
Erlang User Conference 2006 Sida 1av 1

lzth Intern ation al E rlan g/OTP
[Iser Conference

Stockholmo Nlovember 9-10o 2006

Proceedings
http: / /www.erlang. se/euc/06/

fl

I

¡j

t.

ìr

i

i:

h

l

1

{tt
-TÉ{n¡

rS
flT
L-
ü
{"}

ËRrt550n¡ #
W

SYn ü FSË ;r iÌ c;.þþ-;p tt# FÌ s¡ r{ l.vs.}$'k'$* o+;'q':'Ë .'

]tI

Lç{
Siöland&flty*etius

;':.,''i ',r ,.i::.rE,'ti i..;,
Ë ftLAHË

fi1e://C:\Documents and Settings\Bjarne\Mina dokument\EUC'2006\FrontPage.html 2006-11-01

EUC'2006 - Programme Sida 1 av I

Erlang/OTP User Conference 2006
Conference P

08.30 Registration.

09.00 Betting on Functional Programming and Winning.
Erik Stenman, Kreditor, Sweden.

09.30 Horde Leader, a Framework to Build Cluster Aware Erlang Web Administration
Console.
Jérôme Sautet and Mickaël Rémond, Process-one, France.

10.00 Experiences from Using Erlang for Autonomous Robots.
Vincenzo Nicosia and Corrado Santoro, University of Catania,Italy.

10.30 Coffee.

11.00 Vixo.com - A Case Study in Developing a Web/SMS Start-up in Erlang.
Dale Harvey, vixo.com, Scotland.

11.30 CEAN, a Comprehensive Erlang Archive Networþ or How to Make any Erlang
Software Deployment a Child's Play.
Christophe Romain and Mickaäl Rémond, Process-one, France.

12.00 Testing a Media Prory with Quviq QuickCheclc
John Hughes, Chalmers University, and Thomas Arts, IT University, Sweden.

12.30 Lunch.

Session I

Session II

Session III
I 4.00 Refactoring Erlang Programs.

ZoltanHorvath, Huiqing Li and Simon Thompson, University of Kent, England.

14.25 Comparing C++ and Erlang for Motorola Telecoms Software.
Henry Nyström, Erlang Training and Consulting, Sweden.

14.50 Using GNU Autoconf to Configure Erlang Programs.
Romain Lenglet, Tokyo Institute of Technology, Japan.

15.00 Configuration Aware Distributed System Design in Erlang.
Gabor Batori, ZoltanTheisz and Domonkos Asztalos, Ericssono Hungary.

15.40 Coffee.

16.00 Eliminating overlapping of Pattern Matching when Verifying Erlang Programs in
pCRL.
Qiang Guo and John Denick, University of Sheffreld, England.

16.25 ErlHive - Safe Erlang Reloaded!
Ulf Wiger, Ericsson, Sweden.

16.40 Erlang Message Receive Fundamentals.
Jay Nelson, DuoMark International, USA (presented by Ulf Wiger).

17 .10 Current Erlang/OTP Developments.
Kenneth Lundin, Ericsson, Sweden.

17.30 Closeþllowed by bus transport to an ErLounge.

Chalmers students demonstrate robot logic in Erlang.

Session IV

I)emonstrations

file://C:\Documents and Settings\Bjame\Mina dokument\Euc'2006\Programme.htrr 2006-ll-02

j

i

Betting on FP
(and winning?)

Erik Stenman

Kß_ED-JTQR

I will talk about KREDIToR, a company that
bet it's future on Functional Programming

. Conventional wisdom...
choose proven technology

. ... the rngDIToR way ...
choose Erlang

o ... are they the same?
I will tell you what Kreditor does, how we do

it, why we do it this way, and whether it
worked out or not... at least, so far.

è

. The business model:

- Bring trust to lnternet shopping.

- Bring old style billing into the new lT-economy.
. Brief background:

- Founded in December 2004.

- W¡th < $t 00,000 in venture capital.

- Live system in March 2005.
. The company vision:

- "Be the coolest company in Sweden."

I

. lnternet shopping is a question of trust.

- The shop has to trust the customer to get paid.

- The customer has to trust the shop to send the
right stuff.

. Many customers are uncomfortable using credit
card over the lnternet.

. Many banks are actually worried about the security
of lnternet shops handling credit card information.

. Also, doing a pañial return when using credit card is a
hassle, both for the customer and the shop.

KREUI.ß

t...o

. Bring in a trusted pafty, i,e., KREDITOR.

. Send an invoice with the goods to the
customer.

. The customer pays after receiving the
goods and takes no risk. The customer
does not have to trust anyone.

. The shop is guaranteed (by contract) to get
money from KREDIToR. The shop only have
to trust KREDIToRwith whom they have a
written contract.

. The customer gets credit.

. The customer can pay using familiar
methods.

. Returning goods is easy.

. Belften fnarurd ,olelleroihon.

. Arqlvclinered toncd [1] €]ssesslrnents"

. Easy llo ardol stnnrilar fcatu,:nes iltkc pre-pa!/
arnd subsornrpffoms.

w

A webshop

A customer

KREDITOR

i¿{anfihr

H

ö

surb

ilredit info conrpany

kredit check

The lmplementation

A webshop

Çrecjrt inío ccmpany

A customer

------>
stores

E
.r¡ \el

surfs

KREDITOR DB

The lrnplementation

Ð

g
DB

Credit info cnrnpany

A customer

KREDITOR
æ

surfs

A

The lmplementation

@
DB

Credit irifo company

A webshop

Buy ok

A customer

KREDMOR

{

#

Pack goods,
print invoice,
ship.

ïhe lmplementation

\¡,

g
DBCredit info conlpan),1

A webshop

A customer

KREDITOR

H

-fl

L
lq¡
l<t

Êiank

The lmplementation

E
DB

Print&mail company

A webshop

A customer

KREDITOß

KREDMOR

H

#
jtl

Eiank

il reci ji ìtÍc cLìrrì päì-ì!'

The lmplementation

d\

E
DB

Print&rnail compårrv

A webshop

C ieclit i;'rfc coi"npanS,

A customer

KREDITOR

ffi

E

€i

-!IJJ
ÊJank

. The system is built from scratch using LYME
(Linux, Yaws, Mnesia, and Erlang).

. So far we only operate in Sweden and Norway.

. We have a distributed system with multiple
servers to provide a fault tolerant, high availability
solution.

. We aim for 5 nines availability, in a setting where
we introduce new features in the system every
week.

. The problem fits Erlang really well.

)-/

. The three founders didn't really know what Erlang

. The developers didn't get the scope of the system.
"lt will be like the programming contest, we'll do it
over the weekend" - Claes Wikström.

. Thus Kreditor and Teknikerl were born.

. Teknikerl built the first version of the system, in
Erlang, in < 4 month.(While starting another company
called Tail-f, but that's another story.)

K&EpAo.ß

WAS.

. Jane Walerud saw a business presentation
by three enthusiastic entrepreneurs-to-be at
a business "green house".

. The ldea looked prom¡sing and she
happened to know five former Bluetailers
who where looking for something new to
do.

Èo

. Erlang has been a great help in providing rapid
development with maintained high availability.

. KREDITOR has introduced four new major
services since last December, and added over
500 new customers.

. We have expanded into Norway.

' The system has never gone down except for short
maintenance stops.

KßED-JrcB

. Using Erlang has meant low development costs.

. Our main competitor busted this summer after
burning more than 90 million SEK (-$12M).
(l think they had some phpl.net solution.)

. We know of some banks that have invested over 200MSEK to try to get systems that
does something like our base service in a much more cumbersome way.

ßEU.Uß

\9

. The business model has been sound.

. Total investment < $100,000

. Turnover:
- 2004: -0SEK
- 2005: 1.5 million SEK - $200,000

- 2006: 15 million SE/(- $2 million, (501millíon SEK in invoices)

. Number of connected stores:
2004:0, 2005: -200, Today: > 700

. Number of employees > 17.

. Secord place on the list of Suleden's most promising
entrepreneurs by the Suedish magaâne "lntemet World'.

ßEpÆaß

. The main reasons that I have heard of are:
l.Politics - Erlang is not C/Java, company policy.

2.One provider - Concern that Ericsson will stop
supporting Erlang.

3.Lack of programmers - Erlang is still not
mainstream how can we ensure we get
qualified staff?

. When starting a new company, 1 is not a problem.

. I can't see 2 happening, and it's open source anyway.

. When setting up in Stockholm, 3 is not a problem.

s

KREDITOR took a bet on Erlang,
and so far seem to be winning.

Questions?

ßruIL9ß

è.

t

t (q)

Horde Leader, â Fmmework to
Build ClusterAware Erlang Web
Admin istr:ation Gonsole

November9,2fl)ô

Jérôme Saubet

t f,rocess
O 2ú{}6 P¡offim - All dghl Þæmd

CONTENTS

t Hlstory and status of the prcfect
: Purpose
B Architecturc

r Core Library
r Monitoring Service
r Plugins

t Non-erlang clusters
r Roadmap

a
(û

tu
n

PrCr I

O ¡G{8 Proffi m-Al.tñt €$wd F.g|2

2(Ð
Historu and Statue of the prciect

; Team Leader, a wob consolo ûor efabberd
r Currently usable
r Some ejabberd specific code in the core application

r Horde Leader, a f¡amercrk to bulld web consoleg
t Generic
r To be release in Open Source
r Work in progressg)

a
0)

8o
ùd
n

Clu*ter
I clurtêr

. llgdcÂ
' ei¡bberdStrero
. ai¡bberdßzero

O 2000 P¡oðgÉ - Al .tgit ðsil.d

nodes

Cluster nodes

Prg. s

Puryose ('lt5-l

: A Framercrk to bulld Web Gonsoles
r fVlonitoring
¡ Control
r Configuration
r $tatistics
t

lãlt*o-leader
gnm

8_
0_{)

TI

5tðtaçt¡csClûçtðr Co.¡rfiq rrratior¡

node ld rtãte cnlino
ú¡€f¡

¡t¡rtod uptime fjPl,
tirlrc

eiabbcrd2ûzq'o o 0
200611U02
15:49:47

D.û0 0,00

eiabberdõrcro @ 0
2006/11/02
15:41:21

505.83 0,78

Têam L€àder, ¿ l//eb ronscle for eJabbard. thå Êrlång J¡bbar ser.rer, cÕpfr¡ght 6 ?toË, P]3"€gåg:gj].g.

O 2000 Proo.Hm -Aldo¡il emd Pl0.,l

sG)
Pumoee (U6l

: A Framework þ bulld Web Gonsolee
¡ Monitoring

r Control
r Configuration
r Statistics
I

lã1"".,,',Le.,der

M

a
a
0)
0
OYl-t
n-$

ü

Clu¡ter
¡ Cluster

r Nodee
. Èi¡bbord2@rern
' eiabberd@zero

. $tÈD
r R*stê13
. 8ssÊsslhdps. Ë:*gb.s.t.e.þ.LlÊ., !ts!ir3iü

cJabbcrdlÐzero

o rJebbenþ¡ero ic currcntly runn¡¡o
r Started on 2006/11/02 15r41r21 (859'092 seconds ago)
. cliÊnt conncctions0
o P¡D of tho Erlang VM8329
. CPU Uraoeo.80
. Cannot Eot mÊmory occup¡tion forthis node

slobal

:cho

Teåm Leåder, s \'/eb conEole for *jabberd. the Ërlanç J-¡þlSfCg¡ggr' Coprriqht ç lðOti, F-rcSg-åt:9!.e'

OZ'O(ß hoæffi-Aïdeht@md

Purpoee (3rg)

t A F¡amercrk to bulld Web Gonsoles
I Moniioring
r Conirol

t Configuration
¡ Statistics
t

Pr¡! 5

Conflgt¡råtiÕn
r Gonfiguratlon

'Glsþdr Virtu¡l Host¡.
. gtsli$irñ

a
o

v)
rû

$

#-i

n

Add a new vittu¿l

wed Denicd

a

Tesnr Leader, ç lVeb console for ej.¡bbald, the Ërlanç Jabber.server, Coprriçlrt R 2ù06, Frocêss-ðng'

O ¿1106 ÞþÈ*oß - Al lhñt mrr/td

.ü{rnf¡gürðtiûnStatiÉtics

Dclct¿ rclcctcd Virtual Ho¡ts

Add

Engoyer

Rcmove tho ¡dministr¡tor role of ¡clcctcd u¡c¡¡

¡dmini¡tr¡tor rolc to
Add

h¡.0

tG) Purpose (415)

t A Framercrk to bulld Web Gonsoles
r Monitoring
r Control
r Configuration

r Statistics
I

fðreqmt€oder

M
1p r*,t',,."

ørbbrd0lBoolr

Node Stálisflcs. at t'.tls
¡ OsêrvlÈh
. &dÊÁ

" ¡lðbberdölilr,rk

. fuls¡i.
' tLt¡srl

. Vlrt0ãl hosb

. Côññourãffon

¿,0

30
?.ð

t.o
oo

lSrto ¡8:26 larlo
.92¡ irx ¿,02

¡bx 1,61

lå ao lE::0 t9:t
I to.d15 l,lrn ð0.00n Avg 78t
tr tordl átn 20,93¡

^rg
1.25

{t)
U)

0)

8"
û(\

TJ

!,0

2.0

lo

IårlO l8l¡0
lrunt1lê tãn l,{t¡

^v0
1.05

lð:30
hr 2.65

lèr46 ¡8r!O I9rø

Purpose (5t5)

* A Framercrk to build Web Gonsoles
r Monitoring
¡ Control
t Configuration
r Statistics
¡

; Plugln based
r All the console logic is provided by plugins
r Plugin can be added or removed to cu$tom¡ze or enhance the

console
¡ No deployment on remote application node

* Gluster awere
r The console can handle an application running on several nodes

Prg! t

a
îA
û)
t)u?
Li)

ß
O2(x¡€ Pffim-Al.lghtffircd Plg.8

5(?
Architecturc

Core,Li"bra:rV
tJoRde,

a
a
0)I'_ì
L(\

n

Users

m
Application

Web Console

O 200€ Þo@ææ - All rlohl æred

Architecturs

n Gore Llbrary
¡ Authentication
r URL -> Plugin function
r Page display

- Navigation Menu

' Widgets
. Tables
' lnformation/Error messages

¡ Various Helper Functions

: llonltoring Service
r Monitor remote node states
r Store node states in database
r Communicate with remote nodes using RPC
¡ Send module to remote nodes

Plgr0

:

ì.:
I
år't':

i

v)
ï)

ü,,
ùd

n O2000PEew-A,ldohtMrud Plg.l0

6G)
Architecturc

8
0)

$¿

m

r Pluglns
; Handle page conteni
r Manãge all the console logic

r What ls a Plugin
r Ërlang module
r Adds entries in the navigation tree

rNrr (_A) >

#plugín{
ld=?MODULE_STRING,
menu= [

?I{ENU_ITEU([l , ttueergn, rrllserB & groupgn,20,:lndex) ,
?MEN['_ITE!I([r'uaers'rl, "allr', trAll uEer8rt, 10,aI1],
?IIENU_ITßM ([,'ueers n ¡, rronlínetr,

ttonlLne ugergn, 20, online),
?IIENU_ITEM([nueerar l, rcreaÈer,

ItCreaÈen , 30, create) ,
?IÍENU_ITEM ([nusersnl, ndeleter',

ItDeleterr, 40, delete),
?I{ENU_ITEM ([nusers n L nsearchn,

nSearqhrt , 50, gêarch) ,
?IIBNU_HIDDEN_ITEM ([nuEers x], trl¡ger tr, user)

l).

O 2ûÍt Preæß-¿lfl right 6er€d Prep ll

Architecturs

r How a Plugln display a page
r îhe Core Library handle the generic parts
r The plugin returns only the content as Yaws HTML

(0
û

ü,
0-q)

n

er (A) >

t,ean_l eader : ge È_comon_¡rage (

A,
{ehtnl,
{fom, [{method, "poet"}, {acùíon, ?ROOT_uRL(A)++nueers/create,'},

{claee, rfo¡mn}1,
{fleldeet, H,

[?ASK-QUIT_CONFIRTIATION,

{Legend, H, ?TxÎ(nÀdd a new Jabber user")},
tla¡et, [{f,or, nuserl.do}, {class, rrequiredì},
{tltle, ?TxT(rruser id, wi.thout thê @domaLnn) }1,

?TXÎ(rUger ldn)),
{input, [{ty¡re, trtexttr}, {nane, truserJ.dn}, {claee, nfLeld"}l , il },
{talet, [{for, "password,'}, {class, nrequLredn},
{title, ?TxT(rPassword of the new usern)}1,

?TXT(nPasswordr)),
{inpuc, ItÈy¡¡e, rtexÈn], {nane, npasewordr}, {claea, nfieldn}1,

II },
{input, [{ttr¡¡e, trsubnítn}, {nane, nsubmit,r}, {claes,'buttonn}1,

rr)
r)))) .

Füo12

7(7^.
Non-erlano

r A console fior non-erlang appllcaüons ?
r Console/Application comrnunication uses erlang RPC
r Remote Module can be send dynamically

r Prelequisltee
r Remote module able to communicate with application

. Read logs

. Ed¡t configuration files

. System calls
r Erlang installed on all remote nodes
r Erlang VM running on all remote nodes

aa
0)

8u¡- ..ì
CI-Çl

ru
O 2fr0É Præ6sm-Aldeht emd P.!. ft l.l

!,
Roadmap

; Team Leader
; Remove all eiabbed speclllc code ftrom the Gore Llbrary

and the lionltor Serulce
; Wr¡te some generic documentation
r Publlsh the code on http:ttûotge.pnocess.one.net
r Write mofe pluglns...

U}
$

$*
n

-c rerl -sname hJ._agent
ang: Eet_cookie (node () ,
- make_refO.

eive

dev 2>&1r horde I r <<Eol' &
rgecretr) .

Ref ->
ok

O 200(1 Pr€em-^fl rtñt d€rd F¡lc t4

A bstrøct- Agent-based software architectures have been used

rnd exploited in many application fields. In this paper' rvc rcport
our experience about using intelligent agents for an unugual
task: controlling sn autonomous robot playing a kind of "golf'
game in an international robotic competition. Driving a real
robot is a practical application field for software agents, bec¡use
dillerent subsystems need to be controlled and synchronlsed
in order to realize a global game strategy: cooperatlng agents

can easily fit the target. Since this application requircs a soft
real-time platform to gu¡rsntee fast and reliable actions, and
also ¡ valuable communlc¡tion system to gain feedback from
sensors and to issue commands to actuatorsr we chose Erlang
8s programming language. A two-layer multi-agent system was

thus designed and realized, composed of a lower layerr hosting
agents taking care of the interface with sensors and lctuators,
and a higher tayer, where agents are in charge of ((intelligent"

activities related to game strategy.

Keywords-Mobile and Autonomous Robots, Computer Vision,

Autonomous Agents, Real-Time Systems, Erlang.

I. INTRODUCTION

Software agents are autonomous entities that, living in a

virtual world, are in charge of accomplishing the goal they

are programmed for, In doing so, agents interact ìvith the

environment where they live in, by sensing its state and acting

onto it, in order to achieve their goal. For these reasons' they

are often called "software robots".
In spite of this similarify between (software) agents and

(real) robots, agents, and above all multi-agent systems' are

mainly exploited in realizing complex software systems and

applications requiring intelligence, fl exibility, interoperability'

etc., while the area of robotics is often a matter of research on

real-time and control systems. However, when a (autonomous)

robot needs some intelligence to porform its activities in a

more efficient and effective manner, the use of agent technol-

ogy seems a natural choice [17].
The issue is that, in these cases, agents have to face the

problems related to the interface to physical sensors and

actuators, which connect the computer system with a physical

environment that also changes during time. Therefore, an

agent-enabled robot has not only to tackle the problems related

to direct use of input/ouþut ports, acquisition and driving

boards, serial ports etc., but it should also take in account

the fact that the scenario is time-constrained. In fact, as it is

known, an information acquired from sensors (e.g. the position

of thc robot or of its arm) has a deadline after which the

t (ø)

data become stale and no more useful, unless a fresh value

is obtained. These problems are quite known in the area of
real-time systems and their solution is achieved by means

of platforms and/or operating systems that regulate program

execution-in terms of process/task scheduling, race condition

and delay control-in order to guarantee that deadlines are

met.
Since such a real-time support is needed also in the case of

the use ofan agent-based system to control robot activities, the

traditional and well-known agent platforms, which are mainly

based on Java, cannot be employed at all: at it is known,

the main problem of Java is the garbage collector, which

introduces unpredictable latencics that prevent any att€mpt

to build a time-constrained system. Indeed, RTSJ specifica-

tion [6] provides a set of classes and some programming rules

that allow thc rcalization of real-time Java systems, but the

specification introduces hard constraints in object allocation

and reference that require an existing Java program (and thus

an agent platform) to be rewritten in order to make it RTSJ-

compliant [22], [6], [8].
In the context of agents and real-time systems, a language

that features some interesting characteristics is Erlang [5]' [4],

fl]. It is a functional and symbolic programming language

that has been proved to be suitable for the implementation of
multi-agent and intelligent systems [21], [10], [12], Il l]' [13],

[5], [4], [9]; moreover, since the Erlang runtime system

is able to provide soft real-timer capabilities [18], [3], it
seems also quite useful for the realization of an autonomous

robot controlled by autonomous agents. In this context, this

paper describes the authors' experience in designing and

implementing an autonomous robot, for the Eurobot 2006

competition2'3, by means of a multi-agent system written

using the Erlang programming language. A layered multi-
agent system has been designed, composed of two layers:

a back-end (lower layer), comprising agents performing the

interface with robot's physical sensors and actuators, and

handling low-level control activities; and a front-end (upper

layer), hosting agents dealing with the game strategy. Thanks

to this layered architecture, hardware-level interactions and

lA system is called soli real-lime if it is able to take into account deadlines,

but if i deadline is not met, it has no particular consequ€nc€s [19]' [20].
2http

z / / uru, eurobot. org
3http: //pciso . dlit . uûíct . itl-eurobot

Softwate Agents for Autonomous Robots:

the Eurob ot 2006 ExPerience

Vincenzo Nicosial, Concetto Spampinatol and Corrado Santoro2 for the Eurobot DIIT Team

Università di Catania
lFacoltà di Ingegneria - Dipartimento di Ingegneria Informatica e delle Telecomunicazioni

zFacoltà di Informatica - Dipartimento di Matematica e Informatica

Viale A. Doria, 6 - 95125, Catania, Italy

intelligent activities are clearly decoupled, making the design
and implementation of the software system more easy, and also
allowing the programmer to easily reuse some parts and/or to
improve or change the functionalities of the system.

The paper is structured as follows. Section II describes the
game that robots have to play at Eurobot 2006. Section III
illustrates the basic hardware and mechanical structure of
the robot developed. Section IV deals with the software
architecture of the control system of the robot, describing the
agents composing the system, their role and their activities.
Section V discusses some implementation issues. Section VI
reports our conclusions.

II. THe GnvB Rr EuRoBor 2006

Eurobot is an international robotics competition which in-
volves students and amateurs in challenging and amazing robot
games. The main target of the event is to encourage sharing of
technical knowledge and creativity among students and young
people from Europe and, in the last two editions, from all
around the world.

Every year a different robotic game is chosen, so that all
teams start from the same initial status and new teams are

stimulated to participate. Here we report an overview of the
rules for the 2006 edition of Eurobota, when the selected game

was "Funny Golf', a simplified version of a golf game where
robots had to search balls in the play-field and to put them
into holes of a predefined colour.

A. Field and Game Concepts

As Figure I shows, the play-field is a green rectangle of
210x300 mm, surrounded by a wooden border, Borders on the
short sides of the field have a red (resp. blue) central stripe
which delimits the starting area for each robot. The field has

28 holes, 14 of them encircled by red rings and the other by
blue rings. A total amount of 3l white balls and l0 black
balls are available during the game. Fifteen white balls and
two black balls are placed into the playing area at predefined
positions, while four more black balls are randomly positioned
into holes, two for each colour. The remaining balls (sixteen

white and four black) could be released by automatic ejection
mechanisms positioned at each corner of the field. Finally,
four yellow "totems" are positioned into the field and are

both obstacles for robots and switches for the ball-ejection
mechanisms.

Robots must be absolutely autonomous: any kind of com-
munication with the robot, both wired or wireless, is not
allowed during matches. Robots have spatial limits, in terms of
height, perimeter and so on, and have to pass a homologation
test before being accepted for the competition. Each robot
can also use any kind of positioning and obstacle-avoidance
system, and supports are provided at the borders ofthe playing
area to place (homologated) beacons, if needed.

Fig. l. The playing area

B. Playing Funny Golf

Before starting, each robot is assigned a colour, either red
or blue. Robots start from the border opposite to their playing
area, i,e. in the opponent's field, and at least one side of
the robot must touch the starting area (short border of the
play-field). After robots are placed into the field and all setup
procedures by team members are over, the refcrees choose the
positions of totems and black balls, by means of a random
selection. When all the components in the play-field are set

up, one of the referees gives the start signal and robots can
play. Each robot has to put as many white balls as possible into
its holes in a time of 90 seconds. Robots can also put black
balls into opponent's holes, suck them out of their holes, or
even suck white balls out of opponent's holes. There is no
restriction about strategies or techniques adopted in order to
search, catch, release and suck out balls, It is not allowed to
hurt the other robot or to obstacle or damage it in any way.
It is neither permitted to damage the playing area or playing
objects (such as balls, holes, totems or ejecting mechanisms).
The ejecting mechanisms can be triggered by touching a totem
for a given amount of time; this closes a simple electric circuit
and allow balls into the ejector to be released. At the end of
the match, each white ball in the right hole is considered as a
point, and the robots which has the highest score is the winner.

