GRAPHICS

C. C+
SOFTWARE

KERNEL UO

coMs
HIGH SPEED INfERFACE

uo UNIX lCPt
IP

CPA cP8

FP SP

Erlang Engine - Relationship
MP Erlang Engine COTS System

OTP

AXE
RP 8us

NNÊTWORK OPERATORS

Futures

. Erlang Engine Prototype end 1997

. PhD for Framework end 1998

. Development of Paradigm

6

o

o

o

o

o

o

o

o

Contents
. Basic Architecture

. Runtime Architecture

. Pe¡formance Considerations

. Call-ControlArchitecture

. How to wríte fast code in Erlang

. Pertormance Progress

. Software Supply Flow

@@@-ELE@LIIGL

ER¡CSSOÍ{

tsrruæ unwþer7l9 61 s

cPl

softw.

ET

data

heartbeats

cP2

Erlang

c
System

Erlang

PNNI-R

Runtime Architecture
UNI
PNNI-SBtct

SNMP, HTTP
FTR NTP

ATM
Network

@@@n Ð EESq gil
ffi@dd/d-ryh ,ì@@

Mld¨æt/ul-tuLlB

ERtCSgOt

Up to 30,000 connections

- can't have one permanent process/call

RPC is costly
- centralize call handling

Errors must be confined within one call
- store state information in ETS tables

Switching between C and Erlang is costly

Allsoftware must handle takeoverwith minimal
loss of seruice

Flow-control needed for communicatíon

onsiderationsrmancePe

a

a

a

a

a

ÐE@til

Communication

Exchange
Terminals

tectureBasic Arch

Control
Processors

I
callHandling

I ffåe,,1,?i"il,å"

Switch
Core

External
ATM Network

@@EÐErcÐ@T

MfrJlEW

]ffi¡&ñd.øÀlùLln

' r- ..i. ,, -. ._.- -. '-5':_¡.-

Eh-.<5SOil

-

M-Switch Co.--,

I 7lAìI1S7fi-21IPAlurw¡q€r7198t s IilWIG-g7:æf

Performance Progress
March'96: 250 ms

- BISDN prototype from PSA

May'96: 40 ms - Modified BISDN prototype

(May'96: Start of major development)

Oct'96: 65 ms (90 ms JAM)

- First bare-bones UNI implementation

Feb'97: 52 ms - Full-functionality UNI

Aug'97 predicted: 35-38 ms

Mid-'98 pred.: 5-10 ms on UI1TaSPARC 2i

a

a

a

a

a

a

@

charging data

mgmt functions

dpCom server

call control

load control

resource ctrl

signalling port

Call-Contro

linked-intimers

driver

re

B-number
analysis

linked-in
driver

71981 95UT @¡¡E-EEEEÐ@T
rtlddñdd7d-tuh

ERTCSS¡O¡|

First make it work - then make it fast

Modelto reduce:

, Context switching

. Database updates

. Data conversion/packing/unpackíng

Rapid feedback - educate designers

Detailed profiling

Rewrite - measure - rewrite

a

a

a

a

a

ast code in ErlangOWTOW ten

@ryErrE@sil

,ffiþMd@ild_qrb

1S7g-21

We have built tools to streamline testing, delivery and
handling of our product line.

(- 10 people)

lntegration &
Test

Desisn
O

(- 40 designers)

Factory

UPACKs on CD

re upply Flow

Factory lnstall Packages

New Sites

PRIM/GASK Update tool (not yet)

Clearmake

lntegrate tool

SW Management

@

tuddd&uddctd_@r.rn /lì.dtW&uñd.útÂl_@'.tn

o

o

o

o

o

c

o

o

"The goal of the project is to deliver an object Request
Broker environment in erlang compliant with the CORBA
2.0 specification 971201 . "

o

o

4

I

o
l

l

$
¡;
lil
\i
'r!

I¡
!:1

Fr.

fl
ir

t\:

i"'

1'

j

e

o

o

o

o
.

I

J

It
ll
fi
í
I.
Ii,

'.
L
É
ri
!
li

'.

