Erlang User Conference 2006 Sidalavl

12th International Erlang/OTP
User Conference

Stockholm, November 9-10, 2006

Proceedings

http://www.erlang.se/euc/06/

ERICSSON 2
el

- sjiland& Thyselius
[J fr£‘

ERLANG

corelatus

file://C:\Documents and Settings\Bjarne\Mina dokument\EUC'2006\FrontPage.html 2006-11-01

]

EUC'2006 - Programme Sida 1 av 1

Erlang/OTP User Conference 2006

Conference Program

08.30 Registration.

Session 1

09.00 Betting on Functional Programming and Winning.
Erik Stenman, Kreditor, Sweden.

09.30 Horde Leader, a Framework to Build Cluster Aware Erlang Web Administration
Console.
Jérdme Sautret and Mickaél Rémond, Process-one, France.

10.00 Experiences from Using Erlang for Autonomous Robots.
Vincenzo Nicosia and Corrado Santoro, University of Catania, Italy.

10.30 Coffee.

Session 11

11.00 Vixo.com - A Case Study in Developing a Web/SMS Start-up in Erlang.
Dale Harvey, vixo.com, Scotland.

11.30 CEAN, a Comprehensive Erlang Archive Network, or How to Make any Erlang
Software Deployment a Child’s Play.
Christophe Romain and Mickagl Rémond, Process-one, France.

12.00 Testing a Media Proxy with Quviq QuickCheck.
John Hughes, Chalmers University, and Thomas Arts, IT University, Sweden.

12.30 Lunch.

Session 111

14.00 Refactoring Erlang Programs.
Zoltan Horvath, Huiging Li and Simon Thompson, University of Kent, England.

14.25 Comparing C++ and Erlang for Motorola Telecoms Software.
Henry Nystrém, Erlang Training and Consulting, Sweden.

14.50 Using GNU Autoconf to Configure Erlang Programs.
Romain Lenglet, Tokyo Institute of Technology, Japan.

15.00 Configuration Aware Distributed System Design in Erlang.
Gabor Batori, Zoltan Theisz and Domonkos Asztalos, Ericsson, Hungary.

15.40 Coffee.

Session IV

16.00 Eliminating overlapping of Pattern Matching when Verifying Erlang Programs in
pPCRL.
Qiang Guo and John Derrick, University of Sheffield, England.

16.25 ErlHive - Safe Erlang Reloaded!
Ulf Wiger, Ericsson, Sweden.

16.40 Erlang Message Receive Fundamentals.
Jay Nelson, DuoMark International, USA (presented by Ulf Wiger).

17.10 Current Erlang/OTP Developments.
Kenneth Lundin, Ericsson, Sweden.

17.30 Close followed by bus transport to an ErLounge.

" Demonstrations

Chalmers students demonstrate robot logic in Erlang.

file://C:\Documents and Settings\Bjarne\Mina dokument\EUC'2006\Programme.htm 2006-11-02

Betting on FP
(and winning?)

Erik Stenman

KREDITOR

| will talk about KREDITOR, a company that

Introduction

bet it's future on Functional Programming

» Conventional wisdom...
choose proven technology

e ... the KREDITOR way ...
choose Erlang

e ... are they the same?

| will tell you what Kreditor does, how we do
it, why we do it this way, and whether it

worked out or not... at least, so far. KREDITOR

Kreditor Europe AB

« The business model:
- Bring trust to Internet shopping.
— Bring old style billing into the new IT-economy.

« Brief background:
— Founded in December 2004.
~ With < $100,000 in venture capital.
— Live system in March 2005.
« The company vision:
— “Be the coolest company in Sweden.”

KREDITOR

| The Problem

Internet shopping is a question of trust.
— The shop has to trust the customer to get paid.

— The customer has to trust the shop to send the
right stuff.

Many customers are uncomfortable using credit
card over the Internet.

Many banks are actually worried about the security
of Internet shops handling credit card information.

Also, doing a partial return when using credit card is a
hassle, both for the customer and the shop.

The Solution

» Bring in a trusted party, i.e., KREDITOR.
« Send an invoice with the goods to the
customer.

* The customer pays after receiving the
goods and takes no risk. The customer
does not have to trust anyone.

« The shop is guaranteed (by contract) to get
money from KREDITOR. The shop only have
to trust KREDITOR with whom they have a

written contract.
KREDITOR

Added benefits
The cusoer gs credit. |

The customer can pay using familiar
methods.

Returning goods is easy.
Befter fraud detection.
Advanced credit assessments.

Easy to add similar features like pre-pay

KREDITOR

The Implementation

A customer

- E

A webshop 43"?(;
Sa
@ < identity
kredit check

L KREDITOR
Credit info company

KREDITOR

The Implementation

surfs
b

. : 4
223 i A webshop \?i’be
A customer \
= stores

o E —&
L KREDITOR DB

Credit info company
KREDITOR

The Implementation

k.
Awebshop\'/%?\
S -

KREDITOR DB

A customer

Credit info company

The Implementation

= Pack goods,
print invoice,
ship.
_ Buyok
A webshop
A customer |
@ E =
it KREDITOR DB
Credit info company
KREDITOR

The Implementation

G .

A,
A webshop \\\G.P

e N

A customer \
- = E 5|
o

r Cradit info company

The Implementation

A webshop
v o E 5|
Credit info company 60(KREDITOR DB
<

@@fy
Bank @

Print&mail company

The Implementation

A webshop
A customer
= =l
Credit info company KREDITOR DB

-F—-'l
Bank @

Print&mail company

Some details

e systm is built from crch usin LYM

(Linux, Yaws, Mnesia, and Erlang).

So far we only operate in Sweden and Norway.

We have a distributed system with multiple
servers to provide a fault tolerant, high availability

solution.

We aim for 5 nines availability, in a setting where
we introduce new features in the system every

week.
The problem fits Erlang really well.

Why was Erlang Chosen?

The three founders didn't really know what Erlang
was.

The developers didn't get the scope of the system.
“It will be like the programming contest, we'll do it
over the weekend” - Claes Wikstrém.

Thus Kreditor and Tekniker! were born.

Teknikerl built the first version of the system, in
Erlang, in < 4 month.(While starting another company
called Tail-f, but that's another story.)

Why was Erlang Chosen?

« Jane Walerud saw a business presentation
by three enthusiastic entrepreneurs-to-be at
a business “green house”.

» The Idea looked promising and she
happened to know five former Bluetailers
who where looking for something new to
do.

Did it work?

Erlang has been a great help in providing rapid
development with maintained high availability.
KREDITOR has introduced four new major

services since last December, and added over
500 new customers.

We have expanded into Norway.

The system has never gone down except for short
maintenance stops.

Did it work?

 Using Erlang has meant low development costs.

¢ Our main competitor busted this summer after

burning more than 90 million SEK (~$12M).
(1 think they had some php/.net solution.)

* We know of some banks that have invested over 200MSEK to try to get systems that
does something like our base service in a much more cumbersome way.

KREDITOR

Did it work?
The business odel has been sund.

Total investment < $100,000

Turnover:
-~ 2004: ~0 SEK
— 2005: 1.5 million SEK ~ $200,000
— 2006: 15 million SEK ~ $2 million, (500million SEK in invoices)

Number of connected stores:
2004: 0, 2005: ~200, Today: > 700

Number of employees > 17.

Second place on the list of Sweden's most promising
entrepreneurs by the Swedish magazine “Internet World®.

KREDITOR

Why not use Erlang?

h main rans tht I av hard of are: |

1.Politics — Erlang is not C/Java, company policy.
2.0ne provider — Concern that Ericsson will stop
supporting Erlang.

3.Lack of programmers — Erlang is still not
mainstream how can we ensure we get
qualified staff?

When starting a new company, 1 is not a problem.
| can't see 2 happening, and it's open source anyway.
When setting up in Stockholm, 3 is not a problem.

KREDITOR

Conclusion

KREDITOR took a bet on Erang,
and so far seem to be winning.

Questions?