III. THE DIIT TEAM RosOT

Building an autonomous robot to play "Funny Golf' is not
a trivial task, since different subsystems are needed to perform
ball searching, catching and putting, and many physical con-
straints are imposed by game rules themselves. The following
subsections describe the robot realized by the DIIT Teams,
which participates (for the ûrst time) to the 2006 Eurobot
edition.

A. The Core

An embedded VIA 900Mhz CPU is the core of the robot.
rile used a motherboard produced by AXIOM Inc. which
incorporates Ethernet, parallel port, 4 serial ports, USB, IDE

5"DI!T" means Dipartimento di Ingegneria Informatica e delle Telecomu-

-
a

-

L

l"t
Ë-

-
Ot¡ ç.r ti,

-,'./-

-
r-

-
rt

I a -t
I

¡|¡
g'
t-

a It!-
¡ö

4This edition took plaoe in Catania, Italy.

2

ntcaztonl

3

controller and other amenities (such as PCllO bus, not

used in our configuration). The operating system used is
a Debian GNU/Linux (Etch), with kernel 2.6.12 and glibc

2.3.5. GNU/Linux was selected because of its stability and

robustness, that are important features when driving a robot.

B. Locomotion System

In order to guarantee fast movements, we decided to use a

locomotion system bascd on two independent double-wheels,
driven by DC motors. Wheels diameter is small enough to

allow fast rotation and large enough to avoid holes. DC motors

are directly connected to a motor-controller, driven by a RS232

serial line. The controller allows to set different speeds for
each wheel, both for forward and backward directions. Each

wheel is connected to an optical encoder, driven by a serial

mouse circuitry which feeds back to the softwarç system

information about real rotation speed and position of the

wheel. This information is then used by thc Motion Control

agent to adjust the speed and the trajectory.

C. Vision

Searching balls in the playing area requires a kind of vision

system to find them. We chose to use a simple USB webcam

to capture video frames at a rate of about 4 frames/sec, still
enough to guarantee an accurate and fast analysis of objects

in the field. The webcam is able to "view" the field from 30

to 160 centimetres in front of the robot, with a visual angle

of about 100 degrees in total. Frame grabbed by the webcam

are passed to the "Object Detector" agent, which filters them

to find balls (both black and white) and holes (both red and

blue),

D. Catching and putting balls

Once balls are detected, it is necessary to put them, some-

how, into the right hole. Vy'e decided to suck balls using a fan,

and to choose where to put them using a simple selector, driven

by a servo-motor. Balls are saved into a small buffer if they are

white and the buffcr has enough space, or ejected out if they

are black or if the buffer is full. The fan is powerful enough to

suck balls at a distance ofabout l2 ccntimetres from the front

side of the robot, and it is also able to suck balls out of holes

when a special small bulkhead on the front sidc is closed. A
simple release mechanism, which uses a servo-motor, allows

balls to be dropped down to the final piece of the buffer and

to fall into a hole.

E. Sensors and Positioning

Many sensors have been used onto the robot. First of all,

a colour sensor for balls is installed into the ball selector,

to recognise if a sucked ball is white or black. A complex

system of proximify sensors is installed in the bottom side

of the robot to recognise holes when the robot walks over

them, and to allow a smart and fine positioning during the

ball putting phase. A presçnce sensor (made by a simple LED-
photo-resistor couple) is placed in the final part ofthe buffer,

to reveal the presence of a ball ready to be dropped into a

Fig,2. The Robot in the playing area

t

I
I

D¡B¡d l0 L¡E¡

È

ç

J

o

Fig. 3. Hardware/Software Architecture

hole. Thc same sensor is used to detect when the ball has

been successfully put into a hole.

IV. Ts¡ RoBor's SoFTwARE ARcHIrEcruRE

Given the robot structure illustrated in the previous SÖction,

it is ctear that the implementation of the system to control it
has to face some problems that are not present in traditional

(only software) multi-agent systems: the interface with phys-

ical sensors and actuators. For this reason, the basic software

architecture of the robot, which is sketched in Figure 3, is

composed of two layers, (i) a lower one, called the back-

end, including reactive-only agents, responsible for a direct

interaction with the hardware, and (il) a higher layer, called the

fron|end, hosting the "robot's intelligence" by means of a set

of agents implementing the artificial vision system, the game

strategy, the motion control, etc., and interacting with back-

end's agents in order to sense and act onto the environment'

All of these agents comply with an ad-hoc model which,

together with the details on functionalify of the overall system,

is described in the following Subsections.

J

Molion
Control

Srnrôgy
Object
Detetor

IrcnF.nd

Bâll
conrol

llolc
Dcrætor

Slert/Slop
coñrol

Motion
Ddvcr

RS485
Månagom€tr1

back-cnd

A, Agent Model

As reported in Section I, due to real time requirements
and other peculiarities of a robotic application, well-know
Java-based agent platforms cannot be employed; therefore,
according to authors' past research work [21], [10], [2], I l],
[3], [l5], [4], [9], we decided to use the Erlang language [5],
[4], [l] for the development of the robot's software system. In
addition to its soft-real time featr¡res, Erlang has a concurrent
and distributed programming model that perfectly fit the
model of multi-agent systems: an Erlang application is in fact
composed by a set of independent processes, each having a

state, sharing nothing with other processes and communicating
only by means of¡æessage passing. Such processes can be all
local (i.e. in the same PC) or spread over a computer network;
this is transparent to the application because the language
constructs for sending and receiving messages do not change
should the interacting processes be local or remote.

Given these fçatures and the requirements for the robot
control application, a suited agent model has been developed,

which is based on two abstractions called BasícFSM and
PeriodicFSM. The former, BasicFSM, is essentially a finite-
state machine model, in which transitions are triggered by
eithcr the arrival of a message or the elapsing of a given
timeout, and a specified per-state activity is executed (one-

shot) when a new state is reached. The latter, PeriodicFSM, is
instead a finite-state machine in which transitions are activated
only by the arrival of a message, while the per-state activity
is executed, when a state is reached, periodically, according
to a fixed time period and within a deadline, which is equal
to the period itself.

As it will be illustrated in the following, BasicFSM model
is used for front-end agents, while the PeriodicFSM model
is essentially exploited for those interacting with sensors and

actuators and thus running in the back-end.

B. The Back-End

As Figure 3 illustrates, the back-end layer is composed
by the following agents: Motion Driver, R5485 Management,
Start/Stop Control, Ball Control and Hole Detector. All of
these agents use the PeriodicFSM model but only the first
two are directly connected with hardware resources.

The Motion Driver agent is in charge of driving wheel
motors and gathering feedback from optical encoders. It basi-
cally handles messages (sent by front-end agents) specifying
the speed to set for the left and right wheel, forwarding it
(after measurement unit conversion) to the motor controller
connected through the RS232 line. On the other hand, its
periodic activity entails receiving the feedback from optical
encoders (i.e. tick count), acquired through another RS232

line, and then computing tick frequency, thus evaluating the

real speed of the wheels: the obtained value is used to adjust
the value(s) sent to motor controller in order to make each

wheel to reach the desired speed6.

6This is obtained by means of a proportional-integrative-derivative software
controller.

The RS485 Mønagemenî agent is responsible for driving two
external boards connected, to the PC, through the same RS485

serial bus: a controller for servo-motors and a board offering
a certain number of I/O digital lines. Since each servo-motor
and each IiO line is then used by different agents, the RS485

Management acts as a de-/multiplexcr for actions and sensed

data. Its periodic activity is the sampling of digital inputs, by
means of a requeslreply transaction through serial messages

exchanged with the I/O board; polled data are thus stored in
the agent's state in order to make them available for requests

coming from other agents. In addition, the RS485 Management
is able to receive messages containing commands to be sent to

servo-motot through the servo-controller; in particular, each

command specifies the servo-motor to drive and the rotation
angle to be set.

The Start/Stop Control agent is a reactive one that period-
ically queries the RS485 Management in order to check if
the "start" or "stop" buttons have been pushed. On this basis,

it sends appropriate start/stop messages to the Strategy agent
(see below) in order activate (resp. block) its behaviour when
a match begins (resp. ends). Since the duration of a match is
fixed (90 seconds), this agent embeds also a timer that, armed

after a start, automatically sends a stop message when the 90

seconds are due.

The Ball Control agent is responsible for managing the

ball sucking system, the buffer and the ball release system.

During its periodic activity, it queries the RS485 Mana$ement
agent in order to check the input lines signalling that a new

ball has been sucked: if this event occurs, on the basis of
the colour of the ball7, it drivcs the sucking system's arm

servo-motor in order to put the ball in the buffer-if the

ball is white and the buffer is not full-or to throw the ball
away-if the ball is black or the buffer is full. This agent

also holds the number of balls in the buffer, information that,
queried by the Strategy agent, is used by the latter to control
robot behaviour. As for ball release, the Ball Control ,agent,
following a proper command message, is able to interact with
the RS485 Management agent and thus drive the servo-motor
controlling the release of a ball. Finally, by checking the status

of another input digital line, the Ball Control agent is able to

understand if a released ball has been successfully put into a

hole.
The last agent of the back-end, the Hole Detector, reads,

through a proper interaction with the RS485 Management
agent, the data coming from proximity sensors placed under
the robot for hole detection and positioning. It is able to
understand the position of the robot, with respect to the hole
to catch, and can thus forward this information to the Strategy

agent, which, in turn, will drive the wheels to centre the hole
and put the ball into it.

C, The Front-End

The front-end layer implements the high-level activities that

drive the robot to reach its goal, i.e. placing the most quantity

TTho colour is detected through a sensor connected to another digital input
line.

4

5

(a)

of balls into its holes. This layer is composed of three agents:

Object Detector, Motion Control and Strategy'

The Object Detector has the task of observing the playing

area, by means of a USB camera' detecting the objects

needed for the game, i.e. balls and holes, and computing their

coordinates with respect to the robot position. Since it uses

a computation-intensive image manipulation algorithm, this is

the sole agent written in C and not in Erlang8. This algorithm,
whose execution is triggered by a suited message sent by
the Strategy agent, exploits artificial vision techniques and

performs a series of transformation (i,e. filtering, threshold,

binarisation) on RGB planes of each frame acquired in order

to isolate and recognise the required objects. Figure 4 rçports

some screen-shots of the functioning of the Object Detector.

In particular, Figures 4a and 4c show two acquired frames,

while Figures 4b and 4d illustrate the filtered images with the

objects (respectively a white ball and fwo blue holes) detected

by the agent.

The Motion Contrcl agent, which is the only PeriodicFSM
type, has the task of controlling the robot's path: it receives,

from the Strategy agent, messages containing commands for
robot positioning, such as go to X,Y or rotate T, computes

the speed of the wheels needed to reach the target, and sends

such speeds to the Motion Driver agents. Moreover, in order

to ensure that the target is reached, the Motion Control agent

periodically requests to Motion Driver the tick count of optical
encoders and calculates the absolute position and orientation of
the robot [7]. These values are thus compared with the target'

making subsequent speed adjustment, if necessarye. Another

task of the Motion Control agent is obstacle detection. Since

the robot has no sensors to detect if an obstacle (e'g. the

opponent's robot, a totem, etc.) is in front of it, the Motion
Control agent checks if there is no wheel movement within
a certain time window (given that wheel's speeds are greater

than zero); if this is the case, an obstacle exiting algorithm is

started, which entails to move the robot backwards and then

rotate it.
The last agent, Strategy. is the "brain" of the robot' Being

a BasicFSM agent, it is responsible of collecting and putting

8lt uses the OpenCV library [2], which provides a set offast and optimised
image manipulatìon functions, Proper Erlang-to'C library functions allows this

agent to interact with Erlang processes.
9Also in this case, a proportional-integrative-derivative software controller

is employed,

(b) (c)

Fig. 4. Recognition by Object Detectoi agent

(d)

Fig. 5. Strategy Agent Behaviour

together information about environment and robot subsystems

to obtain a valuable and effective playing strategy. Even if the

field is mostly immutable (except for the position of totems,

which are set before each match) and many of the balls

involved are still in fixed position, we chose to implements an

intelligent and adaptive strategy instead of a simple "fixed-
path" one. For this reason the Strategy agent has to adaptively

choose the right action to perform at each time, elaborating

data coming from other agents. As Figure 5 illustrates, the

very first step of the implemented strategy is "move beyond

the first black line", since this guarantees the collection of
at least one pointl0, This is performed by suitable commands

sent to Motion Control agent. When the black line has been

passed, the main strategy loop begins. First the robot looks

for white balls and suck them into the buffer: if any white

balt is seen by the Object Detector, then the Motion Control

agent is issued the commands needed to reach the ball;'on the

other hand, if no ball has been detected, the Strategy agent

tries to search elsewhere, by rotating of a random angle in

order to look at other zones ofthe field. lühen a ball has been

sucked and the Ball Control agent reports the presence of at

least one white ball into the buffer, the Strategy agent starts

to search a right hole to drop it into (i.e. a hole of the colour

assigned to the team, either red or blue), looking at messagcs

from Detector and moving toward a hole as soon as it has been

found. When the selected hole is no more visible (i.e. outside

the camera scope) a ball is released and, by means of messages

coming from Hole Detector, a sequence of commands for fine

positioning are sent to Motion Control' If thc hole is centred

lolfthe robotdoes notpass the ñrst black line, then it obtains no points at

the end of the match.

¿

I

i

t

5

3..r'

]
:17

3.rd hoFc@dr ne.
d r.m.v. h. bd¡

e (¿)
and the ball goes into it, the Ball Control agent sends a "Ball
Successfully Dropped" message, so the Strategy agent decides
to search another hole, if more white balls are present into
the buffer, or to look for more white balls. If the ball is not
dropped into a given amount of time (for example because of
errors in fine positioning) the Strategy agent searches another
hole and tries to drop the ball into it. Finally, in the last 30
seconds of game, the Strategy agent tries to find opponent's
holes to suck white balls out of them.

V. IMPLEMENTATIoN IssUEs

As it has been previously said in the paper, with the excep-
tion of the Object Detector, the system has been implemented
using the Erlang language. However, even if our rcsearch
group has realized a FlPA-compliant Erlang agent platform
(called eXAT [0], [2], Il], [l3], [5], [4]), we did not
use it in order to avoid overhead introduced by platform's
components for inference, behaviour handling, standard FIPA
messaging, etc. This is required in order to have a fast and
effective support for agents, rather than the possibility of
interacting with other external agents (according to Eurobot
rules, the robot must be autonomous and not connected to
any network). To this aim, each agent of the robot has been
encapsulated in an Erlang process and a suitable library has

been developed to support the BasicFSM and PeriodicFSM
deadline-aware abstractions. Message passing has been real-
ized by means of the native Erlang constructs to perform inter-
process communication (which are designed to be very fast):
this resulted in an optimised code able to meet to real-time
requirements of the target application.

VI. CONCLUSIoNS

This paper described the architecture of an autonomous
mobile robot, developed by the DIIT Team of the University
of Catania to participate to the Eurobot competition. A multi-
agent system has been employed for this purpose, composed
of several agents in charge of both interacting with physi-
cal sensors and actuators, and supporting the game strategy
for the robot. A layered architecture has been designed to
clearly separate the aspects above-physical world interface
and intelligence-and to favour design, modularity and reuse.

Due to real time constraints, the system has been implemented
using the Erlang language by means of a proper library to
support the abstraction needed for using agents in a robotic
environment, This allowed us to develop a fast code able to
effectively support robot's activities.

VII. ACKNOwLEDGEMENTS

The authors wish to thank so much all the other components
of the Eurobot DIIT Team, who gave a terrific and fundamental
contribution in thc realization of the robot described in this
paper and made this experience not only very useful but also
very funny.

These people are Roberto Di Salvo, Andrea Nicotra, Luca
Nicotra, Massimiliano Nicotra, Stefano Palmeri, Francesco

Pellegrino, Matteo Pietro Russo, Carmelo Sciuto, Danilo
Treffiletti and Carmelo Zampaglione.

Moreovern the authors wish to thank also the official spon-
sors of the Eurobot DIIT Team, which are Siatel Srl (from
Catania, Italy) and Erlang Ttaining & Consulting Ltdll
(from London, UK), that, with their support, contributed to
make our dream real.

REFERENcES

[] "http://www.erlang.org. Erlang Language Home Page," 2004,

[2] "http://opencvlibrary.sourceforge.neU," 2006.

[3] J. Armstrong, B, Dacker, R. Virding, and M. Williams, "lmplementing a

Functional Language for Highly Parallel Real Time Applications," 1992.

[4] J. L. Armstrong, "The development of Erlang," in Proceedings of lhe
ACM SIGPLAN Inlernalional Conference on Functíonal Programming,
A. Press, Ed., 1997, pp. 196-203.

[5] J. L. Armstrong, M, C. Williams, C, Wikstrom, and S. C. Virding,
Concurrenl Programming in Erlang, 2nd Edition, Prentice-Hall, 1995.

[6] Bollella, Gosling, Brosgol, Dibble, Fun, Hardin, and Tumbull, The Real-
Time Specifcation for Java. Addison-Wesley, 2000.

[7] J. Borenstein, H. R. Everett, and L. Feng, Where am I? - Syslems

and Methods for Mobile Robot Positioning. WWW University
of Michigan, USA, htþ://www-personal.engin.umich.edu/-johannb/
position.htm, 199ó.

[8] A. Corsaro and C. Santoro, "Design Pattems for RTSJ Application
Development," in Proceedings of2^d JTRES 2004 llorkshop, OTM'04
Federated Conferences. LNCS 3292, Springer, Oct.25-29 2004, pp.

394-4.05.

[9] A. Di Stefano, F. Gangemi, and C. Santoro, "ERESYE: Artificial
Intelligence in Erlang Programs," in Erlang l4/orlcshop at 2005 lntl. ACM
Conference on Funciionøl Programming (ICFP 2005), Tallinn, Estonia,
25 Sept. 2005.

[0] A. Di Stefano and C. Santoro, "eXAT: an Experimenøl Tool for
Programming Multi-Agent Systems in Erlang," in AI*IA/TABOO Joinr
Worløhop on Objects and Agents (WOA 2003), Villasimius, CA, Italy,
lG-ll Sept.2003.

tl I I
-,

"eXAT: A Platform to Develop Erlang Agents," in Agent Exhibi-
tion l{orkshop at Net.ObjectDays 2004, Eúur| Germany, 27-30 Sept.
2004.

[2]
-,

"Designing Collaborative Agents with oXAT," in ACEC 2004
Worløhop at IVETICE 2004,Modena, Ital¡ l4-16 June 2004.

[3]
-,

"On the use of Erlang as a Promising Language to Develop Agent
Systems," in AI*IA/TABOO Joint ll/orl<shop on Objecls and' Agenls
(WOA 2004), Torino, Ital¡ 29-30 Nov. 2004.

ll4l
-,

"Supporting Agent Development in Erlang through the eXAT
Platform," in Software Agent-Based Applicatíons, Platforms and De-
velopmenl Kils. Whitestein Technologies, 2005.

tl5l
-,

"Using the Erlang Language for Multi-Agent Systems Implemen-
tation," in 2005 IEEE/WIC/ACM International Conference on Inlelligenl
Agent Technology (l4f'05), Compiégne, France, 19-22 Sept. 2005,

[6] P Dibble, Real-Time Java Platform Programming. Prentice Hall PTR,
2002.

[7] I. Infantino, M. Cossentino, and A. Chella,'An agent based multilevel
architecture for robotics vision systems." in Proceedíngs of the lnter-
national Conference on Artificìal Intelligence, IC-AI '02, June 24 - 27,

2002, Las Vegas, Nevada, USA, Volume I,2002, pp. 386-390. '

[8] E. Johansson, M. Pettersson, and K. Sagonas, "A High Performance
Erlang System," in 2nd Internalional Conference on Principles and
Practice of Declarative Programming (PPDP 2000), Sept, 20-22 2000.

[9] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environmenr:' JACM, vol. 20, no. l,
pp, 46-61, Jan. 1973,

[20] Liu, J. W. S,, Real-Time Systems. Prentice Hall, 2000.

[21] C. Varela, C. Abalde, L. Castro, and J. Gulias, "On Modelling Agent
Systems with Erlang," in 3'd AcM SIGPLAN Erlang llorkshop, Snow-
bird, Utah, USA, 22 Sept. 2004,

[22] A. Wellings, Concurrent and Real-Time Programming in Java. Wiley,
2004.

6

llhttp : //www. erla¡g- consulting. con

1(ø

Gomprehensive Erlang Archive Network
Stockholm, November 9, 200ô

C¡9OO PrPcç$.Oß.AI tldlþ ffir.d Þ.9¡ i

t €

l,:' rr, i:lr";
k.. ';i. '
i:

:.:t .,'

1)

i'

i

a
$

ü,
ùd

n

What is GEAN ?

* An Erlang dlsülbuüon and packaglng system
a package has a description file, and an archive file available on intemet

a package can contain an Erlang application, an OTP Library any user contribution code

Ë Provldes easy Erlang lnstallaüon wlthout compllaüon
Basic install is a 3Mb self extractable binary archive running on:

linux-alpha, linux-amd64, linux-arm, linux-hppa, linux-ia64, linux-m68k, linux-mips, linux-mipsel,

linux-powerpc, linux-s39O, linux-sparc, linux-x86, darwin-powerpc, darwin-x86, freebsd-x86,

openbsd-x86, sunos-sparc, windows

3 Allovus to lnstalUunlnstalUupgrade Erlang packages
no need to browse the internet, this is done using erlang shell

package updates can be lested at any time using erlang shell

I Allows to crcate custom ErlangúOTP lnshllaüon on prcductlon systems
one can deploy the basic CEAN Erlang bootstrap and start a distribution profile script

I Alme to be a centnle place to frnd erleng code
CEAN can use tar, zip, cvs, svn to fetch sources to build packages. So any code we can find on

the internet can be packaged making binary version of the code be available on CEAN site.

Up to 200 packages already available.

I Brlngs lnten¡süng staüeücc on Erleng use
Downloaded packages, system and architecture used, Erlang version...

02000 PÍG+Oð -Aü rlll¡b rü;il.d P$.1

4
l,) (¿

a
a
0
o
Q

-r,t-åfltl
n

Hlstol'y

T REPOS
r Version 1.0 in December 2004
r Repository of Erlang-Projects.Org Software selection
r CD-ROM image collecting major ready-to-work Erlang software for Linux x86, MacOS X PPC,

and Windows

I EÍIRT
: Version 1.0 in April 2006
r Allows minimal Erlang installation and provides package repository for Erlang/OTP and few

applications
r Automatic package generation improvements

* CEAN
r Version 1.0 in November 2006
r ls a merge of REPOS and ErIRT

r lncludes standalone application generator, more packages (Erlang/OTR user contribs, jungerl,
etc...), improved web site.

r Contributor script improvements
r Makes use of BitRock to generate graphical application installer

O 201ß Plso-Om .r{l rt¡hlr 6fl6d Frg. I

CEAN in use

(D
$

Ë*

n

I The .pub flles
The way to describe a package

r The contlbuþrarchlve
To allow easy contribution, making binary archives

r The GEAN bulld procoos
How to transform binary archives to CEAN packages

* The CEAN web slte
First overview

ü Tha GEAN llbnry usage
The way to use CEAN using Erlang shell

t Some Exemplee
Let's try....

O 2000 Pmlr-Om -Al rleh{r ffiúrd Frg. a

3G,

{)a
û)
api
CI-(\

n

The.oub flles

; One .pub frle þ descdbe a CEAN packaged llbrary orsofhrale
{author, {"Process-One", "contact@process-one.nef}.

{package¡ {"Ghristophe Romain", "christophe.romain@process-one.nef}.

{name, "ejabberd'}.
(vsn, "1.1.2').

{depends, ["asn 1 ",t'crypto",ttmnesia",t'odbC',t'ssl",'tools"]].

{keywords, ['labbed',"xmpp","server"]].
{summary "Erlang jabber/XMPP server'}.

{abstract, "ejabberd is a high-performance instant messaging server. "

'An instant messaging server allows to transfer presence and status information "

"between users connected to server and support real-time communications between them.
"

"ejabberd relies on XMPP (<i>eXtensible Messaging and Presence Protocol</i>) protocol.').

{home, "http://www.process-one. neUen/projects/ejabberd'}.