Io

o

o

o
e i

Í.
J

Ir
ír

tl
¡

ir
&

¡i
i:

I

i'
i.1

ii
qi

i'
I
i
!

i,

e

ü

a,

o

ü

Õtlü

/ ."-

t

.

e

I

Ét

L
fi

k

r
t.:

¡í
s
Sl
F:r
F

i"
Ì

Ìl
t

I

I

e

ü

o

o

o

e

o

o

i

t,

;

t

i
ir

I

f;
i;
i1
u
t,
iì
t"

t
*,

i
lr

F

I
l.
t:

;

t

o

Ð

a

a

o

o

O

o

o

o

o

Presentation missing at time for producing precedings

I

o

o

o

o

o

o

o

o

Towards an Even Safer Erlang
l. Towards øn Even Safer Erlang

O Dr Lawrie Brown
f Australian Defence Force Academy

Dr Dan Sahlin
t Computer Science Labs, Ericsson Telecom

2. Introduction
O want an even safer Erlang system
O constrained and partitioned execution
O ideally with

I minimal (user) visible language changes
r minimal (if any) impact on performance

O currently proof-of-concept research
O two prototypes - SafeErlang, SSErI

3. Rationale
O mobile agents

r server lets agent code migrate to it
O applets

I client requests applet load and run
O outsourced code

I run application but control access
O fault isolation

I isolate application components
4. Limitations

O on a current Erlang system (node)
O processes have same "world-view"

r modules, n¿unes, resources, servers
O pids/ports too powerful

r forgeable
I unrestricted control over resource

I eg can kill any process on system
O code always uses "local" context

5. Safety Issues
O constrained & partitioned execution of code within an Erlang system
O support for "remote" code loading and execution in context
O security of links and data transfer between Erlang systems

6. Safer Execution in Erlang
O language has intrinsic benefits
O want custom world-view

I implement a hierarchy of (sub)nodes
I registered names
I modules available
I resource limits

o need controlled access to processes and external resources (ports)
I make these data types capabilities

7. Nodes
O each Erlang system to support a hierarchy of (sub)nodes
O provide a distinct context

I registered names

I control which servers are accessible
r modules available

r module name aliasing
I support remote loading, safety renaming

I resource limits on processes
r partition & constrain use of system resources

8. Capabilities
O unique, unforgeable resource name with associated rights to use

r <Type,Node,Value,Rights,Private>
O for nodes/pids/ports/user capas
O possible implementations

r crypto hash check, validated by node
r password (sparse) key to table of valid capabilities managed by node

9. SafeErlang
O Naesar & Sahlin, Uppsala

I Masters project,late 1996
O subnodes provide distinct context

r custom modules, resource limits
O capabilities control access

r encrypted (must decrypt for all use)
I nodes & pids only

O remote module loading (mids)
I for mobile agents

10. SSEr/
O Brown, ADFA

r sabbatical research, 1997
O subnodes provide distinct context

t distinct names
I module aliases

O capabilities control access
r nodes, pids, ports, user capabilities
I both crypto hash & password

O remote module load (coming)
1,1. Remote Code Execution

O want support for "remote" code loading and execution in context
I to support mobile agents, applets

O module references in "remote" modules should be interpreted thus
r should load requested module from remote system, not from local system

O want code mobility whilst executing
I several processes, upon request

12. Other Issues
O link security

I need encryption/authentication (SSL) on links between Erlang systems
O registered names

r local - name on local node
r distributed - local name on given node
I global - hierarchy of names not flat

O module names and grouping
I functions in modules in projects???

13. Conclusions
O rationale & approach for a safer erlang execution environment

O to support mobile agents, applets, outsourced code, fault isolation
O a hierarchy of nodes & capabilities
O with minimal visible changes or performance impact
O aim to incorporate into ERTS

74. Questions
15. Types of Capabilities

O need capability data in clear
I for efficient guards/pattern matches

t <Type,Node,Value,Rights,Private>
O crypto hash check value

t node has private key to compute/check
r small vulnerability to search attacks

O password (sparse) value
r key into node table of valid capabilities
I any guess must veriff with node

16. Performance Impact
O space

I expect approx s¿ìme no capas as pids/ports now (user capas are extra)
r capas only abit larger, not significant
I password capas do need extra table

O time
I check value used on creation
I can tag "local" capas as checked
I "remote" capa use has comms delays

17. GIobaI Names
O need hierarchy of names and name servers for scaleability
O suggest new "global" server which manages overlapping hierarchies

r with parents, peers, children as well as own registered names
r update all peers with changes
I client responsible for redirects between servers to locate name

18. Further Information
O see papers and software on web

r http://www .adfa.oz.aul-lpbÆR/ssp97/
r http://www.item.ntnu.no/-lpb/ssp97.html

Lsw rie. B r own @ adfa. o z. au / 04 - J uI-97

o

o

o

o

o

o

o

o

Erlang Conference 1997

The Erlang
type

system
Joe Armstrong

Computer Science Laboratory
Ericsson Telecommunications AB

Sweden
j oe@csIab. ericsson. se

15 August 1997

Joe Armstrong
Ericsson Computer Science Laboratory

Erla,ng Conference 1997

Plan

o Credits.

o What is a type system?

o Types of type systems.

o The type notation.

o Subtyping.

o Examples.

o What else can the type system do?

o To do.