KREDITOR

()i

e

Horde Leader, a Framework to
Build Cluster Aware Erlang Web
Administration Console

November 9, 2006

Jérébme Sautret

CONTENTS | _

= History and status of the project
® Purpose

® Architecture

m Core Library
= Monitoring Service
= Plugins
® Non-erlang clusters
¥ Roadmap

[} Zreoses

© 2008 Prooess-one ~ All right reserved Page 2

2(7)

History and Status of the project

Team Leader, a web console for ejabberd
= Currently usable

= Some ejabberd specific code in the core application

s Horde Leader, a framework to build web consoles
m Generic

= To be release in Open Source
= Work in progress

[<] owese

© 2008 Process-ona — All right reserved Paged

Purpose (1/5) S ,
A Framework to build Web Consoles

= Monitoring
m Control

® Configuration
m Statistics

]

Q‘Tecml_eqder] LN userNamelGRES

Statistics |l “Users.& groups - f - Configuration |

Cluster nodes
s Cluster

Cluster nodes
* eiabberd@zero —

online
users

crPu
time

nede id state started uptime

: 2006,/11/02
mmmum . "
B 15:49:47 0.00 0.00

giabberd@ 2006/11/02
o ' !
0 15:41:21 505,83 | 0.78

ocess

Pr
Ore

Taam Leader. a Web console for gjabbeid. the Eilang Jabbet seivei. Copyright ©® 2006, Procass-one,

© 2008 Procass-ono — All dight reserved Page4

' Purpose (2/5) .

= A Framework to build Web Consoles

Monitoring

]

= Control

Configuration
|

|

Statistics

-;0] Teamleader

“Cluster, § statistics 1 Users & graups § Configuration |
_é_l;u-;t_e‘rum I ejabberd@zero
= Cluster
» Nodes ¢ ejabberd®zero is currently running
* egiabberd2@zerg * Started on 2006/11/02 15:41:21 (859.092 seconds ago)
* ejabberd®zere & Client connections0
¢ Step e PID of the Erlang VM8329
* Raestart ¢ CPU Usage0.80
o Reopen the log ¢ Cannot get memory occupation for this node
e Database tahle
» Statistics

Process
we
i

3
-—

p Team Leader, a Web console for sjabberd. the Erlang Jabbar server. Copuright ©@ 2006, Progess-one,

[]
© 2008 Process-one ~ All right reserved Page 5
Purpose (3/5)
A Framework to build Web Consoles
m Monitoring
m Control
= Configuration
m Statistics
]
. Configuration gtobal
= Configuration
= Global Virtual Hosts
v Virtual Hosts o[zero
= Statistics ¢ [Clocalhost
Delete selected Virtual Hosts |
Add a new virtual hosd | Add]
User self-registration
 Allowed ¢ Denied
[Envover
'Adl".. linistrators
® [jerome .
Remove the administrator role of selected users
Give administrator role to user id
‘E' Adﬂ
D Team Leade(, a Web console foi ¢jabberd. the Erlang Jabher sercer, Coprright @ 2006, Procaess-one,
L]
© 2006 Procass-ana ~ AR fight reserved Pages

(%)

Process

)
Llwme

B

ocess

Pr
":;:»ﬁ

Purpose(45)
® A Framework to build Web Consoles

® Monitoring
m Control

® Configuration
= Statistics
]

Statisties Node Statistics
* Quorviaw
¢ Nodes
- platbuié Bk
o Syl 4.0
vl 3 |
* Crle . | e
A L LD 28 ' o % e
. 10 e et
« Conflouration 004 e Jormnr " =—
18:10 18- 20 18:30 18-40 18:50 19:00
M loadl5 Min 80.60m Avg 763.92m Max 2,02
O londl Min 20.93m Avg 1.25 Hax 3.61
1.0
2.0
10
-
18:10 18:20 18:30 18:46 18:50 19:60
B runtime Min 4,430 Avg 1,05 Max 2.65
© 2008 Process-one = All righl resarved Page7

= A Framework to build Web Consoles
= Monitoring

Control

Configuration

Statistics

& Plugin based
= All the console logic is provided by plugins

= Plugin can be added or removed to customize or enhance the
console

= No deployment on remote application node

® Cluster aware
= The console can handle an application running on several nodes

© 2008 Process-one — All fight resarved Page 8

Architecture

" -e-der
Core Library

nitoring Service

Remote wo
Application

rocess

s

L2

© 2008 Procase-one — All righl resarved

Architecture

® Core Library
= Authentication
= URL -> Plugin function
= Page display
« Navigation Menu
+ Widgets
- Tables
- Information/Error messages
= Various Helper Functions

» Monitoring Service

= Monitor remote node states
Store node states in database
Communicate with remote nodes using RPC
Send module to remote nodes

© 2008 Procesa-one — All right reserved

Web Console

Page 9

Page 10

6(7)

Architecture

® Plugins
= Handle page content
» Manage all the console logic

&= What is a Plugin
& Erlang module
» Adds entries in the navigation tree

?INIT(_A) ->
#plugin{
14=?MODULE_STRING,
menu= [

Dne

Process

7

?MENU_ITEM([], "usersg", "Users & groupe",20,index),
?MENU_ITEM(["users"],"all","All users",10,all),
?MENU_ITEM(["users"],"online",
"Online users",20,online),
?MENU_ITEM(["users"], "create”,
"Create",30,create),
?MENU_ITEM(["users"], "delete",
"Delete", 40,delete),
?MENU_ITEM(["users"], "search",
“Search",50,search),
?MENU_HIDDEN ITEM(["users"], "user",user)

1}.

© 2008 Prooess-ona — All righl resarved

Architecture

& How a Plugin display a page

Page 11

Process
Cwe

[

= The Core Library handle the generic parts
= The plugin returns only the content as Yaws HTML

adduser (a) ->
team leader:get common page (
a,
{ehtml,
{form, [{method, "post"}, {action, ?ROOT_ URL(A)++"users/create"},
{class, "form"}],
{fieldeet, I[1,
[?ASK_QUIT CONFIRMATION,
{legend, [], ?TXT("Add a new jabber user")},
{label, [{for, "userid"}, {class, "required"},
{title, ?TXT("User id, without the @domain")}],
?TXT ("User id")},
{input, [{type, "text"}, {name, "userid"}, {class, "field"}], I[1},
{label, [{for, "password"}, {class, "required"},
{title, ?TXT("Password of the new user")}],
?TXT ("Password") },
{input, [{type, "text"}, {name, "password"}, {class, "field"}],
1},
{input, [{type, "submit"}, {name, "submit"}, {class, "buttomn"}],
[}
1}1b.

© 2008 Procese-one — All right reservad Page 12

Non-erlang applications

= A console for non-erlang applications ?
= Console/Application communication uses erlang RPC
= Remote Module can be send dynamically
@ Prerequisites
= Remote module able to communicate with application
- Read logs
- Edit configuration files
- System calls
= Erlang installed on all remote naodes
= Erlang VM running on all remote nodes

u -c "erl -sname hl_agent >/dev/null 2>&l1" - horde_leader <<EoF &
rlang:set_cookie(node(), ‘'secret').
ef = make ref().

eceive
Ref ->
ok
[it end.

C OF

EI

A

-

© 2008 Process-ona — Al right reserved Page 13

Roadmap

® Team Leader

Remove all ejabberd specific code from the Core Library
and the Monitor Service

® Write some generic documentation

= Publish the code on http://forge.process-one.net
& Write more plugins...

Process

Ve
L

© 2008 Process-one — All right reserved Page 14

16

Software Agents for Autonomous Robots:
the Eurobot 2006 Experience

Vincenzo Nicosia!, Concetto Spampinato! and Corrado Santoro? for the Eurobot DIIT Team
Universita di Catania
1Facolta di Ingegneria - Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
2Facolta di Informatica - Dipartimento di Matematica ¢ Informatica
Viale A. Doria, 6 - 95125, Catania, Italy

Abstract— Agent-based software architectures have been used
and exploited in many application fields. In this paper, we report
our experience about using intelligent agents for an unusual
task: controlling an autonomous robot playing a kind of “golf”
game in an international robotic competition. Driving a real
robot is a practical application field for software agents, because
different subsystems need to be controlled and synchronised
in order to realize a global game strategy: cooperating agents
can easily fit the target. Since this application requires a soft
real-time platform to guarantee fast and reliable actions, and
also a valuable communication system to gain feedback from
sensors and to issue commands to actuators, we chose Erlang
as programming language. A two-layer multi-agent system was
thus designed and realized, composed of a lower layer, hosting
agents taking care of the interface with sensors and actuators,
and a higher layer, where agents are in charge of “intelligent”
activities related to game strategy.

Keywords— Mobile and Autonomous Robots, Computer Vision,

Autonomous Agents, Real-Time Systems, Erlang.

I. INTRODUCTION

Software agents are autonomous entities that, living in a
virtual world, are in charge of accomplishing the goal they
are programmed for. In doing so, agents interact with the
environment where they live in, by sensing its state and acting
onto it, in order to achieve their goal. For these reasons, they
are often called “software robots”.

In spite of this similarity between (software) agents and
(real) robots, agents, and above all multi-agent systems, are
mainly exploited in realizing complex software systems and
applications requiring intelligence, flexibility, interoperability,
etc., while the area of robotics is often a matter of research on
real-time and control systems. However, when a (autonomous)
robot needs some intelligence to perform its activities in a
more efficient and effective manner, the use of agent technol-
ogy seems a natural choice [17].