{sources, {svn, "http://svn.process-one.neflejabberd/branches/ejabberd-1 .1.2'}1.

note: abstract can contain HTML code (viewable on CEAN web site)

ô 2mo Pñols.Om -At dghl¡ 6fl.d Prg! 6

T--e*cç¡rffi þ!rto-!:å!plivg

x One archlve to make CEAN packeges ñom scratch
This archive includes an erlang bootstrap, all .pub files, and an automatic build script

n Perûorms the lnltlal bulld prþcogs (toreaú pac,cage)

fetch build
.pub

-_->
sources + afch.tar * common.tar

; Sends archlþctrrê spôclfic binarles to Prccess'One

sum(arch.tar)
g1at!'

contrib@process-one.net

I Allovus people to add new package (lddlng .pub ftlee)

- email
new .pub >

(Ð

$*
n O $oô ftocr8$Om -AI dehlr ffi€d F.9.3

4t
The CEAN bulld DnÐBess

t Bulld package Íor each conülbuüon and each avallable archttectr¡ru
This stage allows to apply some patchs needed to support multLplatform integration
Automatic transformation are done to comply with CEAN packaging standard.

arch.tar+common.tar
CEAN patchs

build process
CEAN repository

& Generate standalone appllcaüon archlve and lnstaller

a(Í

$*
m

app lication+dependencies
Erlang bootstrap

From CEAN repository

merge

O 200ô P@sr.oæ -AI n$b mmd

app-arch-standalon e.tgz

lgitRoct installer
t

app- arch-installer.bin

Prg! 7

The CEAN web site

t The packages brorcer
laak¡çeå ßtoqrc¡ cl

{ 1?'ìË{ã fjl t{tp'//¡oñlho*t188/pacli0€s/ r [!i ,ffi;¿d;;"*" --*"""-*"î, r

Ëm"
About PËckÌrged oþcuñê.ttäfiâtr Þow$loåd

frrd¡rf6 ¡ffctr ülÍ{nG

r¡ñd år¡ltðbtè Fè(¡¡qôr håt pÊrlomr5 shst yo(ttÌ(C utn¡ ê *oVword lr$tctl lltht.
4tfuôllv, Frthltol .ãlúttn¿Uor Ê lr1jkg wot*kd ù't, ßtt¿r alcut,1cy |'ilt tilFoØ ,ñ | nø¿/ íl\ii.

cÖlrlr¡büt4 $tåts

Er¡tôf lrywordr sFoc¿ rqpôt¡¡€d

OlrdlH

¡¡¡|: Á rl¡w! ôrd &çl o uqt e. ôMttsê'
t!!¡O!O i uÙtly ùrrd h' .!¡t.tu Appkòltùß ere.lhttg ot 6¿r4ßt Êttr^e rcøj
illtyi Fuottã^i:, ÈrxtMtbt[âtæyt,
ølLt P"oy;dts túpoþd tu' iòsF¿d 5rr&¡ llbt¡tb¡ Odrr
!f¡!s: ,sft,nte ¿¡rdw
lEr :
LS: óe 8iúcÞ¡l f¡c'ßt f.r(to¡ .
bulkât orfd: ,V.drñdrr¡or¿¡ ò!¡*c¿ 9¡ d .

ll¡il¡b¿ OtP, rttr¡rr! ¡vÞt tvl¡d¡r
bllGgtfhl ¡*¡¡ ¡o, ¡t!;8/68 ôv& ordcr.
¡g; rttifllrrê¡w e,tbnqrofÞ FtoilrfrmrP 6\FNta ilþti¡y

'ÅÆt
CnñÞtehoótú Etun! Àdtw MNãt\ Dccett'hìtt,

go_hÀE. ¡& dF5./4tnr Jvtrtbh
lgLllE|tlBlr 4r¡ d€s(rtpta, dvtilÊbtd
lltlL A^W ú àÐ @i¡w44 tëñplcr l4n, (orê Í¡bbi, tø Caûño¡ Lt¿jn
lonDjlÊt â lrtrç .o4 úturq{þt br E.Arñã tth,(h lttrdtÊo. htghty cúøtttct :odi
lg¡ffC¡l: Ðrtdr OórG fÉrt Sù'vce
6¡Fyð¡ùñåthì (rôer Oit6 [u4t fhadrn Scr*c
fl¡EþIn¡¡hrl otba oMÊ Fkt îqñttt þrtc¡
¡{¡d¡lfüßa!!Â; ôrô?r OltG Notilkaõon Së\|c¡
t¡tPt!!tt¡(: óràêr ó¡r€ koFrly Sêt*a
t¡tl¡lû¡: Otbêr OøG r6t& s^A rtñatgwú

'e.ÁLctodruMchn<; O.þrt ONe fro1*<:ttø tar c
f¡t!þ) Ctfrhptôpht@l tùno.t 1

4!!ryì!: ¡ dc¡iltger tot tubqgûg sod edo? tt È!øng pogram! ì
dt¡¡b¡¡lr A p,ot,oe 6rlltrcb wrft|ity ut crlurNr,cf€¡s¡¿cj
¡ÈU: Jnplcfrtrñüftñ al døuhtc frftd owúa'
cbÍÀr ?f, rr r ffiP ff 04¿ ¡ñrphnry¡ãtuî

t*- ,

DF
-'

sr¡rcb I

a
Ø

ü-
Lq

0-$

n

Erlâng Arth¡ve I'letw0¡k

O 2@ô P|D6!.Om.AI d{¡ùb Éiflod Prg¡ I

The CEAN wrb slþ 5(s
t Packagedeecrlpüon
nfin Pr(k¡gû! Érúwlcî (3

nk_l

t F-:*"
AÞout PSckåge$ Oo(urn€ütatl6|l oôwnload contrlbutê stâtt

Pad.!!p ntrñ aÍ¡lm

llfd 6kâlbùlc pô(k¿Oro thât padotmt rhùt you nleó sitno û llyword
AdþùW. pâ(etle| ¡nlø.'rrln, /5 ¡ff,nr tw/l!Ù 04. l,m. ¿{:úaryùnl

b¿5td l¡ltlr

etrter keyç(rdr rps(r *p¡.¡tod 5r¡rch f

oÍæh0

P!ctooc: tlElJÊå
Aúlh¡r: Clðêli WrkeFoñ

^t¿a*i
ât httur drrl øro

F¡(&åS¿rf Cht¡6toph! Roo¡fr ctreþrt¿ dor rilñrilt .t rtetètt.ûDø .!oa Ml
ooÈ
0ipßndrl
5!iurrúr' (br) htip://y.hç.hyhr.org/dósrlosd/y¡wß-¡-65 Þ. g¡
8ômr Plfo: hü:/Jvffi .hukr.örô
SúDñ,ôr? f^lls 14 !n ERIÁflC. Nb Ècrvcr
Âbrh¡rr; \¡ws hêr e wrcé rê¡drr 3et, (rüppoft*:

mP 1 0 o¡d ffiP t.l
5t¡llr (ontênt pB9ê dcl'vôrt
DrD¡ilfr contDnt oanrrãüon ßlnç e¡ìl¡cCddd ER[Àñ6 rod¿, l¡r tht HTlrtL påq¿t
Comho¡ lo! fôrmrt tålnr logF
Vfiu¡l hoati[O wlth øypr¿l 4årylrc ôñ thc rôñr lP ûddrc¡!
Hulllrla ler'ro! o¡ $ülftptj lP ¿ddre!s4,
tmp tê(lno lof ó¿bu0grñû
Â¡ ¡nteñcty6 lñlôrÞrctÊr onvtm¡oôú tñ lhù lgûb 5cfler wh¡l¡ d^vêlo¡rm rnd dobuggr¡! lhê wob çlh
RAH (¡chi[o of coñnonly òGter5Éd ¡û!(!
Fúll rt4mrñ0 rap¿bilûÊr ol Þolh up ¡nd d¡wn tó& ot dyrumK¡tty $nrrltad Þo9cÉ
ss(
Supp^rt lor WSW.4uthêñt¡r¿tcd ps4Èr
súpÞort API tot (oolb lrôÉd rcJloo,
ÂpphßÊüon qôduhs Éhérê vldu¡l dlrealory hûaùrú'r! inñ h¿'mado
Ëñlreddcd modc

l-rllffilËmffiñFmi!ffi1¡Ë@

O2006 Pffi8¿m -At rlghls ffisd

T*p_9FAlùu¡p_þ_sü_ê_-____

n Dovn¡loads

yauÍs

8
CI

Ir
ùd

n
Plg.9

*-o."f1. - ",{¡
C€^N Ðowf,lo¿de (3

E lE lõ õ"il/'*iñðsôï/diiffid/--_ f,mn¡c I

Ë ä":""".
Àlror.rl pârks0ês Ðöcumentðttôn poì,*n¡Òôd Coiltrllr{¡tê Stâtí

Cg rl Br.ctyrbr
rñ ördèr to ulc c!4N, yoü ncdd r¡ olt¡tl fxl bês nyitcñ lt ¡fttu{ês htntñrt frhho/Otp :!nd CeAfi lhrsry úrt Ê¡ü û0ow yolt Þ corÞh¡]c vour ftståilðflôô

sdúct åttitvo çpß
lnrt¡flrr '¡ ¡ ælt 4xhldÞble lrchNt {d6ßr not wôtt u^dat {¡hdow¡}
trlppd ¿rr 15 ¡ rbrdatd b¡.9 lrrhrv!
:/i r! ó ztp ûrchlvc (tûr frñdow6 !!êr{l

E*k¡¿t llìé Erbn0/Of véríôn lnitudú ¡rd¡ h¡rß rtstem
Sekit di¡uìbúù0r

Pttuctlõ^ tñtlúrn ¡ha.. nwtmùft rsqfitÞr, wit r riñgped biNnc¡
DÊñrrp*r l¡afudag non sFtpped bt¡rñs¡, *ourés ¡id do(u@ntåtiô¡

$8k(l Oplrôtlr¡ Sritêñ ànd ôr¿hltdùrû

r,.¡,,0 trp" liijìIäõ--fi ôúc <\4 wìñdov\. ilt16tbì tç t ¿tF htc äy aoù

c¡rr nr¿noiorp liffi . lñãñiffi[u,"uu,,on, ,unu,ns on lffiãIäãñffi1 elrwntord I

cl^tr P.d..¡f, d a¡¡l¡Él¡or¡

¿vèd.blo róon. rèðdt Þ ú4 lpÉttctloôt inrtltlcr

@&. on lYrnalo*!.

oæ¡hrl I

Erlang Ârch¡ve Network

¿;; *"ì';t'ia' tt,.
ffi*oreh€nçive Erlang Ârclr¡u€ t-¡etwo¡k

.:,\'.

ÀpF,krüon

O ¡000 PtHlOm.Af deñb BaYqf Pr¡Ê l0

aa

$U}
üd
n

á(r
The CEAN mb sit6

il Staüstcs
(:}C!,AN U!¿ñ¿ 5ld(ritlr!

1l--:lm{f]õ t' hf, p //þ(.lhqrt6tE.rrãB/ ¡¡,ffir-1" -*-"*----A'r

Ot|l.nlClA[¡hð$ct

Flðlomt
ls2

ConÞ,lrúlo's: f0

¡llrnilofP ntit¡¡ r.rrþ¡ rrilnlmd¡

Âlm: l8(1ûû0nù)

ffi{tüdrlt órEdq¡rnlort

Apdè Mbcos/ PôeèrF{ . u (,15.S%¡
Linu¡ ¡¡lcr 106 . l0 t 12 !q"l
RÈPôS:0(00S)
ü'rrôçòrt Wnãorr5 : lO (ll.3t)

trd[gË dowDlqd¡

ðn¿lr0(0obt
dÞpñoh:01t.o.ál
artðy.0f0O1r)
¡rnl. ti00%)
à6!ü.0i0.0'r,
b!¡'0!00%t

ü ã"r"""

bu(kct.9r rd
bulld¡r 0 t

0n,)
,0t009¡)
0 0rrl
0{0û'âl

cr:010.0't!r
crån.ir00k)
rr¡n h3Èú.1{ Õ0411
cénñ lnrt¿il¡r : I I lÛ0ç,,
clilr:0,t|)rt)
tomFdr;r 0i0Cgi,

_

ÂÞo¡¡t Pãckðges Þs(umêñtsifon Oownlðlld cûntrlbut€ stotß

tr

JÛbill

$
v)
û)

8=
l- il

tr$

ru
ffi'Fffi,LFfl$ääT;lffil'ffiYfli,-,.',,F,ãñ *

O ¡006 PlwOË -Alighb Bwod ßlgo lt

Øû

$-
dtì

n

The CEAN

ü Llsb avallable packages
cean:available$. % returns [List]

ft Llst lnshlled packagee
cean:installedfl. % returns [List]

; Checkfora package status
cean:installed(stdlib). % returns boolQ

* Searrh fora package
cean:search("web server"). o/o returns [List]

ru lnstall a package and all lts dependoncles
cean:install(yaws). % returns ok

n Unlnstell a package
cean:uninstall(yaws). % returns ok

t Llstall nowverclons of lnstalled packages
cean:newfl. % returns [List]

I Upgnde a package
cean:upgrade(ejabberd). o/o returns boolQ

; Upgnde the whole dlstlbuüon
cean:upgrade$. o/o returns ok

; Gheck CEAN vemlon
cean:versionQ. % returns stringfl

Oãt00 Pms.Om.Aì dglrtr lwld ñ¡. 12

a\

I lYt

aa
CI

8u
ùc

TI

9ome

& CEAN lnstallaüon and usage
chris@iBook:-> sh ./cean_installer. bin

please wait...

Erlang (BEAM) emulator version 5.4.13 [source] lhipe] fthreads:O]

Eshell V5.4.13 (abort with ^G)
1> cean:inStalled0.

It'cean", "ibrowse", "kernel", "stdlib"]
2> cean:install(mnesia).
+ mnesia md5=<<160,59,224,210,56,36,169,26,180,156,142,150,164,39,8,166>>

ok

Þ mnesia:start$.

ok

4> mnesia: system_info(tables).

[schema]
5> cean: installed(mnesia).

true

6> cean: uninstall(mnesia).

- mnesia

ok

7> cean:installed0.

["cean", "ibrowse", "kernel", t'stdlib"]

O¡OOô Plm{)m-Al rlûbndtd ftaga tl

Sorne exemþlos

r Package search
1 > cean:search("database").

[{"view-backup","Simple program for loading mnesia backup files"},

f'safedets","A version of dets that never enters the repair mode"),

('rdbms","A relational database management layer on top of mnesia'],

f 'mnesia", "A heavy duty real-time distributed database'J,

{"gridfile","Adaptable, Symmetric Multikey File Structure"},

{"dynarray", "Expanding array for heap-based storage"}l

2> cean:search("serve/').

[{"yaws","YAWS is an ERLANG web server'},

f'shbuf',"Erlang server for sharing Emacs buffers & Emacs-Lisp client"),

f'nfs","NFS server'),

f inets","A set of services such as a Web seryer and a ftp client"),

f'gen_leader",
"This application implements a leader election behaviour modeled after gen-server. This

behaviour intends to make it reasonably straightfonrard to implement a fully distributed server
with master-slave semantics'),

('enfs","Minimal NFS v2 server in Erlang"),

f 'ejabberd", "Erlang jabber/XMPP server')l

-"i

,|,

f.
i

t

i

t

(fr
0

$.
l-ô
û-$

ß
O ¡t06 P¡É¡8.om .Al rl¡ñb lwvÒd P.g. la

s(8
P-l¡4¡!ng

a
a

H-
òd

n¡

t CEAN 1.0 beta
r Full archives for R10B
r Partial archives for R11B

r Ejabberd self installer generated with CEAN
r Planned for mid November 2006

; CEAN I.I
r Full archives for R11B

r Automatic remote installation and deployment
r CEAN as an'on demand'code server
r More self installable applications
r Planned for Christmass

O ¡00ô Pffi$OE. AI rl!ùt! Ëæ€d Prgr l5

t(t6)

Testing a Media Proxy with
QuviQ QuickCheck

Thomas Arts

John Hughes

Chalmers/lTu

QuviQ

Joakim Johansson
Ulf Wiger

Ericsson

QuickCheck: Propert¡es not Test
Cases

. Write general properties of code instead of
test cases

prop_reverse O =>
?FORALL (Xs,1íst (int O) ,
?FORALL (Ys, list (int ()) ,

Iists : reverse (Xs++Ys ¡ ::
l-ists:reverse(Xs)++1ists:reverse (Ys))) .

. Test in many, many randomly generated
cases

1

L

QuickCheck Testing

3) eqc:quickcheck(test:prop reverse O) .
Fail-ed! After 72 tests.

l.-3,21
[-3, 1]
Shrinkinq... .. (10 t
t0l
t1l
false

. Simplification is extremely important-
separates the signalfrom the noise/

A random counter-
example: Xs and Ys

simplification of failing

Why D¡d it Fail?

prop_reverse O ->
?FORALL (Xs,list (int O) ,
?FORALL (Ys,l-ist (int O) ,

list.s: reverse (Xs++Tsr¡ ::
l- j-sts: reverse (Xs) ++lists: reverse (Is))) .

. QuickCheck says: Xs=[O], Ys=[1]

' reverse([O, 1])==¡sterse([0])++reverse(t1 l)?
. Xs, Ys the wrong way round

2

3

QuickCheck in a Nutshell

. Features

- Properties, not test cases

- Controlled random generation

- Automated simplification

. Result

- Compact, reusable test code

- Specification checked against the code

- Shortcut from property to bug

¿

;

i,

'ij.

i.:
i

t
IProperty First Development?

. Code code code... quickcheck ;# A Bug!

. Fix it... quickcheck Jìüi,,ï ii\ A Bug!

. Fix it... quickcheck... quickcheck
quickcheck quickcheck

. Code some more...

1

+

Ericsson's Media Proxy

Media
Gateway
Controller

¡hr

Media
stream

lP network,
servers,
etc etc

How hard can it be?

. All we need to do is open and close
"media pinholes" when the controller
says...

. Megaco H .248 protocol

- ITU standard ... 212 pages!

- Ericsson lnterwork Description... 183 pages!

- Control software... 15OKLOC
. 20-30K Megaco

2

5

!'li": 'l
T.' ,'iåt:
í , ::,,jì

i .','
¡ ...1.,

í . 1..'

i -t¡i
i tt''

Generating Sensible Messages

1

Our Strategy
QuickCheck

Sends random command
sequences

Results make sense?

I.L Þ È

Completely random
commands are alljust

rejected-non-sensical !

Poor test data

6

Message Generators

. Example: A media descripfor contains a
list of streams

-ASN.1 from the standard (simplified):

MediaDescriptor ::=SEQUENCE
{

streams CHOICE
t

oneStream StleamParms,
multiStream SEOUENCE OF StreamDescriptor

l
l

QuickCheck Generator

mediadescriptor(Streams) when Streams:/:[] ->
{mediaDesoríptor,
#' ¡,lediaDescriptor t {

gtt'eåñg =
case Streams of

[{Id,Mode}] ->
oneof, ([toneStrean, streamParms (Mode)],

{mu].tiStre¡n, Istream(Id,Mode)]]l);

{muJ.tiStream,
lstream(I,M) I | {I,M}<-Streamsl }

endl l . lleaEag€ constructio¡¡
Logic from the IwD

9uichCheak
stream(I,Mode) ->

#'St¡eaoDeeariptor' {

Records generated by
ASN.1 com ler

EtreañID = I, EtrernÞarm¡ = streamParms(Mode)l

2

7

Remote
SDP in

here

StreamParms ::= SEQUENCE

remoteDescriptor LocalRemoteflescriptor OPTIONAL,

statistics DescriptorStatisticsDescriptor OPTIONAL

LocalControl fÞscriptor

)

{

Conditions in the IWD
Add Request

Desc. Desc. Desc. Properties, Paci<age M Comment

Media M

Str€am M uurr¡ffiffi_
Local
contfol (

'Localcontrol
will be ¡nduded in all \

cases except when no media
(m-line) ¡s denned in lhe rsmote

\ sDP. -/
modê o The &Èütrahnofrbcxedcañffirty is

'lnadive", the prop€rty is not
mandatory iflhe wantsd valu€ is
"lnâc{ive'.

Two Cases: W¡th and Without
Remote Media

streamParms (Mode) ->
?LET (RemotellediaDefined, bool O ,

if RemoteMediaDefined ->
#r

localDescriptor (RemoteMediaDef ined),
raoteDescriptor =

remoteDescr
true ->

end)

lncluded in
this case

trolDeecriptor =
lControl lMode) ,

aDefined

Passed on to ensure
an m-line is generated

1

I

Generating Sensible Commands

Megaco Commands

Context
Context

2

9

Megaco Commands

Context
Context

Add

Termination

Context

Megaco Commands

Context
Context

Termination

Termination

Context

1

,i l,

t0

Megaco Commands

Uses
termination lD

Context
Context

Mod
Stream

Stream

Termination

Termination

Context

Megaco Commands

s

Context
Context

Termination

Stream
Stream

Termination

Context

2

I

Megaco Commands

Context
Context

Subtract
Stream

Stream

Termination

Context

Megaco Commands

Context
Context

1

I2_

Sensible Command Sequences?

. Track the sfafe of each test case

- What calls in progress, which terminations in each
call...

- Simple to model in Erlang
. State machine model

- Preconditions say which commands are appropriate

- Postconditions check command results

- Next sfafe function specifies how commands behave
. QuickCheck library

- generates valid sequences, tests, and shrinks them

- (developed "just in time")

Faults

. Proxy was already well tested

. 6 days of work, mostly writing generators

. 5 faults found:

- One in Megaco message encoding/decoding

- Four command sequences crashed

2

I3

Error-provoki ng Seq uences

a Streams must have two ends

a Here today, gone tomorrow

a
...with differing numbers
of streams

Add Mod

Add Sub

Add Add Mod

The Best Error!

* Shrinking reduced 160
commands to seven!*

No one in their right
minds would test this!

Add Add Sub Add Sub Add Sub

Due to data corruption here

1

rt (t6 .,

Conclusions

. QuickCheck + Erlang

- Simple declarative models of the SUT

- Concise, maintainable test code

. Testing: a great application for FP

- Performance irrelevant

- No need to commit to Erlang in the product

. A winning combination?

2

t (t,)

Refactoring Erlang Programs *

Huiqing Li, Simon Thompson
University of Kent, UK

Lâszl6 Lävei, Z,oltÂnHorváth, Tkmás Kozsik, Anikó Víg, Thmás Nagy
Eötvös Loránd University, Hungary

¡f

Abstract
We describe refactoring forErlang programs, and work
in progress to build two tools to give machine support

forrefactoring systems written in Erlang. lT'e comment
on some of the peculiarities of refactoring Erlang pro-
grarns, and describe in some detail a number of refac-

torings characteristic of Erlang.

1. Introduction
Refactoring [6] is the process of improving the de-

sign of a progr:rm without changing its external be-

haviour. Behaviour preservation guarantees that refac-

toring does not introduce (or remove) any bugs. Sep-

arating general software updaæs into functionality
changes and refactorings has well-known benefits.
While it is possible to refactor a program by hand, tool
support is invaluable as it is more reliable and allows
refactorings to be done (and undone) easily. Refactor-
ing tools can ensure the validity of refactoring steps by
automating both the checking of the conditions for the

refactoring and the refactoring transformation itself,
making the process less painful and error-prone.

Refactoring has been applied to a number of lan-
guages and paradigms, but most of the work in build-
ing tools has concentrated on object-oriented program-
ming. In this paper we report on work in progress at our
universities to build tools to support the refactoring of
Erlang programs.

The paper begins with a brief introduction to refac-

toring, which is followed by a discussion of the partic-
ular question of refactoring Erlang systems. We then

* Supporæd by EPSRC in the UK, GVOP-3.2.2-2OM-07-0005/3.0
EUIE IKKK, Ericsson Hungary, Bolyai Research Fellowship and

ELTE CNLin Hungary

describe the approaches taken by our two teams: in a
nutshell, the Kent team work over a enriched abstract

syntax tree (AST), whereas the research at Eötvös

Loránd University builds the representation in a re-

lational database.

After describing the systems we speculate on what
refactorings are the most appropriate to Erlang and are

most useful to the working Erlang programmer, before

concluding and surveying frtture work for both teams.

2. Refactoring

Refactorings transform the structure of a program with
out changing its functionality. They are characterised

by being dffise andbureaucratic.They ate diffrrse in
the sense that a typical refactoring will affect the whole

of a module or set of modules, rather than a single def-
inition in a program, which is often the case for a pro-

gram optimising transformation. They are bureaucratic

in that they require attention to detail; for instance, tak-

ing into account the binding structure of a program.

Refactorings are not simply syntactic. In order to
preserve the functionality of a program, refactorings re-

quire awareness of various aspects of the semantics of
the program including types and module structure and

most importantly the static semantics of the program:

that is the scope of definitions, the binding structure

of the program (the association between the use of an

identifier and its definition), the uniqueness of defini-
tions and so forth.

Each refactoring comes with a set of side conditions,
which embody when a refactoring can be applied to

a program without changing its meaning. Our experi-
ence of building refactoring tools so far shows that for
most refactorings, the side-condition analysis is more
complex than the program transformation part. Taking

t

2,

a concrete example, the general side conditions for re-
naming an identifier could be as follows.

The existing binding structure should not be af-

fected. No bindingfor the new name may intervene be-
tween the binding of the old name and any of its uses,

since the renamed identifier would be captured by the
renaming, Conversely, the binàing to be renamed must
not intervene between bindings and. uses of the new
nøme.

These side-conditions apply to most programming
languages. Howeve¡ each programming language may
also impose its own particular constraints on this refac-
toring. For example, in an Erlang program using the
OTP library, a user should not rename cert¿in functions
exported by a call-back module. For some languages,
refactoring conditions can be checked at compile time;
the more dynamic nature of Erlang means that some
necessary conditions can only decided at run-time; we
return to this point below.

2,1 Tool Support for Refactorings

Although it is possible to refactor a program manu-
ally, it would be both tedious and error-prone to refac-
tor large programs this way. Interactive tool support for
refactoring is therefore necessary, as it allows refactor-
ings to be performed easily and reliably and to be un-
done equally easily.

A refactoring tool needs to get access to both the
syntactic and static semantic information of the pro-
gram under refactoring. While detailed implementation
techniques mightbe different, mostrefactoring tools go
through the following process: fìrst transform the pro-
gram source to some intemal representation, such as

an abstract syntax tree (AST) or database øble; then
analyse the program to extract the necessary static se-

mantic information, such as the binding structure of the
program, type information and so forth.

After that, program analysis is canied out based on
the internal representation of the program and the static
semantics information to validate the side-conditions of
the refactoring. If the side-conditions are not satisfied,
the refactoring process stops and the original prcgram
is unchanged, othenvise the internal representation of
the program is transformed according to the refactor-
ing. Finally, the hansformed representation of the pro-
gram need to be presented to ttre prograÍrmer in pro-
gram source form, with comments and the original pro-
gr¡rm appearance preserved as much as possible.