Joe Armstrong
Ðricsson Computer Science Laboratory

page I

Ðrlang Conference 1997

Credits

Phil Wadler
Was at Glasgow University now at inferno + ML groups at

Lucent (was "unix" group ai Bell-labs)

Simon Marlow
Glasgow University

Blame

Joe Arrnstrong

Joe Armstrong
Ericsson Computer Science Laboratory

page 2

Erlang Conference 1997

\Mhat is a type system?

o A type is a property of a program which can be

proved.

Joe Armstrong
Ericsson Computer Science Laboratory

page 3

- Tli":'1:i:i:l"illi11"5'-"wsrry: -r' : -

Erlang Conference 1997

Types of e system

o Untyped - assembler - no typing at all. Bad
programs can dump core.

o Strong static typing - the pascal family, Java. All
types must be declared. Types are checked at
compile time. The type system cannot be broken.
Program cannot dump core at run-time due to type
errors. Usually monomorphic.

o Weak static typing - C etc. All types must be

declared. Types are checked at compile time. The
type system can be broken. programs can dump
core.

r Dynamic typing. Erlang, prolog, lisp, smalltalk. No
types are declared. Type checking is done at
run-time. The type system cannot be broken.
Programs cannot dump core due to type errors.

o Polymorphic strong typing. ML, haskell. Types may
be provided. If the type is not provided it is inferred
from the progrâm. Types, if provided, are checked

against the inferred types. It is impossible to break
the type system.

o Soft typing. Erlang. As for polymorphic strong
typing but type incorrect programs can be compiled.

Joe Armstrong
Ð¡icsson Computer Science Laboratory

page 4

Erlang Conference 1997

The type notation

Primitive types

o integerO - an integer - 123.

o floatO - a real number - 3.14159.

o stringO - a string - "hello world".

o atomO - an atom - hello.

o Atom - an atom.

opidO-apicl.

Typ" constructors:

o [x] - a list of type X

r {X,Y ,Z} - a tuple of arity three, with given

argument types

o Atom{x,y} - a tagged tuple (Type) where the first
item is the atom Atom.

o tuple O - a tuple of (unknown) arity

Function Types

o-type map((A) -) B, tAl) ->

Joe Armstrong
Ericsson Computer Science Laboratory

page 5

Erlang Conference 1997

Subtyping

Suppose

x - [1,2,3],
f = [arbrc] ,

Z = X ++ Y.

What is the type of Z?

o X has type [intOJ.
o Y has type [atomOl.

o ++ (i.e. append) has type

-type append([A] , tAl) ->

Answer: A when A (= intO, A <= atomO.

Joe Armstrong
Ðricsson Computer Science Laboratory

page 6

Erlang Conference 1997

Example 1

Normal usage of the type system:

-module(ex1).
-export([xa¡d/2]).

xand(true, true) -) true;
xand(true, false) -) false;
xand(false, true) -) true;
xand(false, false) -> false.

Run the type checker

) tc-main: tc ("exl . er1") .

And look at the results:

) cat exl.types
-interface (exl).

-type xand(false I true, false I true) ->
false I true.

Joe Armstrong
Ericsson Computer Science Laboratory

page 7

+.|-'''.T .:.?ry!A... 1|

Erlang Conference 1997

Example 2

Try to call something in exl.erl:

-module (ex2) .

-export(tal01) .

aO -) exl:xand(true, false).

The result:

) cat ex2.types
-interface (ex2).

-type aO -) false I true.

Now call xand with bad arguments

-module(fail1).
-export(tal01).

aO -) exl:xand(tru, false).