The issue is that, in these cases, agents have to face the
problems related to the interface to physical sensors and
actuators, which connect the computer system with a physical
environment that also changes during time. Therefore, an
agent—enabled robot has not only to tackle the problems related
to direct use of input/output ports, acquisition and driving
boards, serial ports etc., but it should also take in account
the fact that the scenario is time-constrained. In fact, as it is
known, an information acquired from sensors (e.g. the position
of the robot or of its arm) has a deadline after which the

data become stale and no more useful, unless a fresh value
is obtained. These problems are quite known in the area of
real-time systems and their solution is achieved by means
of platforms and/or operating systems that regulate program
execution—in terms of process/task scheduling, race condition
and delay control—in order to guarantee that deadlines are
met.

Since such a real-time support is needed also in the case of
the use of an agent-based system to control robot activities, the
traditional and well-known agent platforms, which are mainly
based on Java, cannot be employed at all: at it is known,
the main problem of Java is the garbage collector, which
introduces unpredictable latencies that prevent any attempt
to build a time-constrained system. Indeed, RTSJ specifica-
tion [6] provides a set of classes and some programming rules
that allow the realization of real-time Java systems, but the
specification introduces hard constraints in object allocation
and reference that require an existing Java program (and thus
an agent platform) to be rewritten in order to make it RTSJ-
compliant [22], [16], [8]. ,

In the context of agents and real-time systems, a language
that features some interesting characteristics is Erlang [5], [4],
[1]. It is a functional and symbolic programming language
that has been proved to be suitable for the implementation of
multi-agent and intelligent systems [21], {10], [12], [11], [13],
[15), [14], [9]; moreover, since the Erlang runtime system
is able to provide soft real-time' capabilities [18], [3], it
seems also quite useful for the realization of an autonomous
robot controlled by autonomous agents. In this context, this
paper describes the authors’ experience in designing and
implementing an autonomous robot, for the Eurobot 2006
competition>3, by means of a multi-agent system written
using the Erlang programming language. A layered multi-
agent system has been designed, composed of two layers:
a back-end (lower layer), comprising agents performing the
interface with robot’s physical sensors and actuators, and
handling low-level control activities; and a front-end (upper
layer), hosting agents dealing with the game strategy. Thanks
to this layered architecture, hardware-level interactions and

VA system is called soff real-time if it is able to take into account deadlines,
but if a deadline is not met, it has no particular consequences [19], [20].

2http://www.eurobot.org

3http://pciso.diit.unict.it/~eurobot

intelligent activities are clearly decoupled, making the design
and implementation of the software system more easy, and also
allowing the programmer to easily reuse some parts and/or to
improve or change the functionalities of the system.

The paper is structured as follows. Section II describes the
game that robots have to play at Eurobot 2006. Section III
illustrates the basic hardware and mechanical structure of
the robot developed. Section IV deals with the software
architecture of the control system of the robot, describing the
agents composing the system, their role and their activities.
Section V discusses some implementation issues. Section VI
reports our conclusions,

II. THE GAME AT EUROBOT 2006

Eurobot is an international robotics competition which in-
volves students and amateurs in challenging and amazing robot
games. The main target of the event is to encourage sharing of
technical knowledge and creativity among students and young
people from Europe and, in the last two editions, from all
around the world.

Every year a different robotic game is chosen, so that all
teams start from the same initial status and new teams are
stimulated to participate. Here we report an overview of the
rules for the 2006 edition of Eurobot*, when the selected game
was “Funny Golf”, a simplified version of a golf game where
robots had to search balls in the play-field and to put them
into holes of a predefined colour.

A. Field and Game Concepts

As Figure 1 shows, the play-field is a green rectangle of
210x300 mm, surrounded by a wooden border. Borders on the
short sides of the field have a red (resp. blue) central stripe
which delimits the starting area for each robot. The field has
28 holes, 14 of them encircled by red rings and the other by
blue rings. A total amount of 31 white balls and 10 black
balls are available during the game. Fifteen white balls and
two black balls are placed into the playing area at predefined
positions, while four more black balls are randomly positioned
into holes, two for each colour. The remaining balls (sixteen
white and four black) could be released by automatic ejection
mechanisms positioned at each corner of the field. Finally,
four yellow “totems” are positioned into the field and are
both obstacles for robots and switches for the ball-ejection
mechanisms.

Robots must be absolutely autonomous: any kind of com-
munication with the robot, both wired or wireless, is not
allowed during matches. Robots have spatial limits, in terms of
height, perimeter and so on, and have to pass a homologation
test before being accepted for the competition. Each robot
can also use any kind of positioning and obstacle-avoidance
system, and supports are provided at the borders of the playing
area to place (homologated) beacons, if needed.

4This edition took place in Catania, Italy.

Fig. 1.

The playing area

B. Plgying Funny Golf

Before starting, each robot is assigned a colour, either red
or blue. Robots start from the border opposite to their playing
area, i.e. in the opponent’s field, and at least one side of
the robot must touch the starting area (short border of the
play-field). After robots are placed into the field and all setup
procedures by team members are over, the referees choose the
positions of totems and black balls, by means of a random
selection. When all the components in the play-field are set
up, one of the referees gives the start signal and robots can
play. Each robot has to put as many white balls as possible into
its holes in a time of 90 seconds. Robots can also put black
balls into opponent’s holes, suck them out of their holes, or
even suck white balls out of opponent’s holes. There is no
restriction about strategies or techniques adopted in order to
search, catch, release and suck out balls, It is not allowed to
hurt the other robot or to obstacle or damage it in any way.
It is neither permitted to damage the playing area or playing
objects (such as balls, holes, totems or ejecting mechanisms).
The ejecting mechanisms can be triggered by touching a totem
for a given amount of time: this closes a simple electric circuit
and allow balls into the ejector to be released. At the end of
the match, each white ball in the right hole is considered as a
point, and the robots which has the highest score is the winner.

IT11. THE DIIT TEAM ROBOT

Building an autonomous robot to play “Funny Golf” is not
a trivial task, since different subsystems are needed to perform
ball searching, catching and putting, and many physical con-
straints are imposed by game rules themselves. The following
subsections describe the robot realized by the DIIT Team?,
which participates (for the first time) to the 2006 Eurobot
edition.

A. The Core

An embedded VIA 900Mhz CPU is the core of the robot.
We used a motherboard produced by AXIOM Inc. which
incorporates Ethernet, parallel port, 4 serial ports, USB, IDE

S“DIIT” means Dipartimento di Ingegneria Informatica e delle Telecomu-
nicazioni,

controller and other amenities (such as PC/104 bus, not
used in our configuration). The operating system used is
a Debian GNU/Linux (Etch), with kernel 2.6.12 and glibc
2.3.5. GNU/Linux was selected because of its stability and
robustness, that are important features when driving a robot.

B. Locomotion System

In order to guarantee fast movements, we decided to use a
locomotion system based on two independent double-wheels,
driven by DC motors. Wheels diameter is small enough to
allow fast rotation and large enough to avoid holes. DC motors
are directly connected to a motor-controller, driven by a RS232
serial line. The controller allows to set different speeds for
each wheel, both for forward and backward directions. Each
wheel is connected to an optical encoder, driven by a serial
mouse circuitry, which feeds back to the software system
information about real rotation speed and position of the
wheel. This information is then used by the Motion Control
agent to adjust the speed and the trajectory.

C. Vision

Searching balls in the playing area requires a kind of vision
system to find them. We chose to use a simple USB webcam
to capture video frames at a rate of about 4 frames/sec, still
enough to guarantee an accurate and fast analysis of objects
in the field. The webcam is able to “view” the field from 30
to 160 centimetres in front of the robot, with a visual angle
of about 100 degrees in total. Frame grabbed by the webcam
are passed to the “Object Detector” agent, which filters them
to find balls (both black and white) and holes (both red and
blue).

D. Catching and putting balls

Once balls are detected, it is necessary to put them, some-
how, into the right hole. We decided to suck balls using a fan,
and to choose where to put them using a simple selector, driven
by a servo-motor. Balls are saved into a small buffer if they are
white and the buffer has enough space, or gjected out if they
are black or if the buffer is full. The fan is powerful enough to
suck balls at a distance of about 12 centimetres from the front
side of the robot, and it is also able to suck balls out of holes
when a special small bulkhead on the front side is closed. A
simple release mechanism, which uses a servo-motor, allows
balls to be dropped down to the final piece of the buffer and
to fall into a hole.