-nodule (sarnple).
-export(lprinttist/1J) .

printlist([HlT]) ->
io:f ormat (tt-p\nr' , [H]) ,
printlist(T);

priotlist([]) -> true.

Figurc 1. The initial program

-nodule (sanple).
-export(lprintlist/1, broadcast,l L]) .

priuttist(tHlTl) ->
io : f ornat ('t -p\ntr , [H]) ,
printlist(T);

printlist([]) -> true.

broadcast(tHlTl) ->
H ! "The message",
broadcast(T);

broadcast([]) -> true.

Figure 2. Adding a new function naiïely

The Kent group are responsible for the project
'Refactoring Functional Programs' û1, which has de-

veloped the Haskell Refactorer, HaRe [9], providing
support for refactoring Haskell progmms. HaRe is a
mature tool covering the full Haskell 98 standard, in-
cluding "notoriously nasty" features such as monads,
and is integrated with the two most popular develop-
ment environments for Haskell programs: Vim and
(X)Emacs. HaRe refactorings apply equally well to
single- and multiple-module projects. HaRe is itself
implemented in Haskell.

Haskell layout style tends to be idiomatic and per-

sonal, especially when a standard layout is not enforced
by the progfam editor, and so needs to be preserved

as much as possible by refactorings. HaRe does this,
and also retains comments, so that users can recognise
their source code after a refactoring. The current release

of HaRe supports 24 refactorings, and also exposes an

API [10] for defining Haskell refactorings and program

transformations.

3. Refactoring Erlang Programs

Figures I - 5 illustrate how refactoring techniques can

be used in the Erlang program development process.

3

-noduLe (sanple).
-export (lprintlist/11)

printlist(L) ->
printtist(fr¡n(H) ->

io:fonnat("-p\nrr, [H]) end, L).

printlist(F, [HlT]) ->
F(H),
printlist(F, T);

printlist(F, U) -> true.

Figure 3. The program after generalisation

-module (sanple).
-export(lprintl,ist/1]) .

printlist(L) ->
forEach(fun(H) ->

io:fornat('r-p\nr', [H]) end, L)

f orEach(F, [HlT]) ->
F(H),
forEach(F, T);

forEach(F,[]) -> true

Figure 4. The progfam after renaming

The example presented here is small-scale, but it is
chosen to illustrate aspects of refactoring which can
scale to larger programs and multi-module systems.

In Figure 1, the function printlist/l has been
defined to print all elements of a list to the standard
output. Next, suppose the user would like to define
another function, broadcast/l, which broadcasts a
message to a list of processes. broadcast/l has a

very similar structure to printlist/L, as they both
iterate over a list doing something to each element in
the list. Naì'vely, the new function could be added by
copy, paste, and modification as shown in Figure 2.

However, a refactor then modify strategy, as shown in
Figures 3 - 5, would make the resulting code easier to
maintain and reuse.

Figure 3 shows the result of generalising the func-
tion printlist on the sub-expression

io : f ormat (n'p/ntt, - [ll])

The expression contains the vari¿ble H, which is only
in scope within the body of printtist. Instead of
generalising over the expression itself, the transforma-

-nodule (sanple).
-export (lprintlist/1 , broadcast/11)

printlist(L) ->
forEach(fun(H) ->

io : f ornat ('t -p\nrr , [H]) end, L) .

broadcast (Pids) ->
forEach(fun(H) ->

H ! "l'he nessage" end, Pids)

forEach(F, tHlTl) ->
F(H),
forEach(F, T);

forEach(F,[]) -> true.

Figure 5. The program after adding a function

tion is achieved by first abstracting over the free vari-
able H, and by making the generalised parameter a

function F. In the body of printlist the expression

io:fornat(n'p/\tt, Hl) has been replaced with F

applied to the local variable H.

The arity of the printlist has thus changed; in or-

der to preserve the interface of the module, \Me create a

new function, printtist / L, as an application instance

of printtist/2with the first parameter supplied with
the fu nction expression:
fun(H) -> io:fornat("-p/n", [H]) end.

Note that this transformation gives printlist a func-

tional argument, thus making it a characteristically
'functional' refactoring.

Figure 4 shows the result of renaming printLíst/2
to forEach/2. The new function name reflects the

functionality of the function more precisely. In Figure

5, function braodcast/l is added as another applica-

tion instance of f orEach/2.
Refactorings to generalise a function definition and

to rename an identifier are typical structural refactor-

ings, implement€d in our work on both Haskell and Er-

lang.

3.1 Languagelssues

In working with Erlang we have been able to com-
pare our experience with what we have done in writ-
ing refactorings for Haskell. Erlang is a smaller lan-

guage than Haskell, and in its pure functional part, very

straightforward to use. It does however have a number

ì,:: :!, '

r , Ìit. -

l- : '.

ir: .

1.

l:

i',

+

of irregularities in its static semantics, such as the fact
that it is possible

. to have multiple defining occurrences of identifiers,
and

. to nest scopes, despite the perception that there is no

shadowing of identifiers in Erlang.

Erlang is also substantially complicated by its possi-

bilities of reflection: function names, which are atoms,

can be computed dynamically, and then called using

the apply operator; similar remarks apply to modules.

Thus, in principle it is impossible to give a complete

analysis ofthe call structure of an Erlang system stat-

ically, and so the framing of side-conditions on refac-

torings which are both necessary and sufficient is im-
possible.

Tlvo solutions to this present themselves. It is pos-

sible to frame sufficient conditions which prevent dy-
namic function invocation, hot code swap and so forth.
Whilst these conditions can guarantee that behaviour
is preserved, they will in practice be too stringent for
the practical programmer. The other option ís to at'tic-
ulate the conditions to the programmer, and to pass the

responsibility of complying with them to him or her.

This has the advantage of making explicit the condi-
tions without over restricting the programmer through
statically-checked conditions. It is, of course, possible

to insert assertions into the transformed code to signal
condition Fansgressions.

Compared to Haskell users, Erlang users are mote
willing to stick to the standard layout, on which the

Erlang Emacs mode is based. Therefore a pretty-printer
which produces code according to the standard layout
is more acceptable to Erlang users.

3.2 Infrastructure Issues

A number of tools support our work with Erlang.

Notable among these is the syntax-too1s package

which provides a representation of the Erlang AST
within Erlang. The extensible nature of the package

allows syntax trees to be equipped with additional in-
formation as necessary. For example, Erlang Syntax

Tools provides functionalities for reading comment
lines from Erlang source code, and for inserting com-
ments as atüachments on the AST at the correct places;

and also the functionality for pretty printing of abstract

Erlang syntåx trees decorated with comments.

Tltre Distel infrastructure helps us to integrate refac-

torings with Emacs, and thus make them available

within the most popular Erlang IDE.

4. Our Approaches

Both University of Kent and Eötvös Loránd Univer-

sity are now in the process of building a refactoring
tool for Erlang programs, however different techniques

have been used to represent and manipulate the pro-
gram under refactoring. The Kent approach uses the

annotated abstract syntax free (AAST) as the internal

representation of Erlang progrÍrms, and program analy-

sis and transformation manipulate the AASTs directly;
whereas the Eöwös Lonánd approach uses relational

database, MySQL, to store both syntactic and semantic

information of the Erlang program under refactoring,
therefore program analysis and transformation are car-

ried out by manipulating the information stored in the

daøbase.
One thing that is cornmon between the two refac-

toring tools is the intertace. -Both refactoring tools are

embedded in the Emacs editing environment, and both

make use of the functionalities provided by Distel [8],
an Emacs-based user interface toolkit for Erlang, to
manage the communication between the refactoring

tool and Emacs.

In this section, we first illustrate the interface of the

refactoring tools, explain how a refactoring can be in-
voked, then give an overview of the two implementa-

tion approaches. A preliminary comparison of the two
approaches follows.

4.1 The Interface

While the catalogue of supported refactorings is slightly
different at this stage, the interfaces of the two refac-

toring tools sha¡e the same look and feel. In this pape¡

we take the refactoring tool from University of Kent as

an example to illustrate how the tool can be used.

A snapshot of the Erlang refactorer, which is called

Wrangler, is shown in Figure 6. To perform a refactor-
ing, the source of interest has to be selected in the ed-

itor first. For instance, an identifier is selected by plac-

ing the cursor at any of its occurrences; an expression

is selected by highlighting it with the cursor. Next, the

user chooses the refactoring command from the Relac-

tor menu, which is a submenu of the Erlang menu, and

input the parameter(s) in the mini-buffer if prompted.

5

Figure 6. A snapshot of Wrangler

After that, the refactorer will check the selected
source is suitable for the refactoring, and the param-
eters are valid, and the refactoring's side-conditions are
satisfied. If all checks are successful, the refactoring
will perform the refactoring and update the program
with the new result, otherwise it will give an error mes-
sage and abort the refactoring with the program un-
changed.

Figure 7. A snapshot of Wrangler showing the result
of generalising a definition

Figure 6 shows aparticularrefactoring scenario. The
user has selected the expression io : fornat ("Hello ")
in the definition of repeat/l, has chosen the Gener-
alise Function Definition command from the Refactor
menu, and is just ent€ring a nelv paramete¡ name A in
the mini-buffer. Afterthis, the user would press the En-
ter key to perform the ¡efactoring. The result of this

refactoring is shown in Figure 7: the new parameter A

has been added to the definition of repeat/l, which
now becomes repeat/2, and the selected expression,
wrapped in a fun-expression because of the side-effect
problem, is now supplied to the call-siæ of the gener-
alised function as an actual parameter.

All the implemented refactorings are module-aware.
In the case that a refactoring affects more than one

module in the program, a message telling which un-
opened files, if there is any, have been modiñed by the

refactorer will be given after the refactoring has been

successfully done. The customize command from the

Refactor menu allows the user to speci$ the boundary
of the program, i.e. the directories that will be searched

and analysed by the refactorer.
Undo is supported by the refactorer. Applying undo

once will revert the program back to the status right
before the last refactoring performed.

42 ÏheKentApproach

In this approach, the refactoring engine is built on top
of the infrastructure provided by SyntaxTools []. It
uses the annotated abstract syntæc lree (AAST) as

the internal representation of Erlang programs; both
program analysis and transformation manipulate the
AASTs directly.

4.2.1 The Syntaxlbols Package

After having investigated the few available Erlang fron-
tends, we decided to build our refactoring tool on top
of the infrastructure provided by SyntaxTools. Syn-
taxTools is a library from the Erlang/OTP release.

This library contains modules for handling Erlang ab-

stract syntax trees (ASTs), in a way that is compatible
with the 'þarse trees" of the standard library module
erI-parse, together with utilities for reading source

files in unusual ways, e.g. bypassing the Erlang pre-
processor, and pretty-printing syntax trees. The data
types of the abstract syntax is nicely defined so that the

nodes in an AST have an uniform structure, and their
types are context-independent. We chose to build our
refactoring tool on top of SyntaxTools for the following
reasons:

o The uniform representation of AST nodes and the
type information (more precisely, the syntax cate-
gory of the syntax phrase represented by the node)
stored in each AST node allow us to write generic

functions that traverse into subtrees of an AST while

Yrõloo

R''mVr¡aH6ildæ

Rffiilodlrl¡¿E

)
)
)
)

smtdriúlglrhq
TAGS

sl€lstorE

0l*61

F@

Lhdo

CuddnÞð

-expoEe I Iters/O])

¡tó
-Ddule {ÈerÈ}

QthE Affæ Toob

SH
coip¡r

repeat (O) ->
oti

repeåc (¡J) ->
toitor.&'D ('rHBì ì
repeâÈ (¡i-lt ,

teót {) ->
repeaÈ (5¡ .

¡!d6t
Eû

. pnìnrs,rlll I I i- rFi*

rrpcqi(i,. O, -> ok:
repèat(À, N¡ -> Á(1, rèpeqt(À. ¡i - 1l

¿es¿l) -> rëÞcat(fu ll -> lo¡fcm¿lnfi*LLú"| end, 5Ì.

Îæls Ìleþ

-export (ttee¿/Ol I .

-rcdule (tcs¿,
t OpüoË

ì r:r¡t¡t.s..lll I I r- iFlF

6

treating most nodes in an uniform way, but those

nodes with a specific type in a specific way. This
is a great help as both program analysis and trans-
formation involve frequent AST traversals.

¡ The representation of AST nodes allows users to
add their own annotations associated with each AST
node. The annotation may be any terms. This facility
can be used by the refactorer to attach static seman-

tic information, or any necessary information, to the
AST nodes.

o SyntaxTools also contains functionalities for att¿ch-
ing comments to the ASTs representing a program,

and a pretty-printer for printing Erlang ASTs at-
tached with comments. This liberates us from the
comment-preservation problem, which is also crit-
ical for a refactoring tool to be usable in practice.

While a pretty-printer could produce a program that
has a slightly different appearance with the origi-
nal one, this does not seem to be a big problem in
a community where people tend to accept and use

the standard prcgram layout rules.

42.2 Adding Static Semantics, Locations, and
Tlpe Information

SyntaxTools provides the basic infrastructure for source-

to-source Erlang program transformation, even some

utility functions for free/bound variable analysis, AST
traversals, etc, to ease the analysis of source code struc-
fure. However, in order to make program analysis,
transformation, as well as the mapping from textual
presentation of a syntax phrase to its AST presentation

easier, we have annotated the ASTs produced by Syn-
taxTools with even more information, therefore comes

the Annotated Abstract Syntax Tree (AAST). What fol-
lows summaries the main information we have added,

or are trying to add, to the Erlang AST.

o Binding information. The binding information of
variables and function names is annotated in the
AST in terms of defining and use locations. For ex-
ample, each occurrence of a variable node in the
AST is annotated with its occurence location in the
source, as well as the location where it is defined.
Locations are presented by the combination of file-
name, line number, and column number (the stan-

dard Erlang lexer and parser had to be modified in
order to get the column number). With the binding
information, we can easily check whether two vari-

able/function names refer to the same thing just by
looking at their defining locations.

¡ Range information. Each AST node is annotated

with its start and end location in the source code.

This makes it easier to map a syntax phrase selected

from the textual representation in the editor to its
AST representation.

¡ Category information. The original abstract Erlang
syntax does distinguish differentkinds ofsyntax cat-

egories, such as functions, attributes, if-expressions,

etc. The category information introduced here is
mainly to distinguish expressions from patterns.

¡ Thle information. Tlpe information is necessary for
some refactorings, and some refactorings require
even mor€ refined information than the basic data

types defined in Erlang. For example, suppose the

same atom, f oo say, is used as both a module name

and a function name in the program. In this case,

renaming the module name foo may need to know
whether an occulrence of the atom foo refers the

module name being renamed or the function name;

therefore, simply knowing the type of foo is atom

is not enough. Adding type information to the AST
is currently work-in-progress; we are investigating
whether the functionalities provided by TVpEr [11],
a type annotator for Erlang code, can be used to
retrieve the necessary type information.

423 The Implementation Architecture

Figure 8 summaries the implementation architecture of
Wrangler.

Figure 8. The Implementation Architecture

4.3 The F,ätvös Loránd Approach

Instead of annotating the ASTs with information that

is necessary for program analysis and transformation,
in this approach, we use arelational database, MySQL,
to store both abstract Erlang syntax trees and the as-

sociated static semantic information, and use SQL to
manipulate the stored information. This approach is
mainly influenced by the experience from refactoring
Clean programs [17,4].

In the relational database representationo there are

two kinds of tables: tables that store the AST, and tables

Shruldd Syn4T@ls

¡

gcd36(N15, M16) when Nrz)=r8 Mlg *
gcdzs(Nz¿ -r¡ Mzo, Mze);

Figure 9. Source code of the example function clause.

ïhble 1. The representation of the code in Figure 9 in
the database.

that store semantic information. The syntax-related ta-
bles correspond to the "node types" of the abstract syn-
tax of Erlang as introduced in the Erlang parser. Seman-
tic information, such as scope and visibility of func-
tions and variables, is stored separately in an extensible
group of øbles. Adding a new feature to the refactor-
ing tool requires the implement¿tion of an additional
semantic analysis and the construction of some tables

storing the collected semantic information. It is possi-
ble to store semantic information of different levels of
abstraction in the same database and to suppoÍ both
lowlevel and high-level transformations.

As an example, consider the code in Figure 9. This
is one of the clauses of a function that computes the
greatest common divisor of two numbers. Each node of
the AST is given a unique id. Every module also has its
own id. These ids are written as subscripts in the code.

The database representation of the AST is illustrated
in Täble 1. The table names clause, name, infa-expr
and application refer to the corresponding syntactic

categories. Without addressing any further technical
details, one can observe that each table relates par-

ent nodes of the corresponding type with their child
nodes.l

In order to make information retrieval faster, an aux-
iliary table, nodesype was introduced. This table binds
the id of each parent node to the table corresponding
to its type. Semantic information about Erlang pro-
grams are stored in tables such as var-visibfun-visib
andfun-def. The table var-visib stores visibility infor-
mation on variables, namely which occurrences of a

variable name identify the same variable. This table has

two columns: occurrence andfirst-occurrence. The for-
mer is the identifier of a variable occurrence, and the
latter is the identifier of the first occurrence of the same

variable. The øble fun-yisiå stores similar information
for function calls, and/zn-def maintains the arity and
the defining clauses of functions.

The rename variable and rename function transfor-
mation is supported with three further table, forbid-
den-nannes, scope and scope-visib. The first describes
names that are not allowed to use for variables (and for
functions). This t¿ble contains the reserved words in
Erlang, names of the built-in functions, and also user-
speciñed forbidden names .The scope table contains the

scope of the nodes, what is the most inner scope they
are in. The scope-visib table stores the hierarchy of the

scopes.

As you can observe the resulting data structure is not
a tree, but rather a graph, which represents more gen-

eral connections. We hope it makes easier to implement
the refactor steps.

4.3.1 The Implementation Architccture

Figure l0 summaries the implemenøtion architec-
ture of this approach. The refactor step updates the

DA AST

Figure 10. The Implementation Architecture

database (which represents the AST and the seman-

tic information), but the position information might

I The price for the separation of tables containing syntactic infor-
mation from tables containing semantic information is an increased
redundancy in the database. For example, the'îames" table stores

the variable name for each occurrence of the same variable.

information in the AST
database equivalent

table name
record
in that
table

1"t parameter of clause 30
is node 15

clause 30,0, l, 15

the name of variable 15 is N name 15,'N"

2od parameter ofclause 30
is node 16

clause 30,0,2, 16

clause 30 has a guard, node22 clause 30, t,1,22

the left and right operands
and the operator ofthe infix
expression 20 are nodes 17,

19 and 18, respectively

infix-expr 20,17,18, 19

the body of clause 30 is
node29

clause 30,2,1,29

application 29 applies node 23 application 29,0,23
the content of atom 23 is gcd name 23,"scd"
lut param. of application
29 isnode2T

application 29,Ln

B

no longer reflect the actual positions in the program
source. In order to keep the position information up-
to-date, we build up the updated syntax tree from the
database and use the pretty-printer to refresh the code,
then the position information is updated by a simul-
taneous traversal of the syntax tree represented in the
database, and the AST generated by parsing the re-
freshed code.

4.4 Comparison

The major difference between the two approaches lies
in how the syntactic and semantic information is stored

and manipulated. Our first impression is that the sec-

ond approach needs more time and effort on database

designing and the migration of information from ab-

stract Erlang syntax trees to the database; whereas the
first approach is relatively light-weight. However, as

the second approach tries to avoid reconstruction of
the database between two consecutive refactorings by
incrementally updating the database so as to keep the
stored syntåctic and semantic information up-to-date,
it may \ilorth the effort. At this stage, it is hard to say

which approach is better.
Once both of the two refactoring tools have had

support for a number of representative, module-aware
refactorings, we would like to test and compare them
on some large-scale Erlang programs, and ñnd out the
pros and cons of each approach.

5. Refactorings: The Next Step

The refactorings implemented by both teams thus far
are structural by nature; we plan also to implement
module and data refactorings in line with our work in
HaRe. We are also investigating transformations of fea-

tures characteristic to Erlang, In this section we look at

one example, which changes the pattem of communi-
cation within a system. We first present a scenario.

A system is constructed in which communication
between processes is asynchronous; that is, messages

are sent and receipts are not required. It becomes possi-

ble to optimise processing wilhin the network by chop-
ping out whole sections; this, however, requires send-

ing a reply back to the sender. As is the case in many
software developments, a refactoring can be the first
step in modifying the system; in this case, the first step

is to make the communication synchronous. In pictures,

one way communication

is replaced by a two-way, synchronous pattern

ì

Such a transformation requires a message send to be

followed by a receipt, transforming

pid! {self O ,nsg}

to

pid!{se1fl),nsg},
receive

{pid, ok}-> ok

and in the recipient the code

receive {Parent,nsg} -> Uoay

is replaced by

receive {Parent,nsg} ->
Parent!{setfO,ok},
body

'We envisage implementing other concurrency-related

refactorings, and in particular we expect to support

transformations of concurrent systems written within
the OTP framework; we discuss some other Erlang-
specifi c refactorings now.

Built-in support for concurrency is one of the main

features of Erlang. In a well-desígned Erlang program,

there should be a one-to-one mapping between the

number of parallel processes and the number of truly
parallel activities in the real world. The following refac-
toring allows to adjust the process stnrcture in a pro-

gram.

\/

2

o Introduce/remove concurrency by introducing or re-
moving concurrent processes so as to achieve a bet-
ter mapping between the parallel processes and the
truly parallel activities of the problem being solved.
For example, using processes and message passing
when a function call can be used instead is a bad
programming practice, and this refactoring should
help to eliminaæ the un-desired process and mes-
sage passing with a function call.

While defensive-style programming is a good pro-
gramming practice when a sequential programming
language is used, non-defensive style programming is
the right thing to do when programming with Erlang.
Erlang's worlccr/supervisor enor handling mechanism
allows a clear separation of error fecovery code and
normal case code. In this mechanism, both workers
and supervisoru are processes, where worlcers do the
job, and supervisors observe the worlærs. Íf a workcr
crashes, it sends an error signal to its supervisor.

o Ftom deþnsive-style prcgrnmming to non-defensíve
sfylø. This refactoring helps to transform defensive-
style sequential error-handling code written in Er-
lang into concurrent error handling, typically using
supervisor trees.

Erlang programming idioms also expose various refac-
toring opportunities. Some examples are:

c Transform a non-tail-recursive function to a tail-
recursive functi.on. In Erlang, all sewers must be
tail-recursive, otherwise the server will consume
memory until the system runs of it.

o Remove import attributes. Using import attributes
makes it harder to directly see in what module a

function is defined. Import attributes can be re-
moved by using remote function call when a call
of function defined in another module is needed.

. From rneta to normalfunction applicationby replac-
ingapply(Module, Fun, Args) with

Module:Fun(Argl, Ar92,..., ArgN)

when the number of elements in the arguments,
Args, is known at compile-time.

o ReÍacturtng non-OTP code towards an OTP pattern.
Doing this from pure Erlang code is going to be very
challenging, but the whole transformation can be de-
composed into a number of elementary refactorings,

and each elementary refactoring brings the code a
bit closer to the desired OTP pattern.

6. Conclusion

We conclude by surveying related work, and by looking
at what we plan to do next.

6.1 Related Work

Programmers used refactoring to make their code more

readable, better structured or more apt for further exten-
sions long before the first papers appeared on the topic
(e.g. t13l). The field was given much greater promi-
nence with the publication by Fowler's [6], which par-

ticularly addressed a wide range of 'manual' refactor-
ings for Java.

Tool support for refactoring is available mostly to
object-oriented languages. The first tool was the refac-
toring browser for Smalltalk t161. Most tools target

Java (IntelliJ ldea, Eclipse, JFactor, Together-J etc.),
but there are some for .NET (ReSharper, C# Refactory
Refactor! Pro and JustCode!), C+¡ (SlicliEdit, Ref++
and Xrefactory) and other languages as well. Common
refactorings offered by the tools include those that re-
name program entities (variables, subprograms, mod-
ules), fhose that extract or inline program units, or those

that change the static model of classes. A good sum-

mary of tools and refactorings can be found at [5],
and [12] is an exhaustive survey of the field of software
refactoring.

Marcio Lopes Cornèlio formalizes refactorings in
an object-oriented language l2l. Some preconditions

of refactorings are not simple to compute from the

static program text in case of dynamic languages like
Smalltalk and þthon U6, 151. The Smalltalk refac-
toring browser applies dynamic analysis to resolve this
problem.

To improve the quality of a code according to a re-

design proposal or enforce coding conventions needs

supportfor complex refactoring operations. Planning a

sequence of refactoring steps needs refactoring analy-
sis and plan to achieve desirable system structure p4l.
Frameworks and libraries change their APIs from time
to time. Migrating an application to a new API is te-
dious work, but typically some eighty percent of the

changes will be refactoring steps. Automated detec-
tion, record and replay of refactoring steps may sup-
port upgrading of components according using the new

APr t3l.

i

r o (to,

6.2 Future Work

It is a short-term goal for the teams to contrast their
approaches on example code bases, to compare the
utility of the two approaches. For instance, the ADT
approach has the advantage of being more lightweight,
but the database representation can offer versioning of
code and the concurrent handling of refactoring steps
in some cases.

In the medium terrL each team will build support for
further refactorings, particularly those supporting prac-
tising Erlang programmers. In particular we will build
refactorings to support the tansformation of data rep-
resentations, changes to patterns of concurrent commu-
nication and integration with the OTP framework.

In the longer term we look forward to machine-
supported refactoring becoming a valuable part of the
Erlang programmers' toolkit.

References

[1] Carlsson, R. . Erlang Syntax Tools. Attpz/l
www, erlaag . or g / do c / do c- 5 . 4 . 12 / lib/ syntax *
tools- 1, 4. 3 / doc /htûL/ .