Type checking fails

) tc-main:tc(t'fail1. erl") .

faitl.erl: 5: type error in lst argument
of call to exl:xand/2

inconsistent constraint :

tru (= false I true
error

Joe Armstrong
Ericsson Computer Science Laboratory

page 8

Erlang Conference 1997

Example 3

Correct and incorrect use of xand:

-module (ex3) .

-export([a/0]).
ao ->

case exl:xand(true, false) of
true -> 1;
false -) 2

end

-interface (ex3).
-type aO -) integerO.

-module(fai12).
-export(tal01).
aO ->

case exl:xand(true,
tru -> 1;
false -) 2

end.

false) of

) tc-main:tc("fai12. erl") .

fai12.erl: 7z type error in pattern match
inconsisteni constraint :

false I true (= false I tru

Joe Armstrong
E¡icsson Computer Science Laboratory

page I

Erlang Conference 1997

Example 4

Types as documentation:

-module(ex4).
-export([xa¡d/2]).

-type xand(boo1O, boolO) -> boolO.

xand(true, true) -) true;
xand(true, false) -) false;
xand(false, true) -) true;
xand(false, false) -> false.

-interface (ex4).

-type xand(boo1O, boolO) -> boolO.

Joe Armstrong
Ericsson Computer Science Laboratory

page 10

Erlang Conference 1997

Example 5

Types as verification

-module(fai13).
-export ([xand/2]) .

-type xand(boolO, boolO) -> boo1O.

xand(tru, true) -) true;
xand(true, false) -> false;
xand(faIse, true) -) true;
xand(faIse, false) -> false.

) tc-main:tc("fail3. erl") .

fai13.erl: 5: signature for xand/2
is not an instance of the inferred type

inconsistent constraint :

false (= true

Joe .Armstrong
Ericsson Computer Science Laboratory

page 11

Brlang Conference 1997

Example 6

Adding types declaration is a good idea, because

the following program is well-typed, but does not
have the type we expected:

-module (exS) .

-export ([xand/2]) .

xand(tru, true) -) true;
xand(true, false) -) false;
xand(false, true) -) true;
xand(fa1se, false) -> faIse.

-interface (ex5).

-type xand(false I tru I true, O)
-) false I true.

Joe Armstrong
Ðricsson Computer Science Laboratory

page 12

Erlang Conference 1997

\Mhat else can the type system do?

o Enforce abstraction boundaries

o Verify that programs are type-correct at compile

time (i.e. you get no run-time type errors)

o -deftype bootO = true I false

o -exportdeftype (ttlUl) .

o -unchecked-type foo Type -> Type

o Provide formal documentation of functionality

Joe Armstrong
Ericsson Computer Science Laboratory

page 13

a?:¡rìTrfsiil I) li-FrffiE" -.'::r!:" "
_:. i i : _

Erlang Conference 1997

To do

o Cannot check all code (-unchecked-type ...).

o There are some existing Erlang programs (c. 10 %)

which run correctly and produce the expected results

but which are not well-typed. This code must be

re-written to get it through the type checker, or
annotated with unchecked declarations.

o Cannot check some geneúc code, but this is not a
problem.

o Is slow.

o Difficult to understand error nessages.

r No course material.

o Is a prototype.

Joe Armstrong
Ericsson Computer Science Laboratory

page 14

o

o

o

o

o

o

o

o

Etos: an Erlang to Scheme compiler

Marc Feeley and Martin Larose

U niversité de Montréal

Motivations

o Erlang and Scheme have common features

- functional

- dynamic typing

- data types & GC

r Scheme has good compilers

- pseudoknot: 5 times faster

o Several Scheme compilers available

- Gambit, Bigloo, Chez-Scheme, Stalin

21

Summary

o Portability vs. efficiencY

o Data types

o Binding and Pattern matching

o Limitations

o Performance comparlson

o Futu re work

Portability vs. efficiency

Etos:

o Written in Standard Scheme

o Generates almost standard Scheme code

- macro definition file to exploit Scheme
implementation's non-standard features

Direct translation when Poss¡ble

o Interfacing Erlang, Scheme and language
extensions

o Easy to debug

o Fair comparison between Erlang and Scheme
com pilers

43

Data types I

Erlang

Binding and pattern matching

Example: tXlYl = foo:f (A), X+bar:g(Y)

(tet ((v7 ^a))
(let ((v5 (f oo zf /L v7)))

(tet ((v6 v5))
(it (erI-cons? v6)

(tet ((^x (erI-hd v6)))
(tet ((^y (erI-tl v6)))