E. Sensors and Positioning

Many sensors have been used onto the robot. First of all,
a colour sensor for balls is installed into the ball selector,
to recognise if a sucked ball is white or black. A complex
system of proximity sensors is installed in the bottom side
of the robot to recognise holes when the robot walks over
them, and to allow a smart and fine positioning during the
ball putting phase. A presence sensor (made by a simple LED-
photo-resistor couple) is placed in the final part of the buffer,
to reveal the presence of a ball ready to be dropped into a

Fig. 2. The Robot in the playing area

Jfront—end

Mation
Control

My
ol N

Object
Delector

software

llole
Deteclor

Start/Stop

back—end Control

Motion
Driver
I 1

RS485
Managemen!

Serva Controller O '

atrve-moinn

hardware

whail metary

and optleal manders

Digital /0 Lincs

L @
A
E @ Hole pasition
#7

Bl calor detection
deteetion

Fig. 3. Hardware/Software Architecture

hole. The same sensor is used to detect when the ball has

been successfully put into a hole.

1V, THE ROBOT’S SOFTWARE ARCHITECTURE

Given the robot structure illustrated in the previous Section,
it is clear that the implementation of the system to control it
has to face some problems that are not present in traditional
(only software) multi-agent systems: the interface with phys-
ical sensors and actuators. For this reason, the basic software
architecture of the robot, which is sketched in Figure 3, is
composed of two layers, (i) a lower one, called the back-
end, including reactive-only agents, responsible for a direct
interaction with the hardware, and (i) a higher layer, called the
front-end, hosting the “robot’s intelligence” by means of a set
of agents implementing the artificial vision system, the game
strategy, the motion control, etc., and interacting with back-
end’s agents in order to sense and act onto the environment.
All of these agents comply with an ad-hoc model which,
together with the details on functionality of the overall system,
is described in the following Subsections.

A. Agent Model

As reported in Section I, due to real time requirements
and other peculiarities of a robotic application, well-know
Java-based agent platforms cannot be employed; therefore,
according to authors’ past research work [21], [10], [12], [11],
[13], [15], [14], [9], we decided to use the Erlang language [5],
[4], [1] for the development of the robot’s software system. In
addition to its soft-real time features, Erlang has a concurrent
and distributed programming model that perfectly fit the
model of multi-agent systems: an Erlang application is in fact
composed by a set of independent processes, each having a
state, sharing nothing with other processes and communicating
only by means of message passing. Such processes can be all
local (i.e. in the same PC) or spread over a computer network;
this is transparent to the application because the language
constructs for sending and receiving messages do not change
should the interacting processes be local or remote.

Given these features and the requirements for the robot
control application, a suited agent model has been developed,
which is based on two abstractions called BasicFSM and
PeriodicFSM. The former, BasicFSM, is essentially a finite-
state machine model, in which transitions are triggered by
either the arrival of a message or the elapsing of a given
timeout, and a specified per-state activity is executed (one-
shot) when a new state is reached. The latter, PeriodicFSM, is
instead a finite-state machine in which transitions are activated
only by the arrival of a message, while the per-state activity
is executed, when a state is reached, periodically, according
to a fixed time period and within a deadline, which is equal
to the period itself.

As it will be illustrated in the following, BasicFSM model
is used for front-end agents, while the PeriodicFSM model
is essentially exploited for those interacting with sensors and
actuators and thus running in the back-end.

B. The Back-End

As Figure 3 illustrates, the back-end layer is composed
by the following agents: Motion Driver, RS485 Management,
Start/Stop Control, Ball Control and Hole Detector. All of
these agents use the PeriodicFSM model but only the first
two are directly connected with hardware resources.

The Motion Driver agent is in charge of driving wheel
motors and gathering feedback from optical encoders. It basi-
cally handles messages (sent by front-end agents) specifying
the speed to set for the left and right wheel, forwarding it
(after measurement unit conversion) to the motor controller
connected through the RS232 line. On the other hand, its
periodic activity entails receiving the feedback from optical
encoders (i.e. tick count), acquired through another RS232
line, and then computing tick frequency, thus evaluating the
real speed of the wheels: the obtained value is used to adjust
the value(s) sent to motor controller in order to make each
wheel to reach the desired speed®.

%This is obtained by means of a proportional-integrative-derivative software
controller.

A

The RS485 Management agent is responsible for driving two
external boards connected, to the PC, through the same RS485
serial bus: a controller for servo-motors and a board offering
a certain number of I/O digital lines. Since each servo-motor
and each I/O line is then used by different agents, the RS485
Management acts as a de-/multiplexer for actions and sensed
data. Its periodic activity is the sampling of digital inputs, by
means of a request/reply transaction through serial messages
exchanged with the 1/0 board; polled data are thus stored in
the agent’s state in order to make them available for requests
coming from other agents. In addition, the RS485 Management
is able to receive messages containing commands to be sent to
servo-motor, through the servo-controller; in particular, each
command specifies the servo-motor to drive and the rotation
angle to be set.

The Start/Stop Control agent is a reactive one that period-
ically queries the RS485 Management in order to check if
the “start” or “stop” buttons have been pushed. On this basis,
it sends appropriate start/stop messages to the Strategy agent
(see below) in order activate (resp. block) its behaviour when
a match begins (resp. ends). Since the duration of a match is
fixed (90 seconds), this agent embeds also a timer that, armed
after a start, automatically sends a stop message when the 90
seconds are due.

The Ball Control agent is responsible for managing the
ball sucking system, the buffer and the ball release system.
During its periodic activity, it queries the RS485 Management
agent in order to check the input lines signalling that a new
ball has been sucked: if this event occurs, on the basis of
the colour of the ball’, it drives the sucking system’s arm
servo-motor in order to put the ball in the buffer—if the
ball is white and the buffer is not full—or to throw the ball
away—if the ball is black or the buffer is full. This agent
also holds the number of balls in the buffer, information that,
queried by the Strategy agent, is used by the latter to control
robot behaviour. As for ball release, the Ball Control agent,
following a proper command message, is able to interact with
the RS485 Management agent and thus drive the servo-motor
controlling the release of a ball. Finally, by checking the status
of another input digital line, the Ball Control agent is able to
understand if a released ball has been successfully put into a
hole.

The last agent of the back-end, the Hole Detector, reads,
through a proper interaction with the RS485 Management
agent, the data coming from proximity sensors placed under
the robot for hole detection and positioning. It is able to
understand the position of the robot, with respect to the hole
to catch, and can thus forward this information to the Strategy
agent, which, in turn, will drive the wheels to centre the hole
and put the ball into it.

C. The Front-End
The front-end layer implements the high-level activities that
drive the robot to reach its goal, i.e. placing the most quantity

"The colour is detected through a sensor connected to another digital input
line,

Oulginal Realred Beel Oray Wiilo

(®

Fig. 4. Recognition by Object Detector agent

(a)

of balls into its holes. This layer is composed of three agents:
Object Detector, Motion Control and Strategy.

The Object Detector has the task of observing the playing
area, by means of a USB camera, detecting the objects
needed for the game, i.e. balls and holes, and computing their
coordinates with respect to the robot position. Since it uses
a computation-intensive image manipulation algorithm, this is
the sole agent written in C and not in Erlang®. This algorithm,
whose execution is triggered by a suited message sent by
the Strategy agent, exploits artificial vision techniques and
performs a series of transformation (i.e. filtering, threshold,
binarisation) on RGB planes of each frame acquired in order
to isolate and recognise the required objects. Figure 4 reports
some screen-shots of the functioning of the Object Detector.
In particular, Figures 4a and 4c show two acquired frames,
while Figures 4b and 4d illustrate the filtered images with the
objects (respectively a white ball and two blue holes) detected
by the agent.

The Motion Control agent, which is the only PeriodicFSM
type, has the task of controlling the robot’s path: it receives,
from the Strategy agent, messages containing commands for
robot positioning, such as go fo XY or rotate T, computes
the speed of the wheels needed to reach the target, and sends
such speeds to the Motion Driver agents. Moreover, in order
to ensure that the target is reached, the Motion Control agent
periodically requests to Motion Driver the tick count of optical
encoders and calculates the absolute position and orientation of
the robot [7]. These values are thus compared with the larget,
making subsequent speed adjustment, if necessary’. Another
task of the Motion Control agent is obstacle detection. Since
the robot has no sensors to detect if an obstacle (e.g. the
opponent’s robot, a totem, etc.) is in front of it, the Motion
Control agent checks if there is no wheel movement within
a certain time window (given that wheel’s speeds are greater
than zero); if this is the case, an obstacle exiting algorithm is
started, which entails to move the robot backwards and then
rotate it.

The last agent, Strategy, is the “brain” of the robot. Being
a BasicFSM agent, it is responsible of collecting and putting

81t uses the OpenCV library [2], which provides a set of fast and optimised
image manipulation functions. Proper Erlang-to-C library functions allows this
agent to interact with Erlang processes.