[2] Cornèlio, M.L.: Refactorings as Formal Refinements,
PhD thesis, Universidade Federal de Pemambuco, 2004.

[3] Dig, D.: Toward Automatic Upgrading of Component-
Based Applications, ECOOP 2006 Doctoral Symposium
and PhD Students Workshop, Nantes, Fance, 2006.
ht1up z / / uuu . e coop . orglphdoo s /e coop2006ds/.

[4] Diviánszþ, P. and Szabó-Nacsa, R. and Horváth, Z.
Refactoring via Database Representation. In L. Csõke,
P. Olajos, P. Szigetváry, and T. Tómács, editors, Tl¡e
Síxth Intemational Conference on Applied Informatícs
(ICAI20M), Ege4 Hungary, volume 1, pages 129-135,
2W4.

[5] Fowler, M.: Refactoring Home Page, http://¡¡¡¡r¡.
refactoring. con/.

[6] Fowler, M. et. al., Refactoring: Improving the Design of
Existing Code, Addison-rWesley, 1999.

[7] Refactoring Functional Programs, http : //www. cs.
kent . ac . uk/proj ects/ref actorrf p/.

[8] Gorrie, L.. Distel Distributed Emacs Lisp (for Erlang).

[9] Li, H. and Reinke, C. and Thompson, S., Tool Support
for Refactoring Functional Programs in, ACM SIG-
PLAN Haskell Workshop 2ff)3, Uppsala, Sweden, Jo-
han Jeuring (ed.), 2003.

UOl Li, H. and Reinke, C. and Thompson, S., The Haskell
Refactorer, HaRe, and its API., Electr. Notes Theor.
Comput. Sci., l4l (4),2005.

[11] Lindahl, T. and Sagonas, K. F.. T]pEr: a Type
Annotator of Erlang Code. In ACM SIGPIA,N Erlnng
Worlcshop 2005,2005.

[12] Mens, T. and Tourwé, T., A Survey of Software
Refactoring, IEEE Trans. Software Eng., 30 Q\2W4.

[3] Opdyke, W.: Refactoring Object-Oriented Frameworks,
PhD thesis, University of Illinois at Urbana-Champaign,
1992.

[14] Perez, J. Overview of the Refactoring Discovering
Problem, ECOOP 2ü)6 Doctoral Symposium and
PhD Students Workshop, Nantes, Fance, 2006. http:
/ / uuw . ecoop. orglphdoos/ecoop2006ds/.

[15] Adventures in Refactoring þthon. http: //blogs .

¡¡arwick. ac . uk/refactoríng/ , Sep. 24, 2006.

[16] Roberts, D., Brant, J. and Johnson, R. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Sys-
tems (TAPOS), special issue on software reengineering,

3(4\:253-263, 1997.

[17] Szabó-Nacsa, R. and Diviánszþ, P. and Homá¿th, Z.
Prototype Environment for Refactoring Clean Programs.
InThe Fourth Conference of PhD Sndents in Computer
Science (CSCS 20A), Szeged, Hungary, July 14,200.4.

t(t)

HERTOT
ffiWATT
W u ul r'¿tsltr'

Comparing C++ and Erlang for

Motorola Telecoms Software

Phil Trinder & Henry Nyström
Computer Science Department Erlang Training & Gonsulting
Heriot-Watt University, UK

David Kino
Software & Systems Engineering Research
Motorola Labs, UK

High-Level Techniques for Distributed
Telecoms Softwate
. EPSRC (UK Govt) Project, Dec 2002 - Feb 2006
. Collaboration between

- Motorola UK Labs

- Heriot-Watt University

I

ôL

High-Level Techniques for Distributed
Telecoms Software
. EPSRC (UK Govt) Project, Dec 2002- Feb 2006
. Collaboration between

- Motorola UK Labs

- Heriot-Watt University
. Aim: produce scientific evidence that highJevet

distributed languages Iike Erlang or Glasgow distributed
Haskell (GdH) can improve distributed softvyare
robustness and productivity

. Publication: High-Level Distribution for the Rapid
Production of Robust Telecoms Softvvare: comparing G++
and Erlang, Concurrency and Computations: Practice &
Experience (forthcoming).

Erlang Comparisons
A number of sequential comparisons, e.g. Computer

Language Shootout

Very few distributed system comparisons published!

Ulf Wiger [Wiger0f] reports
. Erlang systems have between 4 and l0 times less code

than G/G++/Java/PLEX systems
. Similar error rates/line of code
. Similar productivity rates
No direct comparative measurements

Jantsch ef al compare 6 languages for hardware description
pKs+otl

2

3

t

Research Questions: Potential Benefits
RQ1: Can robust, configurable systems be readily developed?
. Resilience to extreme loads
. Availability in the face of hardware & software failures
. Dynamic reconfigurability on available hardware

RQ2: Can productivity and maintainability be improved?
. How do the sizes of the C++ and Erlang components

compare & what language features contribute to size
differential?

':|

Research Questions : Feasibility

High-level distributed langueges:
. abrogate control of low-level coordination aspecb, so

. RQ3 can the required functionality be specified?
. typically pay space and time penalties for their automatic

coordination management.
. RQ4 can acceptable performance be achieved?

RQ5 What are the costs of interoperating with conventional
technology?

RQ6 ls the technology practical?

I

+

Research Strategy

. Reengineer some telecoms application
components in GdH and Erlang

- Dispatch Call Controller [NTK04,NTK05]

- Data Mobility component
. Compare high-level and Java/C++

implementations for
- Performance

- Robustness

- Productivity

- lmpact of programming language constructs

1't Component Engineered:
Data Mobility Component (DM)
. Product Gomponent
. Gommunicates with Motorola mobile devices
. 3000 lines of C++
. Uses 18,000 lines of Motorola C library functions
. Has a transmitter and a receiver, and 2 message types
. lnteracts with 5 other components of the system

2

5

2nd Component Engineered:
Despatch Call Controller (DCC)
. Handles mobile phone calls
. A process manages each call
. Scalable with multiple seruerc

Two Erlang DM Implementations
l. Pure Erlang DM

2. Erlang/C DM
reuses some C DM libraries & drivers

Both interoperate with a C test harness

Combine

- Unix Processes

- Erlang processes

- G Threads (Erlang/C DM)

I

L

RQ3 Performance 1: Throughput
. Platform:167MH2, 128Mb Sun Ultra 1, SUnOS 5.8

G++ P¡¡ ErlanglG Dil Pure Erlang
Dtt,l

480 230 940

Maximum DM Throughput at 100% QoS

RQ3 Performance 1: Throughput
. Platform:167MHz, 128Mb Sun Ultra 1, SunOS 5.8

C++ Dìll ErlangtG Dllll Pure Erlang
DTtI

480 230 940

Maximum DM Throughput at 100% QoS

Pure Erlang DM is twice as fast as C++ DM (better
process management and marshalling)

Erlang/C DM is % speed of C++ DM, but still meets
nominal throughput

2

7

Performance 2: Round Trip Times
Pure Erlang is approximately 3 times faster

Erlang/C is26Yo - 50o/o slower

tr C++ DM I ErlanglG DM tr Pu¡e Erlang DM

ms
7

6

5

4

3

2

I
0

Query type I Query type 2 Broken query

ms

Performance Analysis

Pure Erlang DM is faster due to fast lightweight process
management

Erlang/C is slower due to additional communication to C
components

1

B

Performance 3: Memory Residence

E ERTS I Moto C l¡b tr CrC++ tr. Erlang DMs use l70o/o

more memory
. Erlang runtime sys

(ERTS) has a fixed
size

o :) would be a smaller
Vo of a larger app.

.Ct
Y

7000

6000

5000
/O00

3000

2000
r000

0

t----:---"ll

Þinr.qål.xÏ

bftIsf*ü.äÌl

tltriÌi'ij,ffi.${J

li!'iliilç.:']Í

t*lii¡ti,itj lit,rl;:¡!,$J

C++ Df,t Erlang/G DM Purc Erlang
DM

RQI Robusfitess 1: Resilience
E Erlang A I C++ A tr Pure Erlang A

Throughput 1200

lqueries/s¡
lmo
800

600

400

200

0

"Ê
+" Ss sñ .¡F" .."t $S S^".O.,*O ,f ô" .f

Load (queries/s)

2

9

RQI Robustness l: Resilience
B Erlang A I C++ A I Pure Erlang A

Throughput l2oo

lqueries/s¡ 1000

800

600

400

200

0

,!b" ,Js !.$s uñ nS
"rS SS .lU.

^*OeO
Ês ,fo ,Ê

When overloaded: Load (queries/s)

G++ 9Y fails catastrophically
Pure Erlang & Erlang/C DMs:
. Throughput degrades
.lle_ve_lcompletely fails, handling 48 q/s at peak load

(25000q/s)

- Recovers automatically after load drops

!.' rr

îl

i:

¡
¡
!

l

DCC Resilience
150

t00

ø
c)

50

I 2 4
Nrnbêr of mileÉ

1

l0

Robustness 2: Availability

Erlang systems m

. remain available despite
repeated hardware &
software failures

. perfomance doesn't

degrade with repeated
failures

,t

t
T

ls

t0m

ffi

0
nHHtildsuufl

tutkruq5ffi

DCC Throughput with Repeated Failures

.,,, .,t
-. 1 ,,, :1 r'.irr '.: ,'', 'r ",- . ,.

ÞMa*,.--..

1.,"":.,,
:

'I
,,"1....,::ii

'j 'l:l; '

Robustness 2: Availability

Erlang Systems resists the
simultaneous failure of
multiple components

When more components fail ¡

throughput drops lower & i
recovery takes longer

S-processor DCC with Multiple Failures

it

ì-
L,

i'¡ rt. îr.i
,,;i¡1" "j:,'''rl

ra

2

II

Robustness 3: 1C

Configurability

Erlang Systems dynamically
adapt to the available
hardware resources

5 processor system: i¡,...
- remove a processor 4 times !

- add a processor 4 times

DCC Throughput

with Varying Numbers of Processors

RQ2 : Productivity & Maintainability
Shorter programs are
. Faster to develop
. Contain fewer errons [Wiger0ll
. Easier to maintain

The metric we use is Source Lines Of Code (SLOC)

I

x

Productivity: Source Code Sizes

Lang. C/G++ Erlang Total

C++ 310r 310r

Erl.lG 247 616 863

Erlang 398 398
DCC Implementations

DM Implementations

Erlang DCC and DM are less than 1/3'd of size of C+ impl.

Consistent with V/iger & folklore

Lang G++ IDL Erl. Total

C++ 14.8K 83 14.9K

Erl. 4882 4882

Productivity: DM Source Code Sizes
E C++rC I Erlang

3500

3000

2500

2000

1500

1000

500

0

C++ DtUl Erlang/G DM Pure Erlang DM. ErIanùC DM is 1/3rd of the size of the C1_| DM
. Pure Erlang DM is ll7thof the size of the C++ DM
. Erlandc DM is 1/18th of the size of the C++ DM +

libraries

2

l3

Reasons for difference in Code Size
. Erlang programmers can

- rely on fault tolerance and code for the successful
case (27o/o of C++ DM code is defensive)

- and have
. automatic memory management(l1o/o of C++ DM code)
. high-level communication (23% of G++ DM code)
. Telecom design pattern libraries

DM Code Breakdown

100o/o

90%

80o/o

70o/o

60o/o

50To

40Yo

30%

20o/o

10o/o

0o/o

tr D,efensive

I D,efines

I Includes

E Type Delcarations

EGommunication

DMemory Management

I Prccess fllanagement

nApp

ç++ A tloto Glib Erlang/G Erlang

I

t+

Code Difference Example
C++

(
ßG_frR @búJû;
ffi_ævcÉ_rNFo_Ms .Éejû
RFURI_SÌAruS d_ùb;
utFt6 qù¡

/M.rÍln.&olEllry
@_&. &(ffi_oEucË_tNFo_ysc);

/CE!l€ lcl ñd€ô dtd b sd to ffiX s i s&. hù ldo Erlang
sz_d me_d mtx: cast(device_i nfo)

þÂeg H_ñLdtd(MM-DEVICÊ_|NFo_oPG. tcLffi_TA8(_tO, @*€);

/Rtulclnls.ffi¡úar
rEI_wlñ È l{@úldedldrroBffi 0i

// Trcd pddf tu (vo6 .) þ (w_DEucE_tNFo_Msc 1
móUt = (MM_DEVCE_INFO-M$.)l4butjh

//PoÞffimææMr
SET_W_OÊUCÊ_|NFO_OryGE_m€(@Jù. SERVER)i

SET_$_DEWE_INFO_NUM_WR_SUPrcREO(ruf , NW_ER_SUprcRtÊD);
SET-W-DEUCË-INFo_FlRSr_sUP_PRoTo_vER5(@lú, PRoTo_WRslON_OilE)i

//hdñq.roùDmd
ú-tu - û_iq ios.ed(&d_6Èoùjq):

//ChdMñ.-rrdsdüy
if(d r.e¡-SUæËS)
{

// nqd Fòb tu6drtlCIry
e_<-md MM& sz_EU_Mrc*BRR_oruD!, _nLF,- _NE-

&UóildyRk|æhopvæ fi l@ dq'-&vþ¡ûrorybDm¡"),
I

)

Erlang DCC Reusability

Considerable potential for reuse

Part sLoc No. Modules Percentage

Reusable
Platform

2gg4 26 61olo

Specific
Seruices

147 1 3%

Testing/Stat.s 1741 11 36%

a
L

I 5

Summary

. lnvestigated high-level distributed language
technology for telecoms software

. Reengineered two telecoms components in Erlang

. Measured & compared the Erlang & G++ componenb

RQI: Robust & Configurable
Svstems. lmproved resilience:

- Erlang DM and DCC sustain throughput at extreme loads

- Automatically recover when load drops

- C++ DM fails catastrophically (predict C++/CORBA DCC woutd)
. lmproved availability:

- Erlang DCC recovers from repeated & multiple failures

- Predict C++/CORBA DCC would failcatastrophicaily
. DynamicReconfiguration

- Erlang DCC can be dynamically reconfigured to available
hardware

- C++/CORBA DCC can also be dynamically reconfigured using
CORBA

. Potential for hot-code loading (not demonstrated)

1

:

i.'
!

\'.'i/:.
;

ñ.
I
r'.f-

t6

RQ2: Productivity & Maintainability
. Erlang DM and DCG:

- Less than 1/3rd size of C++ implementation

- Erlang DM 1/18th size of C++ DM with libraries

- Good reusability
. Reasons:

- Code for successful case - saves 27%

- Automatic memory management - saves 11%

- High-level communications - saves 23%

- Telecom design pattern libraries

RQ3 : Distributed Functionality
. Even though Erlang abstracts over lowJevel

coordination, the required DM and DCC functionality
is readily specified.

2

I 7

RQ4: Performance
. Time:

- Max. throughput at 100% QoS:
. Pure Erlang DM is twice as fast as C++ p¡¡¡

. ErlanglC is % as fast as G++ p¡¡ , but still exceeds
throughput requ irements

- Roundtrip times
. Pure Erlang DM is three times as fast as C++ DM
. Erlang/G is between 260/o and 50% slower as C++ Dllll

. Space:

- Pure Erlang and Erlang/C both have 170o/o greater
memory residency due to (fixed size) 5Mb runtime
system

I

RQ5 : Interoperation Costs
. Erlang DMs interoperate with a C test harness, and

Erlang/C DM incorporates C drivers & library
functions.

. Gosts

- Low space cost: an additional 15% residency

- High time cost:
. Erlang/C roundtrip times up to 6 times pure Erlang
. Erlang/C max. throughput % ol pure Erlang

. Potential for incremental re-engineering of large
systems

I

/8

RQ6: Pragmatics
. Erlang is available on several HW/OS platforms,

including the Sun/Solaris DM product platform
. Well supported with training, consultancy, libraries

etc.

Conclusions

. Erlang offers robustness & productivity benefits for
distributed telecoms software (RQs 1 &21

. HighJevel distributed languages like Erlang can
deliver the required telecoms functionality and
performance(RQs3&4)

. Erlang can interoperate with existing technologies
and meets pragmatic requirements (RQs 5 and 6)

2

t9 (ty)

Further Information
Web sites/Seminars
Erlang Sfte: ürurw.erlano.oru,
P¡ojoc-t S¡te: wwwmacs.hw.ac.uk -dsonelocoms/

References

PKq{!I Janbch A. {Umar S. Sander t. Svantesson B. Obers J. Hemantc A. Ellervee p. O,Nils

Ë;":flif,:%"n",l3HrdifllgHîfl::E[,?rr'l3iT.,''si,"j,Rä"Tguon8 of rerecoms svsrêms,

[NTK04I Nystrom J.H, Trinder P,w' King D.J. Evaluaüng Erlang for Robust
Telecoms Softvyaro S3S'04, Chlcago, July 2004.

[NTK0q Nystrcm J.H. Trlnde] P.W. Ktng D.J. Are Hlgh-Level tanguages suftabte for
Robust Telecoms Sofü¡vare? Safecomp'os, Fredrlkstad, lrlorway, Sepú. 2005.

lw¡gerof ¡ Ulî Wigor,Wo¡kshop on Formal Destgn of Safety Crit¡c¡l Embedded
Systems, Munlch, ilarch 2001 htto:rrwww.erlanq.serpubllcaüons/t tf Wtqer,pdf

3

túÐ

Romain Lenglet
Chiba Shigeru Group

Tokyo lnstitute of Technology

EUC 2006, Stockholm
2006-1 1-09

Using GNU Autoconf to
Gonfigure Erlang

1,",:.: ol

¡' 'l

f ,.:
I ..1

1..t:

Purpose of this talk

. I will show you
- How to use existing Autoconf macros to

configure Erlang programs
- How to extend Autoconf by defining new test

macros

q
k

Overview of Autoconf

. Autoconf deals only
with configuration
detection

. Generates portable
configure Bourne
shell scripts that
- Check the

configuration
- Rewrite files to

substitute variables
- Generate C headers

defining constants

configure.ac
(M4 macros)

run autoconf

configure
(shell soript)

+.in
(Makeû1e.in,...)

run configure

(Makefrle,...)

user / pockager

Autoconf macros

.Autoconf is essent¡ally a set of M4 macros
- Autoconf macros = M4 macros
- configure.ac = shell script with calls to M4

macros
- Macros are rewritten by Autoconf/M4 to produce

pure shell script code that tests configuration

.Autoconf also wraps around M4
- Caches macro files, etc.

3

lT: meta informations about the projec{AC

A minimum conf¡gure.ac

AC_PREREQ: minimum required version of Autoconf
(2.59c was the first to contain macros for Erlang)

AC_COPYRIGHT(Copyright (C) 2005 Mats Crongvist)

The actual tests to perform,
as calls to test macros

AC_CONFIG_FILES: list of llles to rewrite

AC_OUTPUT: mandatory at the end,
makes configure rewrite the files

t)

AC INJT(GTK+ 2 r¡rrapper library for Erlang, 0.20,

AC OUTPUT

AC_PREREQ (2.59c1

rnats.cronqvist.G. . ., gtknode)

AC_CONFIG_FTLES (t \
Makefile \
src,/Makefile \

. What to test?
- Autoconf philosophy

. Test for the features that you actually need

. Do not test version numbers: this is not ma¡ntainable!

- Testable: programs, C features (headers, libs,
functions, constants...), etc.

. When executed, a test may
- Fail (display error message, exit with code > 0)
- Define substitutions of variables

. To be substituted in rewritten files (Makefile.in, ...)

- Define C constants
. Defined in generated confdefs.h file (cf. Autoheader)

What do tests do?

+

AC ERLANG NEED ERLG

. This macro
- Finds the path to erlc
- Fails if it is not found
- Substitutes the

ERLC variable

Variables to substitute must
be enclosed in @...@

. ln configure.ac:

AC ERTANG NEED ERLC

. ln Makefile.in:

SUFFIXES : .erl .beam
. erl- . beam:

GERLC0 -b beam 9<

AC_E RLAN G_c H EC K_L I B(rrb)

Macros can
take arguments

- Finds the path to an
Erlang library

- Fails if it is not found
- Substitutes the

ERLANG-LIB-DIR-/
rb variable

. ln configure.ac:

AC ERLAI{G CHECK LTB(ic)

. ln Makefile.in:

CFI,AGS : -
TGERLANG LIB DIR icß/includ
e

. This macro

5

AC-E RLAN G-S U BST-I N STALL
_Ll B_S U BDIR(app, versionl

. This macro
- Substitutes the

variable for the path
to install an Erlang
application

cp foo.beam
GERLANG INSTALL LIB DTR hio
/ebjrn/

cp foo.erl
GERLANG TNSTALL LIB DTR hiß
/ src/

. ln conf¡gure.ac:

. ln Makefile.in:

install:

AC ERLANG_SUBST-INSTAIL_IIB_
SUBDIR(hi,0.20)

Currently available Erlang-
related macros (1121

. Checks for programs
- AC_ERLANG_PATH_ERLC(...)
- AC_ERLANG_NEED_ERLC(..)
- AC_ERLANG_PATH_ERL(...)
- AC_ERLANG_NEED_ERL(...). Substitutions for installed dirs
_ AC_ERLANG-SUBST-ROOT-DI R
- AC ERLANG-SUBST-LIB_DIR

. Checks for installed Erlang libraries
- AC_ERLANG_CHECK_L|B(...)

6

Gurrently available Erlang-
related macros (2/,21

. Substitutions for installation dirs
- AC-ERLANG-SU BST-I NSTALL-LI B-DI R
- AC_ERLANG_S U BST_| NSTALL_L| B_S U B Dr R(.

..)
. Support of Erlang as a language to write

tests in configure scripts

How to write new test macros?

. Autoconf philosophy
- To test features, it is better to use directly the

programming language of the feature
. Autoconf defines a good framework for

supporting multiple languages
- Used only by writers of new support macros

. Tests can be written in
- Bourne shell (of course!)
- C lC++
- Fortran
- Erlang

7

How to add support for a new
language in Autoconf?

. Autoconf defines conventions for language
support macros, that define how to
- Call the pre-processor (if there is one for the

language) on the tests code
- Compile, and execute tests
- Pass data between test programs and the

configure script (using temporary files)

. I wrote those macros for Erlang
- AC_LANG(Erlang)
- AC_LANc_PROcRAM(Erlang)
- AC_LANG_COMPILER(Er|ang)

Test if a function is exported
(1t71

. Load the code file
for Module ($1)

. Get the list of
exported functions

. lterate and test if the
Function ($2) (&
Arity ($e¡¡ is in there

The arguments of an M4 macro
are called $1, $2, $3, etc.

Erlang codea

{ [S]-1. Beam, _Filename] :
code : get_object_code ([$1]),

{ok, {[$1]' [[{exports,
Exports)lll]:

beam-1ib: chunks (Bearn,

[[exports]l),
ïsExported : lists :mernber (

{ [$2i, t93]], Exports)

8

Test if a function is exported
(2t71

{Module, Beam, _Filename} =
code : get_obj ect_code (Module),
{ok. {Module, [[{exports,

Exports]lll):
beam_lib : chunks (Beam,

[lexports]l),
IsExported : lists:member (

{Function, Arity}, Exports)
S = if IsExported -) "yes";

. Write the result
("yes" or "no") into
the conftest.out
temporary file

. Halt the Erlang VM

Using a 'conftest.out" temporary f¡le
for exchanging data is a convention
used in all Autoconf tests

Erlang codeo

true -> "no" erìd,
file: write_file (

"conftest.out", S),
halt (0)

portedTest if a function i
(3t71

sex

AC_LANG_PROGRAM([], t
{Module, Beam, _Filename} :
code : get_obj ect_code (Module),
{ok, {Module, [[{exports,

ExportsÌllÌ] =
beam_lib : chunks (Beam,

[[exports] I),
TsExported : l-ists :meniber (

iFunction, Arity), Exports)
S : if ïsExported -) 'yes";

true -> Itno" end,
file: write_fi1e (

"conftest.out', S),
halt (0)
1)

The test code is the body of the 'starUO'
func{ion in the'conftest' module

Autoconf code . Use Autoconf/Erlang
macro to generate
the Erlang module

9

Test if a function is exported
(4t71

Code to execute if the test executed normally; resp. failed

t
t

o

IAC

Autoconf code

AC_LANG_POP (Erlang)

. Cornpile and
execute the Erlang
test module

AC_LANG*PUSH (Er1ang)
AC RT]N TFELSE (

l,
t)

rtedTest if a function i
(5t71

s expo

. Set a shell var.iable
with the result

. Support caching of
the test result
- The test is executed

only if the variable is
not yet defined

. lf test failed, print a
test message, and
exit the configure
script

2_ç
Jt

.l)

a

3

l)

Autoconf code

I erlang_cv_foo_$ 1_$
='cat conftest.out

IAC_MSG_FATLURE ([. .

AC_LANG_POP (Erlang)
l)

AC_CACHE_CHECK ([if . . .] ,
I erlang_cv_foo_$ 1 _$ 2_$ 3] ,
t

AC_LANG_PUSH (Erlang)
AC RT'N TEELSE (

IAC_LANG_PROGRAM(n, t. . . I) l
¡

ô

Test if a function is exported
(6t71

AC_DEFUN ([r'OO] ,
t

AC_REQUIRE (

I AC_ERLANG-PATH_ERLC])

AC_REOUTRE (

I AC_ERLA]ïG_PATH_ERL I)

AC_CACHE_CHECK(...)
AS_IF ([test

" $ e r lang_cv_f oo_$ 1_$ 2_S 3 "
: "no"l, [$5], t$41)

l)

. Define the macro

. Make sure that erl
and erlc are
detected

. Execute user code if
the function is
exported; resp. if it is
not

Complete macroo

Test if a function is exported
(7 t71

checking for erlc...
/usr/bj-n/erlc

checking for erl...
/usr/bj-n/er:".

checking if filer write_fi,Le / 2
is exported.,. yes

configure: OK

checking if file:write_file/0
is exported... no

configure: error: NOT OK

See 'config.log' for more
details.