(tet ((v1 v5))
(Iet ((v2 ^x))

(tet ((v4 ^y))
(tet ((v3 (Uar z gl t v4

(erI-add v2 v3)))))
(erl-exit-badmatch)))))

(tet ((v5 (f oo :f /t ^a)))
(lt (erl-cons? v5)

(erl-add (erl-hd v5)
(bar zg/t (erl-tI v5)))

(erl-exit-badmatch))))))

integer
float
atom
list
tuple
function

Scheme

exact integer
inexact real
symbol
list
vector
procedure

)))
))

5 6

Limitations

o Macros, records, ports and binaries

. Process registry and dictionnary

o Dynamic code loading

. Built-in functions and libraries

o Distribution

Benchmark programs

o integer arithmetic

- fib, huff, length, smith, tak

o floating point arithmetic

- barnes, pseudoknot

o list processing

- nrev, qsort

. processes

- ring, stable

7
8

Compilers

o Hipe O.27

o BEAM/C 4.5.2

o JAM 4.4.L

o Etos L.4 and Gambit-C 2.Ta

- generates portable C code

- extensions to Scheme standard (includes
a C-interface)

- function inlining, float unboxing, bound
interrupt checks

- stop & copy GC, dynamic heap resizing

- efficient catt/cc

Results I

=+ Sun UltraSparc L43 MHz with L22 Mb

9

Time relative to Etos
Hipe BEAM JAM
l_.16
L.45
2.O8
2.O2
L.L2

4.43
3.36
2.63

8.33
24.75
34.6L
L2.O7
r-3.33

1.18
1.83

2.24
2.58
8.2L

L4.85
78
87

L.7L
L.79

.30
1_. 13

.29

Etos
(secs)
3L.46
9.94

11.54
LL.47
L3.27
15.9L
20.66
24.8L
L6.32

L24.58
2L.40

Prog ra m
fib
huff
length
snith
tak
barnes
pseudoknot
nrev
qsort
ring
stable

10

Results II

o Integer arithmetic

- up to 2 times faster than Hipe

o Floating point arithmetic

- 1.18 to 1.83 times faster than Hipe

o List processing

- space usage (3 words per pair)

- interrupt checks

- tail-recursion in C

o Processes

- intermodule calls and calt/cc interface

Future work

. Full compliance to Erlang 5.0

r Access to Gamb¡t-C C-interface

o Gamb¡t-C tuning for Etos' code generation

o Native code back-end for Gambit

- factor of 2 performance boost

o Hard real time and generational garbage
collector

11

..-;Ê:-..ja'li-:'il...1':?2T'.."

L2

Conclusions

o Outperforms all other compilers on most
benchmarks

o Process management needs improvement

o Scheme is well suited as a target language
for Erlang

13

o

o

o

o

o

o

I

o

-

Deoartment of Teiecommunrcai¡ú¡îs

þ i,iî'iå;; :fä::f lËtåï:""'
F=l

I^

-

DeDartment otTelecommunications

þ i,î",î'"ff I :i?äïf :Ë:åï:"
*

F==l

Iustitia - Erlang Based Load
Balancing ExPeriments

Sasa Desic
Zrinko Kolovrat

Ignac Lovrek

Department of Telecommunications
Faculty oi Electrical Engineering and Computing

UniversitY of Zagreb, Croatia
HR-10000 Zagreb, Unska 3

tel: +385 161297 5l
fax: +385 | 6129832

e-mail: sasa.desic@fer.hr

Overview

Introduction

I Problem Statement

Load Balancing

Distributed Erlang Features

IUSTITIA - Basic Characteristics

IUSTITIA - Processes

Erlang experienceErlang Users Conference
Kista, August 26'n, 1997

I*

-

Deoartment of Telecommunications

þi,î:î:H;""f;"î::f :Ëi;ï:""'
F=1

-^-

Deoartment of Telecommunications

^-

Facutty or Electncai Engtnee.ng

{ vnir.isity of Zagreb, Croatia

F=t

Introduction

Place - Distributed system

Problem - Request rejection because node overloading

Solution - Load balancing !