9Also in this case, a proportional-integrative-derivative software controller
is employed.

oilginal Resieed Apat e

() (d)
(")
Move rabol beyond Baarch and gelner
L)[the binck ine)[while bate Ballin hola and
no mare bala
Al laart onn b L1
i iha teafli
90 seconda afer sisrl
©<" e dalacted
+ | Relenss the bail and
for my h
Search for opponent s holes [s"'"' Al }»)[¥y 10 reach he hoto]
and ramave the balls
=T Baii 1 hole snd
mare bl in bufter
afaratan J

Fig. 5. Strategy Agent Behaviour

together information about environment and robot subsystems
to obtain a valuable and effective playing strategy. Even if the
field is mostly immutable (except for the position of totems,
which are set before each match) and many of the balls
involved are still in fixed position, we chose to implements an
intelligent and adaptive strategy instead of a simple “fixed—
path” one. For this reason the Strategy agent has to adaptively
choose the right action to perform at each time, elaborating
data coming from other agents. As Figure 5 illustrates, the
very first step of the implemented strategy is “move beyond
the first black line”, since this guarantees the collection of
at least one point'®, This is performed by suitable commands
sent to Motion Control agent. When the black line has been
passed, the main strategy loop begins. First the robot looks
for white balls and suck them into the buffer: if any white
ball is seen by the Object Detector, then the Motion Control
agent is issued the commands needed to reach the ball; on the
other hand, if no ball has been detected, the Strategy agent
tries to search elsewhere, by rotating of a random angle in
order to look at other zones of the field. When a ball has been
sucked and the Ball Control agent reports the presence of at
least one white ball into the buffer, the Strategy agent starts
to search a right hole to drop it into (i.e. a hole of the colour
assigned to the team, either red or blue), looking at messages
from Detector and moving toward a hole as soon as it has been
found. When the selected hole is no more visible (i.e. qutside
the camera scope) a ball is released and, by means of messages
coming from Hole Detector, a sequence of commands for fine
positioning are sent to Motion Control. If the hole is centred

101f the robot does not pass the first black line, then it obtains no points at
the end of the match.

and the ball goes into it, the Ball Control agent sends a “Ball
Successfully Dropped” message, so the Strategy agent decides
to search another hole, if more white balls are present into
the buffer, or to look for more white balls. If the ball is not
dropped into a given amount of time (for example because of
errors in fine positioning) the Strategy agent searches another
hole and tries to drop the ball into it. Finally, in the last 30
seconds of game, the Strategy agent tries to find opponent’s
holes to suck white balls out of them.

V. IMPLEMENTATION ISSUES

As it has been previously said in the paper, with the excep-
tion of the Object Detector, the system has been implemented
using the Erlang language. However, even if our research
group has realized a FIPA-compliant Erlang agent platform
(called eXAT [10], [12], [11}, [13], [15], [14]), we did not
use it in order to avoid overhead introduced by platform’s
components for inference, behaviour handling, standard FIPA
messaging, etc. This is required in order to have a fast and
effective support for agents, rather than the possibility of
interacting with other external agents (according to Eurobot
rules, the robot must be autonomous and not connected to
any network). To this aim, each agent of the robot has been
encapsulated in an Erlang process and a suitable library has
been developed to support the BasicFSM and PeriodicFSM
deadline-aware abstractions. Message passing has been real-
ized by means of the native Erlang constructs to perform inter-
process communication (which are designed to be very fast):
this resulted in an optimised code able to meet to real-time
requirements of the target application.

VI. CONCLUSIONS

This paper described the architecture of an autonomous
mobile robot, developed by the DIIT Team of the University
of Catania to participate to the Eurobot competition. A multi-
agent system has been employed for this purpose, composed
of several agents in charge of both interacting with physi-
cal sensors and actuators, and supporting the game strategy
for the robot. A layered architecture has been designed to
clearly separate the aspects above—physical world interface
and intelligence—and to favour design, modularity and reuse.
Due to real time constraints, the system has been implemented
using the Erlang language by means of a proper library to
support the abstraction needed for using agents in a robotic
environment. This allowed us to develop a fast code able to
effectively support robot’s activities.

VII. ACKNOWLEDGEMENTS

The authors wish to thank so much all the other components
of the Eurobot DIIT Team, who gave a terrific and fundamental
contribution in the realization of the robot described in this
paper and made this experience not only very useful but also
very funny.

These people are Roberto Di Salvo, Andrea Nicotra, Luca
Nicotra, Massimiliano Nicotra, Stefano Palmeri, Francesco

6(¢

Pellegrino, Matteo Pietro Russo, Carmelo Sciuto, Danilo
Treffiletti and Carmelo Zampaglione.

Moreover, the authors wish to thank also the official spon-
sors of the Eurobot DIIT Team, which are Siatel Srl (from
Catania, Italy) and Erlang Training & Consulting Ltd"
(from London, UK), that, with their support, contributed to
make our dream real.

REFERENCES

[1] “http://www.erlang.org. Erlang Language Home Page,” 2004,

[2] “http://opencvlibrary.sourceforge.net/,” 2006.

{3] 1. Armstrong, B. Dacker, R. Virding, and M. Williams, “Implementing a
Functional Language for Highly Parallel Real Time Applications,” 1992.

[4] 1. L. Armstrong, “The development of Erlang,” in Proceedings of the
ACM SIGPLAN International Conference on Functional Programming,
A. Press, Ed., 1997, pp. 196-203.

[5] 1. L. Armstrong, M, C. Williams, C. Wikstrom, and S. C. Virding,
Concurrent Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

[6] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Tumnbull, The Real-
Time Specification for Java. Addison-Wesley, 2000.
[7] J. Borenstein, H. R. Everett, and L. Feng, Where am [? — Systems

and Methods for Mobile Robot Positioning. WWW, University
of Michigan, USA, http://www-personal.engin.umich.edu/~johannb/
position.htm, 1996.

{8] A. Corsaro and C. Santoro, “Design Patterns for RTSJ Application
Development,” in Proceedings of 2% JTRES 2004 Workshop, OTM'04
Federated Conferences. LNCS 3292, Springer, Oct. 25-29 2004, pp.
394-40s.

[9] A. Di Stefano, F. Gangemi, and C. Santoro, “ERESYE: Artificial

Intelligence in Erlang Programs,” in Erlang Workshop at 2005 Intl. ACM

Conference on Functional Programming (ICFP 2005), Tallinn, Estonia,

25 Sept. 2005.

A. Di Stefano and C. Santoro, “eXAT: an Experimental Tool for

Programming Multi-Agent Systems in Erlang,” in 4/*/4/TABOO Joint

Workshop on Objects and Agents (WOA 2003), Villasimius, CA, Italy,

10-11 Sept. 2003.

, “eXAT: A Platform to Develop Erlang Agents,” in Agent Exhibi-
tion Workshop at Net.ObjectDays 2004, Erfurt, Germany, 27-30 Sept.
2004.

[12] ——, “Designing Collaborative Agents with eXAT," in ACEC 2004
Workshop at WETICE 2004, Modena, Italy, 14-16 June 2004.

[13] ——, “On the use of Erlang as a Promising Language to Develop Agent
Systems,” in AI*IA/TABOO Joint Workshop on Objects and. Agents
(WOA 2004), Torino, Italy, 29-30 Nov. 2004.

[14] ——, “Supporting Agent Development in Erlang through the eXAT
Platform,” in Software Agent-Based Applications, Platforms and De-
velopment Kits. Whitestein Technologies, 2005.

, “Using the Erlang Language for Multi-Agent Systems Implemen-

tation,” in 2005 IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (IAT’05), Compiégne, France, 19-22 Sept. 2005,

P. Dibble, Real-Time Java Platform Programming. Prentice Hall PTR,

2002.

L. Infantino, M. Cossentino, and A. Chella, “An agent based multilevel

architecture for robotics vision systems.” in Proceedings of the Inter-

national Conference on Artificial Intelligence, IC-Al '02, June 24 - 27,

2002, Las Vegas, Nevada, USA, Volume 1, 2002, pp. 386-390."

E. Johansson, M. Pettersson, and K. Sagonas, “A High Performance

Erlang System,” in 2™ International Conference on Principles and

Practice of Declarative Programming (PPDP 2000), Sept. 20-22 2000.

C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment,” JACM, vol. 20, no. 1,

pp. 46-61, Jan. 1973,

Liu, J. W. S, Real-Time Systems. Prentice Hall, 2000,

C. Varela, C. Abalde, L. Castro, and J. Gulias, “On Maodelling Agent

Systems with Erlang,” in 374 ACM SIGPLAN Erlang Workshop, Snow-

bird, Utah, USA, 22 Sept. 2004,

A. Wellings, Concurrent and Real-Time Programming in Java.

2004.