Calls in configure.ac Output of ./configureo

i)

FOO(file, write_fi]-e, 0,
IAC_MSG_NOTTCE ([OK]) l,
lAc MsG FATLURE(INOT OKI) I)

"ôotttt.,
write-fiIe, 2,

IAC_MSG_NOTTCE ([OK]) L
IAC MSG rArrURE (INOT OK]

rt)

Conclusion

. Currently: minimal support for Erlang
- Checks for erl, erlc, installed dirs
- Substitutions for installing new applications
* Support for Erlang as a test language
- Available since January 2006 (version 2.59c)

. Relatively easy to extend
- By writing new test macros with Erlang code
- lf you have macros, please send them to me!

. I can submit to GNU Autoconf for inclusion

. We may start a sub-category in the Autoconf Archive
- The quickly-written "FOO' macro will be

submitted soon (with a better name, of course!)

Please read my blog / Planet Erlang for news

http : / /www. csg. is . titech. ac. jpl-IengLet/
http: / /www.planeterlang .org/

1

?

2

-f

t

| (o)

Configuration Aware Distributed System l)esign in Erlang

Gabor Batori, Zoltan Theisz, Domonkos Asztalos
Software Engineering Group, Ericsson Hungary Ltd.

H1037 Laborc u. 1. Budapest, Hungary
{Gabor. Batori, Zoltan.Theisz, Domonkos.Asztalos}@ericsson.com

Abstract

In this paper a new system design concept is described and demonstrated which is based
on the innovative combination of meta-model assisted explicit component configuration
management and its run-time execution on a causally reflective robust reconfigurable
Erlang component system cølled ErlCOM. Rather than provide a monolithic run-time
application structure separate areas of functionalitíes are packaged into self-contained
components that can be individually deployed according to the available
hardware/sofiware resources where they can be actively managed during the whole
lifetime of the application. The infrastructure extends the approach of ordínary code
reuse into higher level where in addîtion of the shared code base the run-time
conJìguration can be effectively reapplied.

1". Introduction

Future networked distributed systems will have to be able to cope with increased
complexity originating from the ever increasing demand of newer communication
protocols that should be able to operate in a highly distributed telecom environment and
still be able to remain compatible with the already established infrastructure or from
novel application fields of telecommunications like wireless sensor networks. The aim of
our RUNES [] (Reconfigurable Ubiquitous Network Embedded Systems) project is to
provide the application developer with a proper system design model and a corresponding
heterogeneous middleware/platform that enable better application production for
networked embedded sensors, actuators and for more powerful devices like embedded
gateways or full-fledged application servers regarding time, efforts, maintainability and
quality. Our efforts have resulted in the development of ETICOM l2l, which is a causally
reflective reconfigurable Erlang component system running anywhere Erlang is available,
that is, on gateways and application seryers in RUNES, and in the invention and
demonstration of a meta-model assisted component configuration management. The
component confïguration management automatically generates component wrapping
code for any functionality written in Erlang and it deploys it later onto ErlCOM. The
component configuration is managed either locally by the deployed code or remotely via
the meta-modeling environment. Since both the source code and the current component
configuration of the running application are available in the meta-modeling environment
total application reuse (in contrast with only source code reuse) is easily attainable.

r"

In the remainder of the paper, Section 2 overviews ETICOM then Section 3 introduces the
meta-model assisted component management. In Section 4 the implementation details of
the enabling technologies, namely the Deployment Tool and the notification pattern, are

explained and finally Section 5 concludes the paper.

2. ETICOM

ETICOM provides a super-structure on top of the well-established Erlang/OTP
environment. The basic entities of ETICOM are the components, which can be

dynamically created, loaded, updated, unloaded and destroyed, and the bindings, which
bind or unbìnd the receptacles - component egresses - to the ìnterfaces - component
ingresses - of the communicating components. Components can be embedded into each

other hierarchically and both the components and the bindings are managed by a

hierarchical caplet structure where the root caplet - also called capsule - represents the
Erlang node. Any ETICOM entity can possess an unlimited amount of metadata that are

stored in a fully distributed repository covering all the caplets. Component configurations
can be constrained by building a component framework, however, the constraint
enforcement policy is left for the programmer. Since also the component confïguration is
stored in the distributed repository the component system can be easily reconfigured and

the reconfiguration changes are easily tracked. The components communicate to each

other via message passing - both synchronous and asynchronous - that can be intercepted
at the bindings.

ETICOM's implementation on top of Erlang is relatively lighfweight as components,
bindings and caplets are ordinary gen_servers with supervisors, and component
communication relies on Erlang message sending. The distributed repository is based on
Mnesia, which makes it a little bit heavy-weight, however, it provides a fully distributed
robust database solution. ETICOM's API is described in details inl2l.

Since ETICOM extends the RUNES component meta-model and the middleware CRTK it
has been successfully deployed on Lippert [4] gateways and application server PCs in
order to deploy distributed applications for wireless sensor networks.

3. Meta-model assisted component configuration management

ETICOM's basic goal is to provide a useful packaging framework that enables
programmers to organize their applications written in Erlang in such a way that they
could be easily reconfigured either so that they could adapt in a rapidly changing run-
time environment (dynamicity in run-time) or they could be reused - already tested
source code and run-time configuration - to satisfu newer change requests for redesign
(dynamicity in design-time). However, extra packaging burden might intimidate the
programmer to use ETICOM that's why we have developed a meta-model assisted IDE [2]
based on GME [3] that incorporates the ETICOM meta-model and automatically
generates packaging code. More precisely, the IDE contains three models, which are the
ETICOM component meta-model (Figure 1), the componentized application source code
inside interconnected RUNES components - according to the logical decomposition of

3

the application - (Figure 2) and the deployed component configuration of the application
(Figure 3).

),tlt zfrläE-fl

Figure 1: ETICOM component meta-model

-l'l-!

rù ;iî,t¿-lå.;a¡É lÈ,¿ n
Ìi

Op¡ôtim

Kird: ñeld

lnÞí¿ca
NoaþTy¡e ènum
ãddÉss: tuld

+

-,['_7i]4+ 1. .1 ,l
I o*ìñÁ--

,.,ía
T

:l
'Ëiir ãã þkff @rro ñ

Figure 2: Componentized application source code inside RUNES components

J¿I:]

]J í .â,', iôi $ d
It

ú
ê)

ilüli¡tç :jl.,r;rr¡::, . ::.t¡
r ¡*{ffi--lñã6 lN-Ã:

rrwlffi--lñãc¡*t aæujffi-llo"*lu z*liw

consolo_log_channêl

T
:l

!1

:l

Figure 3: Deployed component confÏguration

5

The models are in meta relationship to each other, that is, the deployed component
configuration instantiates the componentized application code which ii an instance of the
ETICOM component meta-model. Since the ETICOM component meta-model is fixed in
the case of a particular ETICOM version the programmer can concentrate on and produce
the application code in his usual way and the IDE ensures that it will be properly put into
interconnected ETICOM components. The packaging Erlang code is ãutomatically
generated and it sets up a wrapper around the application code. After the deployablã
source code base has been produced the programmer should establish the initial
component configuration snapshot of the distributed application by instantiating the
componentized source code on the available resources. The IDE provides ali the
necessary facilities to easily distribute the components via its Deployment Tool, which
analyzes the initial component configuration snapshot and creates the ETICOM elements
by activating the corresponding ETICOM's API operations. It should be emphasized that
we talk about only the initial component configuration snapshot since ihe deployed
application can easily reconfigure itself via ETICOM's reflectivè API any time, therefore,
the initial configuration plays only a temporal role. After the initial depioyment has been
set up the application starts running and ETICOM' CRTK administers all the changes of
the component configuration and it sends notifìcations about them to any listener which
has subscribed to the changes. The IDE is one of the listeners that's why it is quite
straight-forward to show the actual component confÌguration of the running system.
Moreover, the component configurations - including Erlang source code - can be saved
from the IDE and later recreated to restore the application to a previous known state.

The novelty of our approach is the way how design-time and run-time software aspects
are intertwined. During the software development process the application code is
modularized in order to avoid the problems of produCing "spaghetti-ôode", that is, the
application code is put into communicating components. Sinóe prtCOlvl is causally
reflexive the components can be deployed onto it and their current configuration is
continuously available and modifiable. The same software development environment can
be used for application development and operation and maintenance purposes, too.
(Figure 4) Moreover, the approach eliminates the unnatural separation of thã functionality
and the management aspects of the application; the managernent layer is anchored to the
deployed functionality layer and reflects it via the identity mapping thanks to the meta-
modeling environment where everything - including source côde and component
configuration - is stored in a model database.

6

')i.")7

n,Io{åel

Translatu

GME

b proc2

b b bproclstc ilsst

dest
proc

scb

CRTK

Code base

CRTK

Nodel

CRTK

Figure 4: Meta-model assisted component configuration management

The component management has three types of operation:

Re-active component reconfiguration: The application's control logic decides
how to reconfigure the currently deployed component configuration to adapt to
dynamically changing environmental factors. The IDE only tracks the changes;

the control intelligence lies on the side of the application code. The decision-
making is based both on the component configuration graph of the application and

the current execution state.

Pro-active component confïguration: The IDE continuously evaluates the actual
component configuration of the deployed application and decides when and how
changes should be carried out. The intelligence emanates either from one of the
plug-ins of the IDE or from any legacy tool connected to the IDE via a versatile
XML importer facility. The decision-making is only based on the component
configuration graph of the application.

Component behavior change: The previous two reconfiguration types take
effect only on the component configuration, however, the functionality of the
component remains the same. The IDE has access to the model database,

therefore, the programmer or any intelligent plug-in can modify the Erlang code

of any of the components and via the automatic wrapper generation and

deployment the functionality of the relevant parts of the application can be

changed on the fly without even touching the current component configuration
graph. Both the intelligence and the decision-making lie on the IDE side.

a

o

a

7

Obviously, any of the three operation types can be used separately, however, in most of
the cases the pristine cases are combined seamlessly to match the environmental changes.

4. Component frameworks and the Deployment Tool

The main organization concept of the ETICOM architecture focuses on the provision of
system robustness. Therefore, the system is structured hierarchically. The configuration
of the deployed components is represented by a graph whose branches are supervisors
and whose leaves are gen_servers (communicating entities) or processes (component
behaviors). Table I summarizes the mappings applied in ErlCOM.

ETICOM Erlang
Capsule, Caplet,

Component
Supervisor

Interface, Receptacle gen server
Component behavior,
Notification listener)

Pre/post action
process

Table I ETICOM concepts mapping to Erlang

However, the static configuration of the supervisors does not seem to be suffrcient to
describe the reconfiguration demands corresponding to the changing environment.
Furthermore, reconfiguration scenarios may involve ETICOM entities from different
levels of the hierarchy, in which case the supervisor cannot be used. To be able to
categorize the reconfiguration scenarios the Component Framework (CF) concept has
been introduced into ErlCOM. A Component Framework is the container and manager of
logically coherent entities which can be deployed onto different parts of the system. An
example of the Component Framework can be seen on Figure 5. The solid lines represent
supervisor relationships, the dashed lines mean communication relationships and the
dotted lines represent relationships to a CF. A Component Framework always contains
two unit of functionality. The Notification Listener part is notifïed by the CRTK when a
reconfiguration action on the entities related to the actual CF has been executed. The
reconfiguration scenario which has to be executed in response to the CRTK action is
placed in the Reconfiguration Engine. The Reconfîguration Engine part depends heavily
on the actual function of the CF and it can apply very complex reconfiguration actions
which affect the whole deployment of the configuration graph. On the contrary, the
Notification Listener part depends on the CRTK commands so it can be templatized.

8

Figure 5 Structure of the Component Framework

The following actions are valid CRTK reconfiguration commands:

Load component
Unload component
Destroy component
Migrate component to an other caplet
Bind components
Unbind components
Migrate binding to an other caplet
Add pre/post actions
Remove preþost actions
Add metadata to an ETICOM entity
Remove metadata from an ETICOM entity
Add a caplet
Remove a caplet
Add a new capsule to the ETICOM system
Remove a node from the ETICOM system

Since only these 15 commands can happen on CRTK level a simple template code for
notification listeners can be defined. The template code enumerates the valid CRTK
commands and their corresponding parameters. The notification listener template code is
the following:

-module (notífication_template) .

-export ([start/0,]-oop/01) .

start () ->
Pid=spawn (?MODULE, 1oop, []),
register (notify gme, Pid) ,
Pid.

loop () ->
recei-ve

stop-)true;
{ Command, Parameters } -)

prepare_command (Command, Parameters) ,
loop ()

end.

L¡stener
Râcoñf
Englne

Coftìpenerìt Framework
Capsulel

SlaveCapletl

Compl Comp2

IF
Comp

Behaviour Rec IF

Binding Comp3

Comp
Behaviour

Rec

9

prepare_conmand (load, Parameters) ->
I Caplet] D, f,oaderf D. ModuleName, Comp I D, I Ff Ds, Recf Ds I =parameters,.

prepare_command (unload, Parameters) -)
I ComponentlD] =Parameters i

prepare_command (mi grate_component, parameters) -)
IOrigCapletfD, OrigloaderID, DestCapletTD, DestloaderID, CompfD] =parameters;

prepare_command (bind, Parameters) -)
I CapletI D, Binder I D, I FI D, RecI D, ModuleName, Bindingl D] =parameters,.

prepare_command (unbind, Parameters) -)
I IFf D, Recf D, BindingID] :Parameters ;

prepare_command (migrate_blnding, parameters) -)
IOrigCapletID, OrigBinderID, DestcapletID, DestBinderID, BindingID] =Paramsi

prepare_command (addPreActionFirs t, parameters) -)
IBindingID,ModuleName] = Parameters,.

prepare_command (addPreActionI,ast, parameters) ->
IBindingID,ModuleName] = Parameters;

prepare_command (addPreActi-onBefore, parameters) ->
I BindingID, ModuleName, NextModuleName] =parameters;

prepare_command (addPreActionAf ter, parameters) ->
I BindingID, ModuleName. PreviousModuleName] :parameters ;

prepare_command (delete PreAction, parameters) -)
I Bindingl D, PreActionName i =p¿¡"meters ;

prepare_conunand (addPos tActionFírst, parameters) -)
IBindingID,ModuleName] = Parameters;

prepa re_conmand (addPos tActi_ onT,a s t, Pa ramete rs) - >
IBindingID,ModuleName] = Parametersi

prepare_command (addPos tActionBe f ore, parameters) -)
I Bindingl D, ModuleName, NextModuleName] =parameters;

prepare_conmand (addPostActi onAf ter, Parameters) -)
I Bindingl D, ModuleName, PreviousModuleName] :parameters ;

prepare_command (delete Pos tAction, pa rameters) ->
I BindingID, PostActj-onName] :Parameters;

prepare_command (putprop, Parameters) -)
I MetaData I D, Enti tyl D, PropName, propType, Value] =p¿r.meters,.

prepare_command (deleteprop, Parameters) ->
IMetaDataI D, EntityT D, PropName] =Parameters ;

prepare_command (create_caplet, parameters) ->
I CapletI D, CapletName] :Parameters;

prepare_command (delete_capl_et, Parameters) ->
I CaP]-etI Dl =Parameters ;

prepare_command (create_capsule, parameters) -)
I CapsuleIO, CapsuleName] =Parameters.

prepare_command (delete_capsule, Parameters) -)
I CaPsuleID] =Parameters ;

prepare_command (_, _) ->
unknown command error.

'|..

t0(t o.

The earlier mentioned Deployment Tool is an aggregation of a specialized Notification
Listener and a CRTK actuator. The notification listener's main tasks are listening to all
CRTK events and sending them to the IDE in appropriate format. The CRTK and the IDE
have different identifiers for the ETICOM entities, therefore, the listener manage the IDE-
to-CRTK identifier mapping. The actuator receives the commands from the IDE and

evaluates them so that it could execute the correct sequence of CRTK commands.

5. Conclusion

The robust reconfigurability of ETICOM and the versatile component configuration
enabled by the Deployment Tool and the notification architecture coupled with the meta-
modeling IDE realize the ideas behind our conflrguration aware distributed system design
approach. The approach enables the programmer to concentrate on the application logic
and the deployment adaptation logic separately and the infrastructure automatically
generates the "intelligent glue" in the form of a dynamically reconfigurable component
configuration which contains the application logic and behaves according to the
deployment adaptation logic. In the framework of the ongoing RUNES IST project we
have successfully used our approach and we hope that other Erlang projects will find the
technique valuable both inside and outside Ericsson.

References

I U RUNES I ST Proj ect, http ://www. i st-runes.org/

t2] G. Batori, Z.Theisz, D. Asztalos: Robust Reconfigurable Erlang Component System,
Erlang User Conference 2005, Stockholm, Sweden

[3] GME Documentation, http ://www. i si s.vanderbi lt. eduÆroj ects/ gme/

[4] Runes Hardware platform definition, http://www.ist-runes.org/docs/deliverables/
D3 04.pdf

t út)

Eliminating overlapping of pattern matching when veri$ring
Erlang programs in pCRL

Qiang Guo and John Derrick
Department of Computer Science,

The University of Sheffield,

Regent Court, 2\1 Portobello Street, 31 4DP, UK

{Q.Guo, J.Derrick}@dcs.shef.ac.uk

September 4,2006

Abstract
When verifuing Erlang programs in the process algebra ¡"cCRJ, specification, if there exists over-

lapping between patterns in the Erlang source codes, the problem ofoverlapping in pattern matching
occurs when trarulating the Erlang codes into the ¡rCRL specification. This paper investigates the
problem and proposes an approach to overcome it. The proposed method rewrites a.n Erlang progla¡n
with overlapping patterns into a counterpart program that has no overlapping patterns. Structure
Splitting T[ees (SSTs) are defined and applied fbr pattern evaluation. The use of SSTs guararrtees
that no overlapping patterns will be introduced into the rewritten Erlang code.

Ke¡rwords: Erlang language, pCRL speciûcation, Verification, Tln¡slation, Pattern matching,
Overlapping, SSTs.

1 fntroduction
Formal methods are of[en used for system design and verification. Formal methods are mathemati-
cally based techniques. Their mathematical underpinning allows formal methods to specify systems
in a more precise, more consistent and non-ambiguous fashion, Model checking [12] is an automatic
formal verificatiou techuique that has been widely used in verifuing requirements and design for a
variety of real-time embedded and safety-critical systems.

\ühen verifying svstems using model checking based techniques, specification of the system under
development is often modelled by a formal specification la,nguage sucl¡ as the process zr,lgebra. A
model checker is applied to examirre the proper-ties that should hold for the system over a finite state
system' If the model fails to satisfu some desired properties, faults are determined to exist in the
design.

The advantage of using model checking based techniques for system veriûcation is that, when a
fault is detected, the model checker can generate a counter example. These faulty traces help system
designers to understaud the reasons that cause the occurrence offailures and provide clues for fixing
the problem.

Two ways might be considered when using model checking based techniques for system verifl-
cation. In one wa¡ one ca¡ use a specification language in combination with a model checker to
obtaiu a correct specification that is used to write a¡ implementatio¡r in a prograrnming language;
in the other way, one may take the program code as a starting point and abstracts that into a model
that can be checked by a model checker. In the second situation, an interpretation mecha¡rism needs
to be defined in order that the source code of a programming language can be translated into the
formal specifi.cation language used for describing the system under development.

Recentl¡ verification of Erlang prograrns in the process algebra ¡"ICRL specification ha.s bee¡r
studied [10, 7, 8, 15]. The prograrrming language Erlang [1] is a concurrent functional prograrnming
la.nguage with explicit suppoú for real-time a¡rd fault-tolerant distributed systems. The process

t

1

oL

algebra ¡.cCRL (micro Common Representation Language) [ia] is a formal specification language.
It is ertended from the process algebra ACP [4] where equational abstract data types [14] are
integrated into process specification. When an Erlang program is translated into a ¡^cCRL spec-
ification, a Labelled Tbansition System (LTS) can be obtained by using somc eisting tools such
as the C.ÐSAR/ALDEBARAN Development Package (CADP) [11]. The LTS is used to check the
properties that should hold for the system under development.

Benac Earle eú ø1. [3, 6] studied the verification of Erlang programs in the process algebra
pCRL specification a¡d defined a set of rules for the tra¡slation of an Erlang code into pCRL. In
their work, translation rules for communication, generic server, supervision tree, functions with side-
effects, higher-order functions and pattern matching are defined respectively. They also developed
a tool set, etomcrl, which automatically translates Erlang codes into a ¡.ICRL specification.

However, in the tool set etomcrl, pattern matching in an Erlang code are tra¡lslated in a way
where overlapping is not considered. This, however, could cause misinterpretation when tra.nslating
an Erlang program into the ¡rCRL specification.

In Erlang, evaluation of pâ.ttern matching works from top to trottom and from left to right.
When a pattern is matched, evaluation is terminated after the corræponding clauses are executed.
However, in pCRL, the tool set instantiator does not evaluate rewriting rules in a fixed order. If
there exists overlapping between patterns, the problem of overlapping in pattern matching occurs,
which could lead to the system being represented by a faulty model. More details about the problem
a,re explained in Section 4.2.

This paper investigated the problem and proposed an approach to overcome it. The proposed
method rewrites an Erla.ng program with overlapping patterns into a counterpårt prograÍr that has
no overlapping patterns. In the counterpart program, functionalities defined in the original program
remain unchanged. Structure Splitting Tbees (SSTs) a¡e defined and applied for paùlern evaluation.
The use of SSTs guarantees that no overlapping patterns will be introduced into the rewritten code.

The rest of this paper is organized as follows: Section 2 introduces the Erla.ng programming
Ianguage; Section 3 describes the process algebra pCRL; Section 4 discusses the tra¡rslation of Erlang
progra^rns into the process algebra ¡"ICRL specification a,nd the problem of overlapping in pattern
matching when translating the Erlang progra¡ns into ¡rCRL; Section 5 looks at v¡ays to eliminate the
problem of overlapping in pattern matching; Section 6 explains the model checking Erlang programs
in the ¡rCRL specification with a case study; Conclusions are drawn in Section 7.

2 The Erlang language
The programming language Erlang [1] is a concurrent functional programming language with explicit
support for real-time and fault-tolera¡rt distributed systems. Since being developed, it has been used
to implement some substantial business critical applications such as the Ericsson AXD 301 high
capacity ATM switch [9].

An Erlang program consists of a set of modules, each of which defines a number of functions. A
module is uniquely identified by its name as an atom. A function is uniquely identified by the module
name, function name and arity (the number of arguments). Two functions with the same na,me and
in the same module, but with different a¡ities a¡e two completely different functiols. F\¡rctions that
are accæsible from other modules need to be explicitly decla¡ed as eaport. A function na¡ned f-name
in the module mod,ule and with axity lV is often denoted as mod,ule:!-name/N.

Erlang is a language with light-weight processes. Several concurrent processes can run in the
same virtual machine, each of which being called a nod,e. E;ar}:, process has a unique identifier to
address the process and a message queue to store the incoming messages. Communication between
processes is handled by asynchronous message passing. The receiving process reads the message
buffer by a rc¡eiue statement. When reading a message, a process is suspended until a matching
message a¡rives or timeout occnrs. A distributed system can be constructed by connecting a number
of virtual machines.

An advantage of Erlang is that it uses desigrr patterns (provided by OTP) where a number
of generic components are encapsulated. The use of OTP heþ to reduce the complexity of sys-
tem development and testing, while increases the robustness. Generic senrer ar'd superlñsor are
two commonly used generic components in system design. The following briefly reviews these two
components.

,

?

2.1 Generic server component
The Erlang Open Telecom Platform (OTP) supports a generic implementation of a server by pro-
viding the gen-seruer module. The gen-seruer module provides a standard set of interface functions
for synchronous and aq¡ncbronous communication, debugging support, error and timeout handling,
a¡d other a.dministrative ta.sks. A generic server is implemented by providing a caltbaclc module
whete (cøIlbaclc) functions a¡e defined specifying the concrete actions of the server srrch as server
state handling and response to messages. When a client wants to synchronously communicate with
the server, it calls the sta¡lda¡d gen-serer:call function with a certain message a.s an argument.
If an asynchronous communication is required, ttre gen-server:cast ts invoked where no response is
expected after a request is sent to the server.

-module(client).
-export(þtartJink/3, init/31).

startJink(Locker, Iìesources, lVpe)- >
{ok, spawnJink(ctient, init

[Locker, Resources, Typel)].

init(Locker, Resources, Tlpe) - >
Ioop(Locker, Resources, Tþe)

loop(Locker, Resources, Tlpe) - >
gen-server:call(Locker, {request,

Resources, TVpeÌ),
gen-server:call(Locker, release),
loop(Locker, Resources, Type).

A: Source code of cìient

-module(locker).
-behaviour(gen-server).
-export(þtartlink/1, init/11)

start-link(Request) - >
gen-server:startJink({local, Iocker},

locker, [Request], [).

init(Args) - >
{ok, Args}.

handle-call(request, Client, Pending) - >
case Pending of

[] - > {repl¡ ok, [Client]];
- - > {noreply, Pending*t[Client]]

end;
handle-call(release, Client, [-l Pending]) - >

case Pending of
[]- > {reply, done, Pending};
- - > genrerver:reply(hd(Pending), ok),

{reply, done, Pending}
end;

handle-call(stop, Client, Requests) - >
{ok, normal, ok, Request}.

terminate(Reason, Requests) - > {ok}.