Experiments - Erlang based package for load balancing
simulation

Problem Statement (I /2)

Call and service requests

Distributed system - network of processing and communicating
nodes

Processing requests arrives from the outside world in independent
streams

Call and service environment represents distributed system load

Stochastic nature of calls and services causes network fluctuations
and imbalances of load

Distributed system

-^

. ueDanment oI Telecommunications

^

Faóuiry of Electncai Engrneering

{ Vnir"isity of Zagreb,Croatia

F=1
-^-

Deoartment of Telecommunications

ñ Faculty of Electrical Engineering

n Unir"rsity of Zagreb.Croatia

F=T
P roblem Statement (2/2)

D istrib
system

lncommin
req u ests

Environment

Rejected
req uests

Imbalances of load causes situation where some nodes are below
capacity while others are simultaneously overloaded

Part of incoming requests will be rejected because processor's

overloading

'We consider problem of load sharing, load balancing and

increasing processing capabilities

Processor queue

lncommin Finish ed
workreq uests

Y

Request
rejection

Load Balancing - moving of load from overloaded node
(processor) to underloaded one

S¡ - system node

Q¡ - queue size on node S¡

L and H - system parameters

Node statuses are defined as follows

1. A site S¡ is underloaded, if Qi < L
2. A site S¡ is overloaded, if Qi > H
3. A site S¡ is normal, if L < Qi < H

processor's queue size

H

L

Load Balancing (1/2)

N

0

Queue full ?

me

I^

-

Deoartment of Telecommunications
lE\- FaËulty oi Electrical Engineering

$f vnt
"isityof

Zagreb,Cioatia

F=î Load Balancing (2/2)
-*-

Denartment of Telecommunications

^

FacuuyorErectncar Engrneenng

fl unir"isity of Zagreb, Cioatia

F=î Dístributed Erlang Features

Processor queue

Possibility for load balancing - when there is at least one
underloaded and one overloaded node

me

Aim of load balancing - fair distribution of load through all system
nodes

1. Queue size measuring

Erlang:
statistics (runqueue)

Erlang:

utilization0->

{ Start, _} -statistics(runtime),
End - utilízation(5 00),
Start-End.

utilization(0)->
{ End, -} = s t ati stic s (runtime),
End;

utilization(N)->
utilizatíon(N-l).

---->

-.-.->

Finished
work

H

L

2. Measuring of queue execution time

Qi

Processor queue

t

Finished
work

-^-

DeDartment of Telecommunications

^-

Faóulty of Elecrical Engineering

fl vnir"isity of Zagreb, Cioatia

F=î IUSTITIA - Basic Characteristics (1/4)

t Iustitia - Load balancing experiment

r Distributed run-time system simulation

14 modules
1200 lines of code
GS module for graphical presentation

E^

-

Deoartme¡rt of Telecommunications

^

FaËulty of Elecrical Engineering

{ urir.isity of Tagreb,Cioatia

F=1 IUSTITIA - Basic Characteristics (2/4)

- Built-in load balancing mechanisms (self-balancing)

- drtificial workload simulation (stochastic environment
simulation)

- Scheduling engine is:

c global (we have the problem of deciding where to execute
a arrived task)

o dynamic (assignment decisions are made in run-time)
o physically distributed (the work involved in making

decision should be physically distributed among the nodes)
. cooperative (each processor has the responsibility to carry

out its own portion of the scheduling task, but all processors

are working toward a common system wide goal)
o source-inítíative (the node where job is arrived, according

the collected information, decides where to send the job or
to execute locally)

- Fault tolerant system with self-recovery functions

O Graphical user interface with on-line monitoring

-^

.T
DeDartment of Telecommunications

^

FaËulty of Electrical Engineering

{ llniu.isity of Tagreb,Croatia

F=1 ilISTITIA - Basic Characterístics (3/4)

. Processes as the main unit of model's structure

o Global and Local Supervision process

o Global Supervisor (keeping the whole system working property,
administrating purposes)

o Local Supervisor (organizing and monitoring processes on the

local level)

o Register process (node bookkeeper, queue size measuring)

o Balancer process (heart of balancing engine)

o Generator process (synthetic workload generation)

I^

-

Deoartment of Telecommunications

^

FaËulry oi Electrical Engineering

f,l unir"isity of Zagreb, Cioatia

F=ï
IUSTITIA - Basic Characteristics (4/4)

LAN

UNIX node UNIX node

I

I

Monitoring

Distributed
system

Supervisor

Load sharing TCP/lP protocol TCP/lP protocol

Erlang node

Su pervisor

Generator Balancer

Register

Erlang node

Supervisor

Generator Balancer

Register

o Graphics process (graphical user interface)