[10]

[

[13]

[16]
[17]
(18]
[19]

[20]
[21]

[22] Wiley,

"http://www.erlang-consulting.com

Comprehensive Erlang Archive Network
Stockholm, November 9, 2006

© 2000 Process-One - All rights reserved Page 1

[} o=

What is CEAN ?
® An Erang distribution and packaging system

a package has a description file, and an archive file available on internet
a package can contain an Erlang application, an OTP Library, any user contribution code

2 Provides easy Erlang installation without compilation
Basic install is a 3Mb self extractable binary archive running on:
linux-alpha, linux-amd64, linux-arm, linux-hppa, linux-iaé4, linux-me8k, linux-mips, linux-mipsel,
linux-powerpc, linux-s390, linux-sparc, linux-x86, darwin-powerpc, darwin-x86, freebsd-x86,
openbsd-x86, sunos-sparc, windows
i Allows to install/uninstall/lupgrade Erlang packages
no need to browse the internet, this is done using erlang shell
package updates can be lested at any time using erlang shell

® Allows to create custom Erlang/OTP installation on production systems
one can deploy the basic CEAN Erlang bootstrap and start a distribution profile script

& Aims to be a centrale place to find erlang code
CEAN can use tar, zip, cvs, svn to fetch sources to build packages. So any code we can find on
the internet can be packaged making binary version of the code be available on CEAN site.
Up to 200 packages already available.
® Brings interresting statistics on Erlang use
Downloaded packages, system and architecture used, Erlang version...

© 2008 Proceas-One - Afl rights reservad Page 2

1(8

Process
Lrme

L

Procesas

Owe

History

REPOS
® Version 1.0 in December 2004
m Repository of Erlang-Projects.Org Software selection

® CD-ROM image collecting major ready-to-work Erlang software for Linux x86, MacOS X PPC,
and Windows

® EfART
®m Version 1.0 in April 2006

® Allows minimal Erlang installation and provides package repository for Eflang/OTP and few
applications

m Automatic package generation improvements
B CEAN

® Version 1.0 in November 2006

® Is a merge of REPOS and ErlRT

® [ncludes standalone application generator, more packages (Erlang/OTP, user contribs, jungerl,
etc...), improved web site.

B Contributor script improvements
B Makes use of BitRock to generate graphical application installer

© 2008 Process-One - Al rights reserved Page 3

CEAN in use

& The .pub files

The way to describe a package

The contributor archive
To allow easy contribution, making binary archives

& The CEAN build process
How to transform binary archives to CEAN packages

¥ The CEAN web site

First overview

% The CEAN library usage
The way to use CEAN using Erlang shell

@ Some Examples
Let's try....

© 2006 Process-One - All rights reserved Paged

The.pubfiles [

& One .pub file to describe a CEAN packaged library or software
{author, {"Process-One", "contact@process-one.net"}}.
{packager, {"Christophe Romain", "christophe.romain@process-one.net'}}.
{name, "ejabberd"}.
{vsn, "1.1.2"}.
{depends, ["asn1" "crypto" "mnesia","odbc","ssI","tools"]}.
{keywords, ["jabber","xmpp","server"]}.
{summary, "Erlang jabber/XMPP server"}.
{abstract, "ejabberd is a high-performance instant messaging server. "
"An instant messaging server allows to transfer presence and status information "

"between users connected to server and support real-time communications between them.
"

"gjabberd relies on XMPP (<i>eXtensible Messaging and Presence Protocol</i>) protocol."}.
{home, "http://www.process-one.net/en/projects/ejabberd"}.
{sources, {svn, "http://svn.process-one.net/ejabberd/branches/ejabberd-1. 1.2'}.

note: abstract can contain HTML code (viewable on CEAN web site)

Process

)
-’

© 2008 Process-Ona - Al rights resarved

The contributor archive ,

E One archive to make CEAN packages from scratch
This archive includes an erlang bootstrap, all .pub files, and an automatic build script

® Performs the initial build process (for each package)

fet, 1d
.pub e—c}l> sources Eﬁ» arch.tar + common.tar

Sends architecture specific binaries to Process-One
email i
sum(arch.tar) — contrib@process-one.net
® Allows people to add new package (adding .pub files)

email)
new .pub —— contrib@process-one.net

oCcess

Pr
C:—«ﬂ

© 2008 Process-One - All rights reserved

L

Page§

Page 8

Process

LA

L

The CEAN build process

Build package for each contribution and each available architecture
This stage allows to apply some patchs needed to support multi-platform integration.
Automatic transformation are done to comply with CEAN packaging standard.

arch.tar+common.tar Puild process

CEAN patchs CEAN repository

& Generate standalone application archive and installer

application+dependencies merge
Erlang bootstrap ————» app-arch-standalone.tgz

From CEAN repository BitRock installer

app-arch-installer.bin

© 2008 Process-Ona - All rights reserved Page 7

The CEAN web site

B The packages browser

HAN0 __Packages Browser R R :)

[4 . |m-[:] ﬂ 'p//bnmosuau/mnges/ T
El F’rocees

"‘ prthensive Eclang Archiive Network

About Packages Dacumentatian Dowiiload Contribute Stats

Packages search enpine

Find pyallzbls packages that pertorms whnt vou need usng 2 keyword based fitter
Acfudily, AFCAIPES 1I0I MU0 1 huing worked on, Aiter 3ccorscy will ngrove -n i npar future

Enter heywelds space sep-uateul Search l

Ovarview

anal. A claver and fst number analyse:

apumoy A uiihty used tu suparviss Applcations execobng on savera: E1gng noans
array: Funcicnad, sxtenglbie arreys,

RA0L: Pravides suppurt for Abstract Syritoa Notation Ong

BE40C: ASSacative arrayy

big:

bit: the Bhvrctait Ticket Teacker

f i N-dmensional bueket g

biilldor OT# -clepse soript budder

bylgorder Twst for MGBALSD bute nrder,

£&: misceflaneous ENang/OTP progiemming support o ary
LRAN: Compreheniog Erlang Archiive Netwark pecessbiity
coan base. Mo desvrption dvatabie

caan Installet . Ao gesciipton avaliatie
Elag CLAW « an embrvpase compder from Core Crtang to Common g
ompiler A byte code compilie for Eelnng wheek produces highly compact code
£eaByenl, Orber DG Fvent Suevice
cesEyventliomaln: Orber OMG Eveat Onmatn Service
sRaRlRTronafar: Orher OMG Fite Transfer Serare
cosiotiication: Orber OMG Netification Service
cosPropeity’ Orber OMG Property Service
coaTime: Orbar OMG Timer and TimerEvent Seevices

- Orber OMG Troesachion Servre
Eryaln: Cvmmgrwmcal supnart

debugger for debuggwng and wrong of Erfang programs
| A propiom that checks winiily of cxtornal scfirences

degur: lmplcmmranon of double enged gucues
dhop: T™s is @ PHCP clicat mplementaton

s be =T

© 2006 Proveas-One - All fights reserved Paged

The CEAN web site e '

® Package description

naon N Packages Browse . =
(271 (@] [(@) @hup iriocaihost 8888 packages/index detaiEname syaws - vy
I .! BE?OESS honsive Erlang Archive N

About Packages Documeontation Download Contribute Srate

Packapes ssarch engine

Fing availsble packages that pertorms whot you nred using & kevword based fitter
Attually, packages informabion is boeiny waeked 04, £0¢ 00w 20y Wi SIPESWS B0 1 IS o

Enter keywerds space separated | Search I
Overviaw
) Yaws
Packae: yaws-1,65

Authar: Claes Wiksirom Aecke at hybor dot org
Patkager: Chiistophe Romain christophe dot ramain at process-one dot met
Date

Dxpends:
Sountes: (tar) hitp:/ryaws hybar sig/downlond)y aws-1.65 @ n2
Home Page: 1

Summnry YAWS 19 on ERLANG web scrver
Abstiart: YAWS has a wide teature cet, L cupports:
HTTP 1 0 and HTTP 1.1
Static content page dehvery
Dynamic contnnt generation using embeddod ERLANG code in the HTML pages
Comrnon Log Format tiatfic lugs
Virtual hosting with soveral servere on the same 1P oddress
Multiple servers on muibpie [P 2ddresses
HTTP macing for debugaing
An interachive interpreter anvironment in the Web server while drveloping and debugging the web site
RAM coching of commanky accessed pones
w Full streeming capabliibies of both up end dewn load of dynamically genesated pages
[N
U) Suppert for WWW-Authenticaked poaen
Support API fol cool e Lased sessions
§ Application Mpdules whete viitual direclory hiersichies gan be made