B: Source code of qeneric server

Figure 1: The source code of Erlang generic server a¡rd client

Figure 1 illustrates a simple server-client system where a client can acquire the lock by sending
a request, message and release it by sending a releøse message. In the example the server might be
called with a re4uest or a release message. If the message is re4uest and. Peniling is an empty list,
the server retu-rns the client with oÈ, a¡rd the server comes to the new state f?ti,entl; otherwise, the
reply is postponed and the server goes to a new state where the requesting Client is added to the
end of Peniling list. If a releøse message is received, the server will send a reply to the first waiting
caller in t}ie Peniling list.

A terminate function is defined in the call back module. This function is called by the server
when it is about to terminate. It allows the server to do any necessa.rJ¡ cleaning up. Its return value
is ignored.

2.2 Supervisor component
\ühen developing concurrent and distributed systems using Erlang language, a commonly accepted
assumption is that a,rry Erla.ng process may r¡nexpectedly die due to ha¡dwa¡e failure or sofbware
errors in the code being executed in the process. Erlang/OTP supports fault-tolera¡rce by using the
supervision tree design pattern.

3

4

Figure 2: Supervisor tree for locker and clients.

Supervision tree is a structu¡e where the processes in the internal nodes (supervisors) monitor
the processes in the external leafs (workers). A supervisor is a process that starts a number of child
processes, monitors them, handles termination and stops them on request. The children themselves
can also be a supervisor, supervising its children in turn. Figure 2 demonstrates the structure of a
supervision tree.

3 The process algebra /ICRL
The process algebra pCRL (micro Common Representation Language) [14] is extended from the
process algebra ACP [4] where equational abstrwct døta tgpes [14] are integrated into process speci-
fication.

soÌt

func
T,F: -+ Bool
0: --+ N
S:N-+N
add,times:NxN---+N

var
x,y: N

rev¡
add(x,O) : x
add(x,S(y)) : S(add(x,y))
times(x,0) : 0
times(x,S(y)) : add(x, times(x,y))

comm
inlout : com

proc
counter(x:N) : p
buffer: q

Figure 3: An ex¡.mple of a pCRL specification.

A ¡rCRL speciûcation is comprised of fwo parts: the data types aud the processes. Processes are
declared using the keyword prcc, A. process may contain actions representing elementary a¿tivities
that can be performed. These actions must be explicitly decla¡ed using the keyword oct

Data types used in pCRL are specified as the sta¡rdard abstract data bypes, using sorts, functions
and axioms, Sorts a¡e decla¡ed using the key work sort, firnctions a¡e decla¡ed using the keyword
func anð, møp is reserved for additional functions. Axioms a¡e declared using the keyword reu,
referri'g to the possibility to use rewriting technolory for evaluation of terms.

A number of process-aìgebraic operators a¡e defined in ¡^ICRL, these being: sequential composition
(.), non-deterministic choice (*), pa,rallelism (ll) arr¿ communication (l), encapsulation (ô), hiding

Bool, N

4

supäEd

lockû sFæisü

c[æ¡ cliã! clid cliat

5

(z), renarning (p) and recursive decla¡ations. A conditional expression true 4 cstd,ition > f alse en-
ables that data elements influence the course of a process, a¡d a¡r alternative quantification operator
(f) provides the possibly infinite choice over some sorts.

In ¡rCRL, parallel processes co¡nmunicate via syncbronization of acüions. The keyword comm is
reserved for communication specification. The communication specification describes which actions
may qrnchronize on the level of the labels of actions. For example, in cornm inlou,t, eanh ætion
i'n(fi,...rt¡") can communicate with ou,t(t1,,..,t'¡) provided lc: m and f1 and úi denote the same
element for i:1,...,k.

Figure 3 illustrates an exa.mple of a ¡ICRL specification.

4 Translating Erlang into /rCRL
In order that a.n Erla.ng program can be translated into pCRL, Benac Earle et, al. 13,6] deûned a set
of translation rules. In their work, translation rules for communication, generic server, supervision
tree, functions with side-effects, higher-order functions and pattern matching are defined respectively.
They also developed a tool set, etomcrl, which automatically translates Erlang codes into a pCRL
specification.

4.L ïhanslation rules
The tra¡¡slation from Erlang to ¡ICRL is performed in two stages. First, a sou¡ce to source transfor-
mation is applied, resulting in Erlang code that is optimised for the verification, but has identical
behaviour. Second, this code is translated to pCRL.

In ¡rCRL, a data type Termls defined where all data types defined iu Erlang a,re enrbedded. The
translation of the Erlang data types to pCRL is then basically a s¡artactic conversion of constnrctors
as shovm in Figure 4.

sort
Term

func
pid: Natural - Term
int: Natural * Term
nil: ---+ Term
cons: Term # Term -+ Term
tuplenil: Term -+ Term
tuple: Term f Term -+ Term
true: + Term
false: ---+ Terrn

Figure 4: Tla¡rslation of data types in Erla.ng to ¡^ICRL

Atoms in Erlang a¡e translated to ¡rCRL constructors; tr.ue artd ¡[alse represent the Erlang
booleans; inú is defined for integers; nil for tlæ empty list; cons for a list with an element (the
head) and a rest (the tuI); tupteníI for a tuple with one element; tuple for a tuple with more
tha"n one element; and pid, for process identifiers. For example, alist [F.1,E,2,...,8*] is translated
to pCRL as æns(81,æns(E,2,øns(...,ni1)...)). A tuple {Er,8r,..., En} is translated to pCRL as
tuple(E1, tuple(Ð2, ..., tuplern¿l (8")...)).

Variables in Erlang are mapped directly to variables in pCRL. Operators are also tra¡rslated
directly, speciûed in a ¡rcRL library. For example, A + B is mapped to mcrLplzn(A,.B/, where
mcrLplu,s (A, B) : int(plus (term-to-nat(A), tenn-to-nøt(B))).

High-order functions in an Erlang code a,re flattened into first-order alternatives. These first-order
alternatives are then tra¡slated into rewrite rules.

Program tra¡rsformation is defined to cope with side-eftect functions. With a source-to-sourcc
transformation, a function with side-effects is either determined as a pure computation or a call to
another function with side'effects. Staclæ are defined in ¡^rCRL where pzsä aorñ, pop operations are
defined a.s com¡¡runication actions. The value of a pure computation is pushed into a stack and is
popped when it is called þ the fi:nction.

5

é

Communication between two Erlang processes a¡e translated into two process algebra processes,
one of which is defined as a buffer, while the other implements the logic. The synchronous commu-
nication is modelled by the synchronizing actions of process algebra. One action pair is defined to
synchronize l,he sender with the bu-ffer of the receiver, while another action pair to synchronize l,he

active receive in the logic part with the buffer. Figure 5 illustrates the tr¿nslation rules.

Figure 5: Tlanslation of communication in Erlang to pCRL

4.2 The problem of overlapping in pattern matching
Ilowever, in the tool set etomcrl, pattern matching in an Erlang code is translated i-n a way where
overlapping is not considered. This could cause misinterpretation when translating an Erlang pro-
gram into pCRL.

-module(checkJist).
-export(þheck/11).
check(List)- >

case List of
[]->

empty-list;
[1]-]->

head-check;

[-12,3] ->
tail-check

end.

Figure 6: An Erlang program with overlapping patterns.

In Erla,ng, evaluation of pattern matching works from top to bottom and from left to right. rüy'hen

a pattern is matched, evaluation termi¡ates after the corresponding clauses a¡e executed.
Howevet, the pCRJ, tool set insta¡rtiator does not err¿luate rewriting rules in a fixed order. If

there exists overlapping between patterns, the problem of overlapping in pattern matching occurs,
which could lead to the system being represented by a faulty model.

Figure 6 illustrates an exarnple where a list is càecked. ff Li,st: [1,2,3], the program returns
heød,-ch,eck when it is executed, although .List matches [-12,3] as well. However, when translating
the code into the ¡^rCRL specification, the ¡rCRL tool set instantiator does not evaluate rewriting
rules in a fixed order. The return value from the pCRL model checker could be etther hæad,-chnclt, or
tai,l-checlc. The final pCRL specification could represent the Erla"ng progra,ûi in an incorrect pattern.

6

handle_call(request,R.esources,Ilpe),
ClienÌ, ...) ->

case check_availables@esources,Iþelocks) of
t¡ue ->
Newlocks =
map(ftn(Locþ -> ...

false ->

case Type of
exch¡sive -)
shared->...

A &ùng code

coffin gen_server_call | çcall
:buffercall ...

proc locker_semedo op (Iif C.RLS el I Term,State : Term)

sürn(Client:Term,
sumßesources:Term, ...

1o cker_serverl o op (À{CRLS e 1 f,
{ locker_map_claim_locK...). .. }

<lequal(locker_check_availables(...)l>

<lequal$þe,sha'ed)l>
delta)D))

B: ¡.rtRL

end

7

To overcome this problem, guards need to be defined and applied in order that rewriting rules are
forced to be evaluated in a fixed order.

5 Eliminating overlapping in pattern matching
TWo possible ways might be considered for the elimination of overlapping in pattern matching. In
one ï'ay' one may introduce a set of guards in rewriting rules and force the ¡rCRL tool set instantiator
to evaluate rewriting rules in a fixed order, while, in the other way, one may consider to transform
the Erlang source codes a¡rd rewrite the pattern matching clauses such as case into a series of
oase-funcfi,ons.

5.1 Applying guards in rewriting rules
Benac Earle [6] proposed a method to overcome the problem of overlapping in pattern matching by
introducing a set of gua^rds into ¡zCRL.

pattern s -match(P, V, o)

(true,o,U{P -.-+V},
(cqu,al(V, o(P)) , o) ,
(i.s-list(V) A S A $, o¡),

(i,s-tuple(V) A ót,ot)

uar(P)andPÇdom(o)
uar(P)and,Pedom(o)
P: [Hlr]
(ú, o n) : patterns -match(H, hd(V), o)
\rþ, ot) : pattern s -møtch(T, tI(V), o ¡,)
P : {Pt,...,Pn}
(ót, o t) : pattern s -match(P1, element(\, V), o)
(Ô2, o2) : petter n s -rnøtch(P2, element(2, V), ot)

(equal(P,V),o)
(ôn, o*) : pøtterns -match(Pn, element(n, V),, n- t)
otherwise

Figure 7: The definition of patterns:natch function.

In the proposed method, a patterns-match htnction is defined (see Figure 7). This function has
three arguments: a pattern, an expression a¡rd a mapping from va¡iables to expressions, and returns
a condition and a new mapping. Inside the finction, a.n auxiliary function uar(P) is defined to
returns the logic t¡alue true if P is a va¡iable and. false otherwise. A guard can then be delìned in
the pCRL specification.

Figure 8 demonstrates the translation rules where furction uynd(P,V, a) is the projection of
patterns-match(P,V,o) and {% r+ Vi} represents the mapping from {Vr, ...,Vn} to {Vt,...,Vn).

Note that in the ¡^rCRL specification (Figure 8-B), a cøse function caser is invoked when the
evaluation of pattern matching starts. Here, caaet is functionally equivalent to the first cose clause
in the Erlnng code (Figure 8-A). F\rnction case! calls a¡rother fi¡nction casez where cond,(Qy E) \s
evaluated. If annd(QyØ) returns true,it, indicates that the first pattern is matched. Clause Br is
executed a¡d the evaluation terminates; otherwise, if @nd(Qt,E) returns false, fixwtion ca.ees is
called where pattern Q2 is evaluated, The evaluation continues in such an order until all patterns
have been examined. It can be seen that, by introducing a guard ønd. tlne pCRL instantiator
evaluates the rewriting rules from top to bottom, which is identicat to the order by which the
patterns are examined in the Erlang code.

However, the proposed method is not applied in the tool se!, etøncrl.

5.2 Rewriting Erlang source code
The other way to overcome the problem is to rewrite the Erlang code before the translation sta¡ts,
The rewriting operaüion rewrites all pattern matching clauses in the original code into some calling
functions. A catling function is activated by a guard that is determined by function pøtterns-tnatch.

I

t, ,, r
ir Iu-
t-'

Ii ,:,

i,

7,

f :no,me(V,...,Vo)-)
case E of

Qr-) B1;

Q*-) B*
casel(V1, ..., Vn, Vn+t) =

u,s e2 (Vt, ..., Vn, ænd(Q ! ¡ Vn* t ¡ {V¿ * V¿ }), V.+ r)
end.

case2(V¡,...,Vn, tTu,e, Qt) : B¡
ansez(V,.-.,Vn, f alse,Vo¡1) :

cø s e s (V1, ..., V*, cond,(Q 2 t Vn * r, {V * V}), V* ¡ r)

case y (V1, ... rVn rtrue, Q*) : B*.

A: Erlang source code. B: ¡^rCRL specification.

Figure 8: Tlanslating Erlang code into ¡¿CRL with guards.

F\rnction patterns-match takes the predicate of the pattern matching clauses and one pattern a6

arguments. If the predicate matches the pattern, function Wttem,s-firo,tcl¿ returns únre; otherwise,

false.
Figure I sholvs an example where cose clauses are co¡sidered. One ca¡r eâsily extend the method

to other pattern matching statements such as if arÀ uhen.

-moúr(check_list)
-export([check/l]).

-nodulc(chck_lisl.).
-e:çod([che ctr/l].

chec(Args) ->
Val : l,
\læ2:2,
caseArgs of

Pl ->
B1;

P2 ->
E2;

P3 ->
ttJ

end.

chec(Args) ->
check_case_0_0(pattems_matc(Atgs, Pl), Args, Var_List).

check_case_0_0(kue, Args, Vor_List) ->
EI;

che ck_c as e_0_0(fals e, Args, V ar_List) ->
check_case_0_1 (patiems_matctr(Atgs, Pþ, Args, V ar_List).

¿heck_case_0_1(kue, Args, Var_List) ->
B2;

check_case 0_l(false, Arge, Var_Liet) ->
check_case_0 2(paltoms_matcb(Args, P$, Tar_List).

check_case_û 2(tnre" Args, trrrr_Usl.) ->
83.

A: Origjnal code B: Reformed code

Figure 9: Rewriting the Erlang code

Given an Erla.ng code with three patterns for matching, the program (shown in Figure 9-A)
is rewritten into the format as shovryr in Figure SB. F\rnction cl¿eck calls function checlc-case-0-0.
F\rnction checlc-case-O-O has three a,rguments. The first a,rgument is the matching result between the
predicate Args a,nd the first pattern P1; the second a.rgument is the predicate Args; the last a"rgument
is a list of va¡iables. It can be noted that, íf patterns-match(Args, Py) returns úrøe, clauses defined
in 81 are executed; otherwise, function checlc-stse-0-1 is called where P2 is evaluated. Var-List
contains a list of va¡iables that appears before the case clar¡se and has been referred in Br. Before
constructing a case frrnction, a.n a.nalysis of va¡Íable dependency is required for the definition of
VarJist. If a va¡iable appears before the case clause a¡rd is referred in the clauses of a pattern, it
should be added to VarJi,st,. For example, if inside .B1, a clause like Kr :2 xVart is defined, one
needs to aÅd Vart to Var-Li,st when constructing function check-øse-O-0.

f -nøme(Vy,...,Vn):
casel(Vr, ...,Vn,8).

8

9

The problem no'!u comes to define fi¡¡clion pøtterns-mateh. T};re function cannot be simply defined
a"s co,se E of P - > true, as it will either introduce new overlapping patteû¡s or cause exception in
the runtime.

pa,tterns$atch(,S, P) - >
case .Ð of

P->
true;

false

N,:.:¡ N,:.¡'

patterns¡etch(.&-, P)- >
case.E of

P->
true

end.

N,¡r, N¡¡.r,

end.

A: Code with overlapping. B: Code that causes exception.

Figure 10: Two faulty ways on defining patterns$atch function in Erlang program.

Consider two examples shov¡n in Figure 10, if. pat'tem,s-matlcl¿ is delìned as the one shown irr Figure
10-4, new overlapping patterns will be introduced into the rewritten Erlang code (the question is,
if "-" is not considered as a pattern, ca;n we find a suitable expression of P such that Fn P - / and
PU P: {øtl d,ata sets}?).

If patterns-maúcl¿ is defined as the one shown in Figurc 1GB, thc code is syntactically correct
and no overlapping will be introduced. However, the structure of the program will cause system
exception if no pattern is matched, which reveals a sema¡rtic mistake of the program transformation.

In order to evaluate patterns effectively, we define a Structure Splitting T}ee (SST).

Deffnition 1. Let D be a d,atum of compler type. Let Dç,.i¡ is a member of D ønd, Dp,¡1 i,s ø metnber
oJ Dç,;¡. Dç¡¡ i,s called, a first degrec element of D ønd D¡2,¡¡ ø second d,egrce element of D. Let
D6,x¡ be a fi.rst d,egrce elernent oJ D6-r.,t¡, n) 2, D6,*¡ is catted, a nth degree element of D.

It can be noted that a datum might contain more than one Âfh degree elements.
An SST is a dependent tree where a datum of complex type is graphically represented. In an

SST, each node is labelled with an ID denoted by Nt¿,¡l where i indicates the layer and j the number
of the node. Each node contains a datum. The type of a datum is distinguished by a graphic shape.
In this work, atom is represented by circle, lisú by square and, tuple diamond. The tree starts with
a root node that contains the complete set of data a¡rd terminates at a terminal node where the
datum is either an atom or a list that contains a "-" cha¡acter.

Nr¡,¡t

N':.¡¡ N,::, N,:.+,

t-----'-
N¡.r, list

Nrr,r, Nrr.:, ¡,*.r, N,r.+, \r.:, Nr.i, N,¿.7, l{,r.s, N,r.er N,r,rrr

Figure 1L: Structure splitting tree of a complex type datum.

Except the root node a^nd the terminal nodes, every node N(¿,¡) has a parent node N1r-r,e)

I

ta ttbU. {c. - d}. Ll c"ll. ttaU, t}, tI

{t4l,b}ttbll, (c, - dÌ. [_l ac]l

lal -ltbtJ lla cl{c, -, d)

t-1 c t-l

âlûm

tæle

IO

and several children nodes. The connection between Nt¿,¡i a¡rd N(u-t,nl indicates that the datum
contained in N1,i,¡¡ is a first degree element of N(¿-r,¡) and an ith degree element of the root node.

Figure 11 illustrates an exa,mple where þ, [[ôl-], {", -, d}, [-lo, c]], {þl-1, ö}, ôl is represented by an
SST. Note that node N1a,r¡ contains a ìjst that only the head element is ca¡ed. Nts,rl is split into
two nodes N1a,r¡ (contains an atom ó) and N1r,z¡ (contains a list whose elements are not ca^red),

both being termina.l nodes.
To check if Pr matches Pz, one can build the SSTs of Pr and P2, and examines the SSTs from

top to bottom a¡rd from left to right. Wtren a node in one SST is compaled with the corresponding
node in the other SST, the t¡'¡re of datum is ñrst compared. If two datum types do not match, the
evaluation returns /olse and the process of evaluation terminates; otherwise, the two data are further
checked. If the datum trype is atom, and the values of two data are not equal, the evaluation returns

/ølse and the process of evaluation terminates; otherwise the check of this node is finished and the
process ofevaluation moves to another node.

Nrt'¡,

Nr:.¡ ¡ N,:.: N,r,¡, N,:,+r

N¡:.r, Nr:.:t N¡:.:, N¡;.r¡ Nrl.:¡

N¡+,ti N¡+.:ì Ni+,¡¡ N,+.+, N,+.:i N,+.r, Ntr,;, N,r,s, N,r.s, N,+.r0, Nit,¡ri Nrr'rrr

Figure 12: Structure splitting tree of [a,[[b, c, d], {c, a, d}, [a, a, cl], {[t, b, c], b], b]

For example, to check if P1 : la,llb,c,Q,{c,a,d,},1ø,a,cll,{þ,b,c],b},ö] matches p2 : [o, [[ôl-],
{c, -,d}, [-lo,

"]1,
{þl-], ö}, ö1, the SSTs of Pr and P2 axe constructed, shown in Figure 12 and Figure

11 respectively. Nodes in Figure 12 are compared with the corresponding nodes in Figure 11 from
top to bottorn and frorn left to right. Root nodes of the SSTs are compa,red first. It can t¡e secn that
both root nodes contain a non-empt¡i list, which indicates that the ûrst layer compa.rison is matched.
The evaluation moves on to the second layer where nodes N(z,r)r N(z,z), N(z,s) and N1z,a¡ in Figure
12 are checked in sequence. Ntr,rl contains an atom datum and its value needs to be compared
with that of N1z,r¡ in Figure 11. Once the checking for the second layer is completed, the evaluation
moves on to the next layer.

Note that, when evaluation comes to the fourth layer, the checking upon nodes N1a,z¡ and Nqa,s¡

should be ignored since node N(¿,2) in Figwe 11 contains a list whose elements match any possible
data.

The process of evaluation continues until all nodes in Figure 12 have been examined. It can be
seen that, since the e luation only check datum t¡pe (two types are the sa¡ne or not) and the values
of atoms (the values are equal or not), there should be no overlapping in the pattern matching arìd
no exception will be calrsed duing the runtime.

It is easy to see that the problem of evaluating the pattern of a¡ SST is equivalent to that of
searching nocles in a tree. A breadth-first search algorithm [5] or a depth-frrst sea,rch algorithm [5]
can therefore be applied to solve the problem.

5.3 Comparison between tn/o methods
It is easy to see that the two methods ploposed above are functionally equivalent but realize the
elimination of overlapping in pattern matching at different stages.

la [[b,c,d]. {c. a d}, [" +c]1, {[a,b.c], b]. bj

{[a.b.c], b][[bc,d], {c, a. d}, [4. qc]l

lq b, cllb,c,dl lcccl{c, a, d}

10

It

In the tool set etorncrl, before translation sta.rts, some pre'procqsses are made where an Erla,ng
progra¡n is transformed into a pErlang program. The structure of the pErla.ng program is closer to
that of pCRL specification, which makes the translation easier.

The first method discussed in Section 5.1 considers thc use of gua.rds in the translation rules.
The use of guards forces the rewriting rulcs to be evaluated in a fixed order. The first method copes
with the problem at the stage oftranslation

The second method discussed in Section 5.2 considers the transformation of an Erlang pro
gram with overlapping patterns into one without overlapping patterns. Pattern matching clauses
in the original code are replaced by a series of case functions. These firnctions a.re guarded by a
patterns-matcl¿ ñmction. The second method tackles the problem at the stage of pre-process.

In this work, the second method is used as it involves in less effort in modiffing the source codes
of. etomcrl.

6 Model checking Erlang in pCRL
Once Erlang progrâ¡ns a¡e translated into a ¡ICRL specitìcation, a¡r LTS ca.n be derived by using
some existing tool sets such as CADP. The properties of the system can then be examined through
checking all tra¡rsitions in the LTS.

We took a case study where a simplified version of resource manager is used. The resource
mâ¡rager is based on a real implementation in the control software of the AXD 301 ATM switch. It
contains a loclcer and a number of clienta. Locker provides access to an arbitrary number of resources
for an a^rbitrary number of client processes, The clients may ask access to the resources either in a
shued, way or an esclu,siue way. For more about the resource manager, see [g].

Before tra.nslating the Erlang programs into the pCRL specification, some pre-proce.sses are made.
AII fu¡ctions that contain overlapping patterns are rewritten as discussed in Section 5.2. We also
added an additional function (shown in Figure 6) to the original code. This is intended to evaluate
the fi¡nction patterns-matcl¿ defined in Sectiorr 5.

After applying the etorncrl tool set to the rewritten codes, a pCRL specification file is obtained.
An LIS is then generated by using CADP. Total 120 states and 193 transitions are explored by
CADP. Figure 13 shows the LTS derived from the ¡zCRL specification. The checking result implies
that the model is correct, which suggests that the method proposed in this paper is capable of coping
with the problem of overlapping in pattern matching.

7 Conclusions and future v¡ork
When veri$'ing Erlang programs in the process algebra ¡rCRL speciûcation, if there exist overlapping
pattems in the Erlang source codes, the problem of overlapping in pattern matching occurs when
translating Erlâng codes into the process algebra pC&L. The problem is caused due to the fact that
the pCRL instantiator does not evaluate rewriting rules i¡r a fixed order. This problem could lead
to the Erlang progra¡ns being represented by a fauþ pCRL model.

This paper investigated the problem and proposed an approach to overcome the problem. The
proposed method rewrites an Erlang proglam with overlapping patterns into a counterpart program
thal; has no overlapping patterns. The functionalities defined in the original program remain un-
changed in the counterpart program. SSTs are defined and applied for pattern evaluation. An SST
graphicaþ represents a complex datum in a dependent tree.

When evaluating whether pattern Po matches pattern P¡, the SSTs of P" a¡rd P¡ a¡e constructed
and compared. If the pattern of Po's SST is identical to that of Pu' SST, the pattern matching
evaluation retuÍrs ürøe,' otherwise, /olse. During the comparison of two SSTs, only the types of
complex data and the values of atom data a¡e evaluated. This guara,ntees that no overlapping
pattern will be introduced into the rewritten Erlang codes.

A ca.se study was ca¡ried out to evaluate the effectiveness of the proposed method. The evaluation
result suggests that the proposed method is capable of coping with the problem of overlapping in
pattern matching.

The evaluation of the proposed method in this paper considered the use of a comparatively
simple example. More complicated systems are required to experimentally evaluate this method.
This, however, remafuu a research topic in the futu¡e work.

11

IL

&lklD

Figure L3: Labelled transition system generated from the locker system

t2

I3 (n)

Acknowledgements
'We would like to tha¡rk Clara Benac Earle for her generous help throughout this work. We would
a.lso like to thank the developers of the tool sets of ¡rCRL and CADP for allowing r¡s to use the tool
sets for system verification. This work is funded by ùhe Engineering and Physical Sciences Research
Corrncil (EPSRC) under grant number EP /C525000/1.