-^-

DeDartment of Telecommunications

Ã- FaËulty oi Electrical Engineering
p tsnir.isity of Zagreb,Cioatia

F=l LISTITIA - Hierarchical organization

I^

-

Department of Telecommunications

6.- FaËulty oi Eiecrrical Engineering

fl Unir"isity of Zagreb,Cioatia

F=t IUSTITIA - Process Supervisor

e
Main node

Remote node

o System starts from main node (Graphics and Global Supervisor
process)

¡ Global Supervisor starts Local Supervisors processes on remote
nodes

r Local Supervisor starts other processes on the local level
(Register, Balancer, Generator)

o User controls system through the main node
o Global Supervisor watches Local Supervisors processes (fault

detection and self recovery)
o Local Supervisor watches other processes on the local level

Local
Supervisor

Other
p rocesses

Global
Supervisor

Ge neratorRegister

Local Supervisor

Bal ancer

Graphical user
interlace

Global Supervisor

GeneratorRegiste r

Local Supervisor

Balancer

Remote node

-*-

Department of Telecommunications

Â FaËulty oi Electrical Engineering
p Unir.isity of Zagreb,Cioatia

F=r IUSTITIA - Process Generator

-^-

Department of Telecommunications

Â Faóulty oi Elecrical Engineering
Lff uniu"isiry of Zagreb,Croatia

F=1 IUSTITIA - Process Balancer (l/2)

Nodes status
d etermination

o Process responsible for tracking nodes cuffent load

o Each 750 ms checking of queue size (represents workload)

o Results from tracking are saving to a file and could be used for
latter analysis

Monitoring

Database
st0rage

Post-mortal
analysis

Register gives
information about
local and remote

node status

Transport and
execution of job on

another node

Local supervisor
receives incoming

tas ks

Generator asks
Balancer for place
of job execution

Balancer desides
to execute job

locally or to sent
somewhere else

Job execution on
local node

-^
^ DepartmentofTelecommunications

4N Faóulty of Elecrrical Engineering

flf Uniu"isity of Zagreb, Cioatia

F=î I(ISTITIA - Process Balancer (2/2)

FOCUSED ADDRESSING

In this approach each site keeps state information about other sites.
when a newly arriving process enters the system at a local site, the
local site queries its information and may immediately select a site
for transferring the process.

SBNDER DIRECTED

when a site has more processes than it can handle it becomes a
source of work. To reduce its workload it may randomly select a
site to send a work, or perhapes sequentially select a site o send
work. The key idea behind this approach is the lack of interaction
between the source and system.

RECEIVER DIRECTED

The server when idle, solicits work from system.

BIDDING

In this approach local site determines if processes sholud become
candidates for movement. At the local site, a request for bids is
sent out to remote sites. These remote sites bid on the candidate
and return the bid to the requsting site. The bid is evaluated and
the candidate processes is either kept or transferred base on
evaluation

-

.,cpanmenr or rerecommunlcatrons

^-

FaËulty of Electrical Engineering

V Univeisity of Zagreb, Croatia

F=ï

o Artificial workload generation
o Call and service environment simulation
o Three types of workload

Execution times

Execution times

IUSTITIA - Process Generator

Type 1

time
Type 2

time

Execution times Type 3

time

-^
- DepartmentofTelecommunications

^-

Faóulty of Electrical Engineering
p vrirrisity of Zagreb. Croatia

F=t
-^-

Department of Telecommunications

fÀ- FaËuity oi Electrical Engineering

{ vniu"isity of Zagreb, Croatia

F=t

Þ

@
o

ËN

€

t
@o

Eo

êts

oa

oþ

3

@

èN

€

e

r¡È
o

€$Ê-oÈ
E5
cr9E:
z o

Lo
(,
G'

q)
L N
.o 'õ;
cl ú)
N:'
={)
]G

IUSTITIA - Monitoring Erlang experience

. it's easy to build distributed system
. adding and removing node from the system

. concuffent processes
. useful for building independence part of system
¡ simultaneously information processing

. capability of handling queue size (queue size is the main
measure in our program)

. gs module - very easy to build graphical interface (comparing
with pxv module)

€a o

a

o

a

o

I

Page 1

2

Page 2

.7

Page 3

l:

4

Page 4

5

Page 5

6

Page 6

Aß, Erlang Usar Gonferance, August 26lh ,997 Enrcrsotr á

7

Page 7