Embedded mode
_ { £ i [F RO (S) [S
E(ﬁ Done Adglogk

© 2008 Procoas-Ono - AH righte rasarved Page &

The CEAN web site

® Downloads

"o

(%1 [] (] (&) hap1iocainost 8885 downioad
Process

L) B2

CEAN Downloads

About Packages Documentation Download Contribute Stats

CEAN Base System
ih order 16 use CCAN, you need ra install the base sysrem 1tinciudey minimal Erlang/OTP and CEAN bbrary thar will allow your to custemize yvour instatlation

Se¢lect archivo type
Instalize s b gelt extroctable archive (does nat work under windows)
w2ipped G 6 b stonderd Wi pr nrehive
zfn 1s & Zip archive (for vandows psers)
S+lect the Erlong/OTV version meluded by base system
Seled distbuticn
Praduction mclades the minimum required with stnpped binarics
ervefoper Includes non siripped binaries, sources bnd documantation
Setect Dparating System and architecturu

Archive tvpe | installes] note on windows. mstatior is 4 Hn bie by now
CEAN Erlang/OTP [R10B =, ,]mdnulm | dstribumnn, running nn!a\pple MacOSX PowerPC ¥| Dovnload I
CEAN Packsged Applicstions

Aveilable sean. ready bo use applicetions instaiter.

Arcoive type ||nmllu ¥ note on Windows, mtatice is o p Aia By new

appication [Erlang/OTP Full (Standard) [=]. unning on [Apple MacOSX PowerPC =] _Download |

[} Frooess

© 2008 Process-One - Afl rights reserved Page 10

The CEAN web site
® Statistics

YaYa) CEAN Usage Slatistecs Y. =

<) [el[x) (®] & hatp i tocaihost 8888 stats/

° F{?{-e g Wi ptanensive Efiang Archive Notwark
About Packages Documantation Dowenload Contribute Stats
Genaral CEAN statistics

Packanes . 192
Flatforms - %
Contributors : 60

Erlang/OTP relatad varaion downionds
RIOB ¢ 18 (100 0%

Apple MoeOS/ PowerPL - 14 (35,5%:)
Linux Intet a86 (G ¢ 32 3%

REP(YS : O (0 0%)

Microsttl Windows @ 10 { 32 3m)

Packages downloads

anal : 0 {0 0%)
appmon 1 0 { 0.0%)
areay . 0(0 0%)

Lol 060 0%

aggoc , 0 (0,0%)

biz < 040 0%

bt 3¢ 30 0%)

bucket piid . 0 { 0 B%)
builder 0 (0 07v)
byleorder 0 (0 ')
et D{00%

cean ., 000 0%)

tetn hace * ¢ 0 G%)
cean Installer 3 { M 0%:§
cldw 0 a0}
compilee 0 (0 DY,

o [=NiEmEs

CARCATCV N S

Process

F 7
- >

Done

B

© 2006 Procese-One - All fights reserved Page 11

The CEAN libraryusage =
E Lists avallable packages

cean:available(). % returns [List]
B List installed packages

cean:installed(). % returns [List]
i Check for a package status

cean:installed(stdlib). % returns bool()

% Search for a package

cean:search("web server"). % returns [List]

& Install a package and all its dependencies

cean:install(yaws). % returns ok

& Uninstall a package
cean:uninstall(yaws). % returns ok

% List all new versions of installed packages
cean:new(). % returns [List]

Upgrade a package
cean:upgrade(ejabberd). % returns bool()

@ Upgrade the whole distribution

cean:upgrade(). % returns ok
. " Check CEAN version
d-:‘\ cean:version(). % returns string()

© 2006 Procoss-0Ono - AR rights reserved Puge 92

7%,

Some examples

CEAN Installation and usage
chris@iBook:~> sh ./cean_installer.bin
please wait...
Erlang (BEAM) emulator version 5.4.13 [source] [hipe] [threads:0]
Eshell V5.4.13 (abort with *G)
1> cean:installed().
['cean","ibrowse","kernel","stdlib"]
2> cean:install(mnesia).
+ mnesia md5=<<160,59,224,210,56,36,169,26,180,156,142,150,164,39,8,166>>
ok '
3> mnesia:start().
ok
4> mnesia:system_info(tables).
[schemal]
5> cean:installed(mnesia).
true
6> cean:uninstall(mnesia).
- mnesia
ok
7> cean:installed().
["cean","ibrowse","kernel","stdlib"]

Process

B

© 2006 Procass-One - All rights resarved Page 13

Some examples o

& Package search
1> cean:search("database").
[{"view_backup","Simple program for loading mnesia backup files"},

{"safedets","A version of dets that never enters the repair mode"},

{"rdbms","A relational database management layer on top of mnesia'},

{"mnesia","A heavy duty real-time distributed database"},

{"gridfile","Adaptable, Symmetric Multikey File Structure"},

{"dynarray","Expanding array for heap-based storage"}]

2> cean:search("server").
[{"yaws","YAWS is an ERLANG web server"},

{"shbuf","Erlang server for sharing Emacs buffers & Emacs-Lisp client"},

{"nfs","NFS server"},

{"inets","A set of services such as a Web server and a ftp client"},

{"gen_leader",

"This application implements a leader election behaviour modeled after gen_server. This
behaviour intends to make it reasonably straightforward to implement a fully distributed server
with master-slave semantics"},

{"enfs","Minimal NFS v2 server in Erang"},
{"ejabberd","Erlang jabber/XMPP server"}]

Process
&

Iy
=l -

© 2008 Proceas-One - All rights reservad Page 14

Process
=3

Planning

& CEAN 1.0 beta
® Full archives for R10B
®m Partial archives for R11B
m Ejabberd self installer generated with CEAN
® Planned for mid November 2006
® CEAN1A1
m Full archives for R11B
m Automatic remote instaliation and deployment
m CEAN as an 'on demand' code server
® More self installable applications
m Planned for Christmass

© 2008 Process-Ona « Al rights raserved

K (&

Page 15

Testing a Media Proxy with
QuviQ QuickCheck

Thomas Arts Joakim Johansson

John Hughes Ulf Wiger

Chalmers/ITU Ericsson
QuviQ

QuickCheck: Properties not Test
Cases

« Write general properties of code instead of
test cases

prop_ reverse() ->
?FORALL (Xs,list (int ()),
?FORALL (Ys, list (int ()),
lists:reverse (Xs++¥Ys)==
lists:reverse(Xs)++lists:reverse (¥s))).

* Test in many, many randomly generated
cases

/(16)

QuickCheck Testing

3> eqgc:quickcheck(test:prop reverse()) .
........... Failed! After 12 tests.

[-3,21 A random counter-j

[_3', 1] ,) example: Xs and Ys
Shrinking.......... (10 timewy

(0] -~ NEW: Automatic
(1] simplification of failing
false cases

» Simplification is extremely important—
separates the signal from the noise!

Why Did it Fail?

prop reverse() ->
?FORALL (Xs, list (int ()),
?FORALL (Ys, list (int ()),
lists:reverse (Xs++¥s) ==
lists:reverse (Xs)++lists:reverse(¥s))).

* QuickCheck says: Xs=[0], Ys=[1]

 reverse([0,1])==reverse([0])++reverse([1])?
* Xs, Ys the wrong way round

QuickCheck in a Nutshell

* Features
— Properties, not test cases
— Controlled random generation
— Automated simplification

* Result
— Compact, reusable test code
— Specification checked against the code
— Shortcut from property to bug

Property First Development?

: b
- Code code code... quickcheck ::_mf- A Bug!
— 1Y
" 7i\
* Fix it... quickcheck ~Mk= A Bug!
ANy

Fix it... quickcheck... quickcheck
quickcheck quickcheck

Code some more...

)
IP network,
servers,
etc etc
N 4 Media
stream

How hard can it be?

» All we need to do is open and close
"media pinholes” when the controller
says...

» Megaco H.248 protocol
— |TU standard... 212 pages!
— Ericsson Interwork Description... 183 pages!

— Control software... 150KLOC
» 20-30K Megaco

Our Strategy

QuickCheck

. e b
&" Sends random command
sequences

Results make sense?