References

[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concun'ent Prcgramming in Erløng.
Prentice-Hall, second edition, 1996.

[2] T' Arts, C. Benac Earle, and .I. Derrick. Verifying erlang code: A resource locker case-study.
In FME, pages 184-203,2002.

[3] T. Arts, C. Bena¡: !ìarle, and Juan José Sónchez Penas. Ttanslating erl¡¡g to pcrl. Proceæd,-
i'ngs of the Foutih Internøtional Conference on Applicati,on of Concurrency to System Design
(ACSD'0Ð, pages 135-14 4, 2004.

[4] J.C.M. Ba.eten and J.A. Bergstra. Process algebra with signals a¡rd conditions. Report P9008,
University of Amsterdam, 1990.

[5] J. Bang-Jensen a¡rd G. Gutin. Digraphs: Theory Algorithms arut Applications. Springer-Verlag,
London, 2001.

[6] C' Benac F,a¡le. Model check the i.nteraction of Erlang components. PhD thesis, The University
of Kent, Canterbury, Department of Computer Science, 2006.

[7] C' Benac Earle and L. Å.. F]erthrnd. Verification of language bascd fault-tolerance. In EURO-
CAST, pagæ 140-149, 2005.

[8] C. Benac Earle, L. Ä. F]edtund, and J. Derrick. Verifying fault-tolerant erlang programs. In
Erløng Workshop, pagæ 26-34,2005.

[9] J. Blau, J. Rooth, J. Axell, F. Hetlstrand, M. Buhrgard, T. Westin, and G. Wicklund. Axd
301: A new generation atm switching system. Computer Netuorks, Sl:559-582, 1ggg.

[10] J. Blom and B. Jonsson. Automated test generation for industrial erlang applications. In Erlang
Workshop, pages 8-14, 2003.

[1 1] CADP. http : / /utrou. inriaþe s. þ /a asg / cadp /.
[12] E. Clarke, O. Grumberg, and D. Long. Modet Checbing. MIT Press, lggg.

[13] L. Å. F]edlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A verification tool for
erlng. Intentational Jounal on Software Tools for Technology Transfer.,4:405-420, 2003.

[14] J. F. Groote a¡rd A. Ponse. The syntax and sematics of ¡rcrl. In Algebm of Comrnunicnti,ng
Processes 1991, Workshop in Cornputing. pages 2ffi\ Lggï.

[f5] F. Huch. Verification of erla.ng progra¡ns using abstract interpretation and model checking.
AC M SIG PLA N Notices, 34(9):261-272, 1999.

i

ì

t,

Iì

13

t (a)

ErlHive
Safe Erlang Reloaded

An angle on community web
development

Ulf Wiger, Ericsson AB

ïhe Goal

. Web-based multi-user information
management

. Blog, forum, wiki, chat, access control, ...

. What set of abstractions could allow us to
treat these as convenient building blocks?

. (Not having to install a separate web
server + unique version of perl for each)

1

2"

The Frustration

. lnstalled and tested lots of blogs, wikis and
forums

. Surprisinglydifficult

. Not particularly modular

. Picky about perl/python/php/mysql versions

. Esp. multi-user versions worked poorly

. Obvious room for improvement

. But with Erlang, lots of assembly required also.

The Tuple Store

. Joe Armstrong's idea

. A simple on-line
database for web
development

. Storing objects, sets and
streams per user

. Joe wrote the front-end

. I wrote the back-end

HTTPoD

tuple
store DB

2

3

Stored modules extend the vision

Õ

Us€r A Us€r E

Public code and data

erlhive DB

E
oc3

trl
OE

oE o n
tr

oEt o E

Safe, web-based
community web

application development

¿

Back-end Concepts

. Each account contains:

- Variable declarations
(scalars, arrays, streams, and modules)

- Areas
(public and private)

1

+

Classes of Variable

. Scalar - can be of any type
(a type grammar exists and is enforced)

. Array - an associative array (ordered set)

. Stream - like an inbox
(append, lookup, delete)

. Module - a safe-compiled Erlang module

Access control

ln the public area:

. Data and code in the private area
accessible only to the owner

. The owner's public modules can call the
owner's private modules

Owner Other Users

Scalars & arrays Read/write/delete Read

St¡eams Append/read/delete Append

Modules Read/¡vrite/de lete/ca I I Read/call

2

5

Safe code execution

. Only side-effects allowed are through the
erlhive API

. Allow calls to modules/functions known to
be safe (lists, ordsets, calendar, etc.)

. No spawn, send, receive, link, etc.

. Meta calls filtered at run-time (and
possibly blocked)

. Everything runs in mnesia transactions

. Otherwise, no restrictions
:-
!.,.
lriiï+:
il- ,'rit-a-t ,ii

-modul e(ex3-pub) .
-export ([f,/0]) ,
fo ->

[{' ?fvtODuLE', ?tutODULE},

{time, calendar: universa'l_timeO},
[cal'ler, erlhive.user:cal]er¡¡],
{f ronumodul e, erl hi ve. user : f rotu¡r¡odu'l eO },
{owner, er]hÍve.user:anerO},
{ex3-priv, ex3J¡rÍv: fO}l ,

-moduìe(ex3-priv).
-export(tfl01).
fo ->

[{'?f,toDULE', ?fltoDULE},
...1.

-modu'l e(ex3-joe) .
-export ([f,/0]) .
fo ->

[{' ?f,,toÐuLE', ?rvtoDULE},

{ex3*pub, erl hive.ulf .ex3-pub: f O}l .

Owned by user <<"u1fl>>

by user

M:put_schema(ex3¡oub, ftclass, module),{area, public}l),
M:sto¡e_module(ex3gub, "-module(ex3J¡ub).ìn...,')

end).

Code example

l> erlhive:with_user(
(("ulf'>>,
fun(M) ->

1

6

-module(ex3-pub).
-export([f,/0]) .
fo ->

[{' ?l,tooule', ?ti4d)ulE},
{time, ca'lendar: universal-tjmeO},
{cal1er, er'lhive.user:ca'|1 erO},
{f ronunodul e, er1 hi ve. user : f ron-.nolul eO },
{owner, erlhive.user:cmerQ}, \
{ex3-priv, ex3-priv:fO}l , \

-module(ex3-p
-export ([f,/oJfo ->

riv)
).

[{'?r,roDULE', ?itoDULE},
...1.

-module(ex3-joe).
-export([f,/0]) .
fo ->

[{' ?iroDULE', ?rr4oDuLE},
"Meta fu nctions' fu r introspection

{ex3-pub, hÍve.ul f . ex3-pub:f OÌl

Package syntax for calling
other users'modules

Code example

Execution
-modu'le(ex3-pub).
-export([f/0]).
fo ->

[t'?MoDULE', ?Ii|oDULE],
{tìme, ca'lendar: universal-tineO},
{cal ler, er'l híve.user:ca] I erO},
{f rorumodul e, erl hi ve. user : f ron-¡¡todul e O },
{owner, erl hive. user:owner0},

ond).

[{ ' ?MoDuLE' , ' erl h'i ve . joe, ex3-joe ' } ,
{calIer, <<"joe">>},
{from-module,'erlhive.user' },
{owner, <<"joe">>},
{ex3-pub, [{' ?MoDULE',' er'l h'i ve. u1 f . ex3-pub' },

{tine, {{2006, 11,9}, t16, 53,17}},
{ca'l'ler, <<"joe">>},
{o¡vner, <<"ulf">>},
{ex3-priv, [{' ?l'loDULE',' erl hi ve. u'l f . ex3-¡riv' }'

{caller, <<"uìf">>},
{from-rnodule,' erlhive. ulf .ex3-pub' },
towner, <<"ulf">>]l]l)l

f, u)
-modul e(ex3-joe)
-export([f,/0J) .

fun(M) >
m :apply(erlhlvejoe,cx3joe,

[{'?MoDULE' ,

{ex3-pri v,

[{' ?MoDULE', ?!,toDULE},
...1.

'le
rt

(ex3-priv).
(tfl01) .

{ex3-pub, erl

2> erlh¡vê:wlth-user(
(<,Joe,,>>,

fo ->

2

v

-modul e (ex3-pub) .
-export([f,/0]).
fo ->

[{'?¡toDULE' , ?¡,toDuLE} ,
{ca'l ler' er'lhive. user: catl ero},
{fror¡modu1e, erlhive.ùser:fron ¡oduleO},
{owner, erlhÍve.user:ornerQ},

v).I

{ex3-priv,

lt'?ÈroDULE', ?MoDULEÌ,
.. -1.

-module(ex3joe)
-export([f,/0]) .fo ->

[{'?rooule',

tex3-pub, er

t:apply(orlhlye.üf.ox3Jorlv, f, []
end).

** exited: {aborted, {{undef, [{{'erlhive.ulf.ex3_priv',
<<"joe">t,
'erlhive.user'1, f, 0Ì,

{erl hive,wi th-watchdog, 1} ,...1Ì, ...)

Þ orlh¡ve:wlth_use(
((,Joe"Þ,
funlil) Þ

Execution

Cannot call another user's private modules.
Restricted calls appear as undefs.

-modu'le(ex3-pub) .
-export([f,/0]) .
fo ->

[{'?uoDuLE', ?MoDuLE},
{ca'l'ler, er'l hive. user: call erO},
{f rorn-modu1 e, erl hi ve. user : f ro¡r-rpdul e O },
{owner, erl hive. user: unerO},

e(ex3-priv).
tf/o1)

[{' ?f.,loDULE', ?r',toDULE},
. . .1.

{ex3-priv,
Þ edhlve:pÞfflo(

<<"Joo'Þ>,
ft¡n(il).>

l{:apply(ex3Joe, f, [)
end).

{ [{' ?MoDULE',' er]hive. joe. ex3joe' },
...1,

lttrace, <0. 403. 0>, cal'1, {er] hive-user, appl y, 4} },
{trace, <0. 403. 0>, caì'1, {' er] hive. joe, ex3_joe', f , U},
{trace, <0, 403. (Þ, cal'1, {' e r'l hi ve. u'l f . ex3_pub,, f , 1} },
{trace, <0. 403. û>, return_to, {' erl hi ve, ul f . ex3_pub', f , 1} },
{trace, <0. 403. 0>, return_to, {' er1 hive. ul f . ex3_pub', f , 1}}l }

-modul e (ex3_joe)
-export([f/0J).
fo ->

[{'?rvtODULE',

{ex3-pub, e

A censored calltrace. Can be followed by a specific
trace on'visible' modules. (work in progress...)

Profiling

1

8ß)

Status

. Beta version at Sourceforge
http ://erl h ive. sou rceforge. net

. Authenticating web server front-end

. Conìponents

- Simple web-based management front-end

- Blog with threaded comments

- W¡k¡ code syntax library

- Role-Based Access Control library

2

..\

EUC 05 presentat¡on 2005-11-02

(+)

t-ttd
ERI.ANG

Erlang/OTP Development at
Ericsson

enrcsson f

t ¡l tîP R1 1B-2 released
ERI.ANG

I Emulator
Kernel poll support can now be combined with SMp
support. Currently the following kernel poll versions exist:
/dev/poll, epoll, and kqueue. Linux kpoll has been replaced
with epoll. Some time in the future there will also be a
kernel poll version using Solaris event ports.
The SMP emulator now avoids locking for the following
operations: atom_to_lisV1, atom comparision, atom
hashing, erlang :apply/3.

2 EUC 6 Fdffdq 2mrtû r¡c¡sr¡ I

1

I
i

EUC 05 presentat¡on 2005,'11-02

0
þ

t 3l OTP R1 1ß-2 neleased
ERTANG

¡

Stdlib and Compiler
Option 'strict-record-tests' in now made default
that is, reading a field from a record using the
Record#record-tag. f ield syntax will fail if
Record is not a record of the correct type.

Can be shut off with option 'no-strict-record-tests' or with
environment variable ERL COMPILER OPTIONS.

lnets
Enhancements regarding aynchronous HTTP-request
New option to support PRoXY-Authorization
Bug corrections regading parsing of URI's, chunked
decoding, empty body, ...

3 EUC6 pnrddoñ zwlt& n¡c¡eor f

7-Itd
ERIANG

tTP Ri 1m-? released

Dialyzer
Dialvzer's buildino of PLT is now based on a different tvpe ¡nference algor¡thm More
speóifically, DialyZer uses inferrence of ref¡ned succesS typings to infer function

å'fflËtritd Dialvzer bases its analvsis on a signir¡cantlv more powerful basis and thus
is eble to detect-more discreDanciei. ln Þarticular, Dialyzer is now able to f¡nd more
¿is-Cieoànò¡es in the form of inalformed uses of Erlang/OTP library functions. The
downiide is that buildinq the PLT is a considerablv slówer process. We will work on
improving that, but let uõ assure you that the time'building the PLT is well spent.

Dialvzer tâkes into account the BEAM compiler directive -

¡lflïiltg,ruogi¿i:d-function,
{F,AD).'and suppresses the warnins that function

* Dialyze/s default in¡tial PLT now also includes "mnesia"

QLC now with support for faster join of 2 tables.
- SuDDort for two klnds of ioin:

lookup ioin, thát uses existing ¡ndices. mergé join, that takes 2 sorted inputs

- Severalotherenhancements

a EUc6¡rúanlrüon 26rrü rrum f

2

EUC 05 presentat¡on 2005- 11 -02

3

7¡¡ltd
ERI.ANG

Ongoing worle

Documentation
. Plan to release "Docbuilder" as an application in OTP

together with the OTP documentation sources in XML
Docbuilder is pure Erlang and produces HTML.

. Edoc is better integrated to get the same format as all
other OTP documentation.

6 EUC6 F..ñl¡hñ 26114 rncso* |

:

I

i,i
i

¡'
I

l:

7^ltrJ tngoing work
ERTANG

SMP support
. Removing the big lock around lO is ongoing, allowing

for parallell execution in drivers.
A new API for drivers which support parallell invokation
will be introduced. Old driver API still supported.

. Probable release in Q2 2007.

ô EUC 6 f...ñbtm ffi!r{2 rnc¡son f

3

EUC 05 presentation 2005-11-02

+(Ð

t3l
ERI.ANG

*nüroinç w*nlq

Misc
. Constant pool per module e.g.

f0 -> {a,b,c,[10,20,...],.......very big constant term...].
The term will be built by the compiler once and for all.
Today the term is built every time function f is called.

' Support for Bitstr (bit sized binaries i.e not a multiple of
8 bits) and binary comprehensions in the compiler

. XMERL with XMLschema validation

1 EUc6 pr.¡.nl¡llôn 26r-02 rrgsox f

t 3l l\fr r"¡ltipn*c#$$ffir $l;pp#rt
ENTANG

Erlan runtime m R11B schedulers)

0

runqueue

File io threadsT
selecUpollI

job

Put lO-port
jobs into

next

Pick next
runnable or

EUcG pr.r.nl.h z6i1{z ¡nrcssor¡ f

4

Downloads/month from $rürnr. erlangr . org or bundled with Wings
70 000

60 000

50 000

40 000

30 000

20 000

l0 000

dec- jun-
98 99

dec- jun- dec- jun- dec-
99 00 00 01 01

jun- dec- jun-
02 02 03

dec- jun- dec-
03 04 a4

jun- dec-
05 05 Ã\,

iun-
06

l
a

I

V
I

I

il
ll
i,
1J
U
il
ir

I

-.- Windows
----.-- Unix

-
Total

-
+ Wings

0

Requests/month to ïrürïr. erlang. orçf
I 200 000

I 000 000

800 000

600 000

400 000

200 000

0

dec-
98

jun-
99

dec-
99

jun-
00

dec-
00

Jun-
0,|

dec-
0l

jun-
02

dec-
02

jun-
03

dec-
04

jun-
05

dec-
05

jun-
06

dec- jun-
03 04 >.

160

140

120

100

80

60

40

20

EUC participation

0

w
Lr{

-+ Univ/lnst

-o- Others
--+- Ericsson
{- Total

r

1999 2000 2001 2002 2003 2004 2005 2006

Erla TP User Conference 2006
ns and ns

n .com
bjarne@cs-lab.org
Domon kos.Asztalos@ericsson. com
Gabor. Batori@ericsson.com
Zoltan.Theisz@ericsson. com
u lf .wiger@ericsson. com
ken neth. lu ndin@ericsson.com
jan@erlang-consulting. com
arts@ituniv.se
Erik. Stenman@kreditor. se
mickael. remond@process-one. net

rlenglet@users.forge. objectweb. org
hz@inf.elte.hu
me@katolaz. homeunix. net
H.Li@kent.ac.uk
S.J.Thompson@kent.ac. uk
J. Derrick@dcs.shef.ac.uk
Q.Guo@dcs.shef.ac.uk
harveyd@gmail.com

Bjarne
Domonkos
Gabor
Zoltán
utf
Kenneth
Jan Henry
Thomas
Erik
Mickaël
Christophe
Jérôme
Romain
Zoltan
Vincenzo
Huiqíng
Simon
John
Qiang
Dale
Conrad

Däcker
Asztalos
Batori
Theisz
Wiger
Lundin
Nyström
Arts
Stenman
Rémond
Romain
Sautret
Lenglet
Horvath
Nicosia
Li

Thompson
Derrick
Guo
Harvey
Levitt

Segeltorp
Budapest
Budapest
Budapest
Stockholm
Stockholm
Uppsala
Göteborg
Stockholm
Paris
Paris
Paris
Tokyo
Budapest
Catania
Canterbury
Canterbury
Sheffield
Sheffield
Edinburgh

Sweden
Hungary
Hungary
Hungary
Sweden
Sweden
Sweden
Sweden
Sweden
France
France
France
Japan
Hungary
Italy
England
England
England
England
Scotland
Scotland

csJab.org
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson OTP team
Erlang Training and Consulting
lT University of Göteborg
Kreditor
Process-one
Process-one
Process-one
Tokyo lnstitute of Technology
Uníversity Eötvös Loránd
University of Catania
University of Kent
University of Kent
University of Sheffield
U niversity of Sheffield
vixo.com
vixo.com

Patrik
Tee
Geoff
Pascal
Dominic
Matthias
ulf
Mikael
Taavi

Winroth
Teoh
Cant
Brisset
Williams
Lång
Svarte Bagge
Karlsson
Talvik

miittiOy
bwisystems
Canadian Bank Note Co
Catalyst lT
Cellicium
Cellicium
Gorelatus
Corelatus
Creado Systems
Elisa

Sweden
Canada
New Zealand
France
France
Sweden
Sweden
Sweden
Estonia

Stockholm
Ottawa
Wellington
Bagneux
Bagneux
Stockholm
Stockholm
Stockholm
Tallinn

patrik@bwi.se
tteoh@cbnco.com
geoff@catalyst. net. nz
pascal. brisset@cellicium.com
dominic.williams@cellicium.com
matthias@corelatus. se
ulf@corelatus.se
mikael. karlsson@creado.com
taavi.talvik@elisa. ee

èt-

Participants cont.
m com

Joe
John-Olof
Éva
Mats
Graham
Anders
David
Håkan
Joakim
Angela
Bengt
Tomas
Leslaw
Hans
Lars
András
Chris
Peter
lngela
Gunilla
Hans
Jakob
Björn-Egil
Niclas
Richard
Dan
Björn
Micael
Bertil
Håkan
Raimo
Patrik
Göran
Martin

Armstrong
Bauner
Bihari
Cronqvist
Crowe
Danne
Haglund
Huss
Johansson
Johansson
Kleberg
Langer
Lopacki
Nilsson
Thorsén
Vajda
Williams
Andersson
Andín Anderton
Arendt
Bolinder
Cederlund
Dahlberg
Eklund
Green
Gudmundsson
Gustavsson
Karlberg
Karlsson
Mattsson
Niskanen
Nþlom
Stupalo
Carlson

Stockholm
Stockholm
Budapest
Budapest
Stockholm
Stockholm
Linköping
Stockholm
Stockholm
Linköping
Stockholm
Stockholm
GÖteborg
Stockholm
Stockholm
Jorvas
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
London

Sweden
Sweden
Hungary
Hungary
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Finland
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
England

Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Ericsson OTP team
Erlang Training and Consulting

joe. armstrong@ericsson.com
john-olof. bau ner@ericsson.com
eva. bihari@ericsson.com
mats. cronqvist@ericsson. com
graham. crowe@ericsson.com
anders. danne@gmail.com
david.xa. haglund@ericsson. com
hakan. h uss@ericsson.com
joakim. l.johansson@ericsson. com
angela.xa.johansson@ericsson.com
bengt. kleberg@ericsson.com
tomas. langer@ericsson, com
leslaw. a. lopacki@ericsson. com
hans. r. nilsson@ericsson. com
lars.thorsen@ericsson. com
andras.vajda@ericsson.com
chris.williams@ericsson.com
peppe@erix. ericsson.se

gunilla@erix. ericsson.se

jakob@erix.ericsson. se
bjorn-egil.dahlberg@ericsson. com

bjorn @erix. ericsson. se
micael. karlberg@ericsson, com

hakan@erix.ericsson. se
raimo@erix.ericsson. se
pan@erix.ericsson.se

bt

cont

Francesco
Francesca
Mazen
Oscar
Andreas
Ludvig
Lukas
Adam
Laurent
Michal
Marcus
Gillan
Yariv
Gordon
Niklas
Magnus
Mikael
Daníel
Håkan
TorbjÖrn
Jane
Marcus
Nils
Thomas
Bahram
Johan
Göran
Jonas
Alexander
Dragan
Rikard
Martin
Thomas
G0ran

Cesarini
Gangemi
Harke
Hellström
Hillkvist
Johanson
Larsson
Lindberg
Picouleau
Slaski
Taylor
Ward
Sadan
Levítt
Hanberger
Fröberg
Lindmark
Luna
Stenholm
Törnkvist
Walerud
Arendt
Decker
Lindgren
Bahar
Blom
Båge
Falkevik
Harju
Havelka
Johansson
Kjellin
Mattison
Oettinger

London
London
London
London
London
London
London
London
London
London
London
London
Boston
Edinburgh
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Hamburg
London
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm

England
England
England
England
England
England
England
England
England
England
England
England
USA
Scotland
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Germany
England
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden

ng
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
Erlang Training and Consulting
erlyweb.org
Heriott-Watt U n iversity
HiQ
Kreditor
Kreditor
Kreditor
Kreditor
Kreditor
Kreditor
Marcus ArendtAB
Media Gonsult International GmbH
Millpond Services Ltd
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts
Mobile Arts

fra ncesco@erlang-consultin g. com

marcus@erlang-consulting. com

yarivw@gmail.com
g120@hw.ac.uk
Niklas. Hanberger@hiq.se

jane@walerud.com
marcus@arendt.se
n. decker@mci-broadcast. com
thomaslerlang@yahoo. com
bah ram. bahar@mobilearts.com
johan. blom@mobilearts. com
goran. bage@mobilearts.com
jonas. falkevik@mobilearts. com
alexander. harju@mobilearts. com
dragan. havelka@mobilearts.com
rikard.johansson@mobilearts.com
martin. kjellin @mobilearts. com
thomas. mattisson@mobilearts.com
goran.oettinger@mobilearts. com

UJ

cont.

Pekka
Johan
Amir
Fatemeh
Filippo
Gösta
Lennart
Morgan
Robert
Kristoffer
Per
Peter
Johan
Martin
Joakim
Per
Håkan
Ola
Sebastian
Claes
Adnan
Peter-Henry
Ghandrashekhar
Fredrik
Per
Tobias
Gordon
Per Einar
Göran

Hedqvist
Montelius
Payberah
Rahimian
Pacini
Ask
0hman
Eriksson
Virding
Andersson
Hallin
Lund
Bevemyr
Björklund
Greben0
Hedeland
Millroth
Samuelsson
Strollo
Wikström
Shafi
Mander
Mullaparthi
Thulin
Gustafsson
Lindahl
Guthrie
Strömme
Östlund

Stockholm
Stockholm
Stockholm
Stockholm
Rome
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Hatfield
Hatfield
Stockholm
Uppsala
Uppsala
Edinburgh
Stockholm
Stockholm

Sweden
Sweden
Sweden
Sweden
Italy
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
England
England
Sweden
Sweden
Sweden
Scotland
Sweden
Sweden

Optimobile AB
Royal lnstitue of Technology
Royal lnstitue of Technology
Royal lnstitue of Technology
S,G. Consulting
SalveLinus
Sjöland & Thyselius Telecom AB
SoftCM
Swedish Defence Materiel Administration
Synapse Mobile Networks
Synapse Mobile Networks
Synapse Mobile Networks
Tail-f
Tail-f
Tail-f
Tail-f
Tail-f
Tail-f
Tail-f
Tail-f
Telegia Technologies
T-Mobile
T-Mobile
University of Stockholm
University of Uppsala
University of Uppsala

Pekka. Hedqvist@Optimobile.se
johanmon@kth.se
payberah@kth.se
rahimian@kth.se
pacini@sgconsulting. it
g.ask@telia.com
lennart.ohman@st.se
morgan.eriksson@comhem. se
robert.virding@telia. com
toffe@synap.se
perhal@synap.se
peterl@synap.se
jb@tail-f.com
mbj@tail-f.com

hakanm@tail-f.com

seb@strollo.org
klacke@tail-f.com
adnan@optimobile.se
erlang@manderp.freeserve.co. uk
Chandrashekhar. Mullaparthi@t-mobile.co. uk
ft@it.su.se
per.gustafsson@it. uu.se
Tobias. Lindahl@it. uu.se
gordonguthrie@backawinner. gg

stromme@telia.com
se

-Þ

Ð