Completely random

commands are all just
rejected—non-sensical!
Poor test data

Generating Sensible Messages

Message Generators

« Example: A media descriptor contains a
list of streams

— ASN.1 from the standard (simplified):

MediaDescriptor ::= SEQUENCE
{

streams CHOICE

{

oneStream StreamParms,
multiStream SEQUENCE OF StreamDescriptor

}
}
QuickCheck Generator
mediadescriptor (Streams) when Streams=/=[]->
{mediaDescriptor,

#'MediaDescriptor’ { Records generated by
Stresms = ASN.1 compiler
case Streams of

[{Id,Mode}] ->
oneof ([{oneStream, streamParms (Mode) },
{multiStream, [stream(Id,Mode)]1}]):;

->
{multiStream,
[stream(I,M) || {I,M}<-Streams]}

end}}. Message construction

Logic from the IWD

stream(I,Mode) -> QuickCheck

#'StreamDescriptor' {

streamID = I, streamParms = streamParms (Mode)}.

Conditions in the IWD

Add Request
Desc. | Desc. Desc. | Properties, | Package M | Comment
Media M
Local ’LocaIControI will be included in all
control cases except when no media
(m-line) is defined in the remote
~. SDP.
mode o] WSM is
"Inactive®, the property is not
mandatory if the wanted value is
“Inactive’.
StreamParms ::= SEQUENCE
{

calControlDescriptor LocalControlDescriptor OPTIO)
loca ¥ AL,
remoteDescriptor LocalRemoteDescriptor OPTIONAL, t

statisticsDescriptorStatisticsDescriptor OPTIONAL
}

Two Cases: With and Without
Remote Media

Included in
this case

streamParms (Mode) ->
?LET (RemoteMediaDefined, bool(),
if RemoteMediaDefined ->

#'StreamParms.t :
localControlDescriptor =
localControl (Mode),

localDescriptor (RemoteMediaDefined),

remoteDescriptor =
remoteDescriptor((RemoteMediaDefined)
true ->

end) .

Passed on to ensure
an m-line is generated

Generating Sensible Commands

Megaco Commands

Megaco Commands

Termination

Megaco Commands

Termination

Megaco Commands

Context

Uses
termination ID

Megaco Commands

[0

Megaco Commands

Termination

Subtract

Megaco Commands

Sensible Command Sequences?

* Track the state of each test case

— What calls in progress, which terminations in each
call...

— Simple to model in Erlang
» State machine model
— Preconditions say which commands are appropriate
— Postconditions check command results
— Next state function specifies how commands behave
* QuickCheck library
— generates valid sequences, tests, and shrinks them
— (developed *just in time”)

Faults

* Proxy was already well tested
* 6 days of work, mostly writing generators

« 5 faults found:
— One in Megaco message encoding/decoding
— Four command sequences crashed

12

Error-provoking Sequences

...with differing numbers
of streams

The Best Error!

Shrinking reduced 160
commands to seven!

(-5 ()6

No one in their right
minds would test this!

‘ Due to data corruption here

Conclusions

* QuickCheck + Erlang
— Simple declarative models of the SUT
— Concise, maintainable test code

» Testing: a great application for FP
— Performance irrelevant
— No need to commit to Erlang in the product

* A winning combination?

14 (16,

Refactoring Erlang Programs *

Huiging Li, Simon Thompson
University of Kent, UK

Laszl6 Lovei, Zoltan Horvath, Tamas Kozsik, Aniké Vig, Tamas Nagy
Eo6tvos Lorand University, Hungary

Abstract

‘We describe refactoring for Erlang programs, and work
in progress to build two tools to give machine support
for refactoring systems written in Erlang. We comment
on some of the peculiarities of refactoring Erlang pro-
grams, and describe in some detail a number of refac-
torings characteristic of Erlang.

1. Introduction

Refactoring [6] is the process of improving the de-
sign of a program without changing its external be-
haviour. Behaviour preservation guarantees that refac-
toring does not introduce (or remove) any bugs. Sep-
arating general software updates into functionality
changes and refactorings has well-known benefits.
While it is possible to refactor a program by hand, tool
support is invaluable as it is more reliable and allows
refactorings to be done (and undone) easily. Refactor-
ing tools can ensure the validity of refactoring steps by
automating both the checking of the conditions for the
refactoring and the refactoring transformation itself,
making the process less painful and error-prone.

Refactoring has been applied to a number of lan-
guages and paradigms, but most of the work in build-
ing tools has concentrated on object-oriented program-
ming. In this paper we report on work in progress at our
universities to build tools to support the refactoring of
Erlang programs.

The paper begins with a brief introduction to refac-
toring, which is followed by a discussion of the partic-
ular question of refactoring Erlang systems. We then

* Supported by EPSRC in the UK, GVOP-3.2.2-2004-07-0005/3.0
ELTE IKKK, Ericsson Hungary, Bolyai Research Fellowship and
ELTE CNL in Hungary

describe the approaches taken by our two teams: in a
nutshell, the Kent team work over a enriched abstract
syntax tree (AST), whereas the research at Eotvis
Lordnd University builds the representation in a re-
lational database.

After describing the systems we speculate on what
refactorings are the most appropriate to Erlang and are
most useful to the working Erlang programmer, before
concluding and surveying future work for both teams.

2. Refactoring

Refactorings transform the structure of a program with
out changing its functionality. They are characterised
by being diffuse and bureaucratic. They ate diffuse in
the sense that a typical refactoring will affect the whole
of a module or set of modules, rather than a single def-
inition in a program, which is often the case for a pro-
gram optimising transformation. They are bureaucratic
in that they require attention to detail; for instance, tak-
ing into account the binding structure of a program.

Refactorings are not simply syntactic. In order to
preserve the functionality of a program, refactorings re-
quire awareness of various aspects of the semantics of
the program including types and module structure and
most importantly the static semantics of the program:
that is the scope of definitions, the binding structure
of the program (the association between the use of an
identifier and its definition), the uniqueness of defini-
tions and so forth.

Each refactoring comes with a set of side conditions,
which embody when a refactoring can be applied to
a program without changing its meaning. Our experi-
ence of building refactoring tools so far shows that for
most refactorings, the side-condition analysis is more
complex than the program transformation part. Taking

-

a concrete example, the general side conditions for re-
naming an identifier could be as follows.

The existing binding structure should not be af-
Sected. No binding for the new name may intervene be-
tween the binding of the old name and any of its uses,
since the renamed identifier would be captured by the
renaming. Conversely, the binding to be renamed must
not intervene between bindings and uses of the new
name.

These side-conditions apply to most programming
languages. However, each programming language may
also impose its own particular constraints on this refac-
toring. For example, in an Erlang program using the
OTP library, a user should not rename certain functions
exported by a call-back module. For some languages,
refactoring conditions can be checked at compile time;
the more dynamic nature of Erlang means that some
necessary conditions can only decided at run-time; we
return to this point below.

2.1 Tool Support for Refactorings

Although it is possible to refactor a program manu-
ally, it would be both tedious and error-prone to refac-
tor large programs this way. Interactive tool support for
refactoring is therefore necessary, as it allows refactor-
ings to be performed easily and reliably and to be un-
done equally easily.

A refactoring tool needs to get access to both the
syntactic and static semantic information of the pro-
gram under refactoring. While detailed implementation
techniques might be different, most refactoring tools go
through the following process: first transform the pro-
gram source to some internal representation, such as
an abstract syntax tree (AST) or database table; then
analyse the program to extract the necessary static se-
mantic information, such as the binding structure of the
program, type information and so forth.

After that, program analysis is carried out based on
the internal representation of the program and the static
semantics information to validate the side-conditions of
the refactoring. If the side-conditions are not satisfied,
the refactoring process stops and the original program
is unchanged, otherwise the internal representation of
the program is transformed according to the refactor-
ing. Finally, the transformed representation of the pro-
gram need to be presented to the programmer in pro-
gram source form, with comments and the original pro-
gram appearance preserved as much as possible.

-module (sample).
-export ([printList/1]).

printList([H|T]) ->
io:format ("“p\n", [H]),
printList(T);

printList([]1) -> true.

Figure 1. The initial program

-module (sample).
-export ([printList/1, broadcast/1]).

printList([HIT]) ->
io:format ("“p\n", [H]),
printList(T);

printList([]) -> true.

broadcast([H|T]) ->
H ! "The message",
broadcast(T) ;
broadcast([]) -> true.

Figure 2. Adding a new function naively

The Kent group are responsible for the project
‘Refactoring Functional Programs’ [7], which has de-
veloped the Haskell Refactorer, HaRe [9], providing
support for refactoring Haskell programs. HaRe is a
mature tool covering the full Haskell 98 standard, in-
cluding “notoriously nasty” features such as monads,
and is integrated with the two most popular develop-
ment environments for Haskell programs: Vim and
(X)Emacs. HaRe refactorings apply equally well to
single- and multiple-module projects. HaRe is itself
implemented in Haskell.

Haskell layout style tends to be idiomatic and per-
sonal, especially when a standard layout is not enforced
by the program editor, and so needs to be preserved
as much as possible by refactorings. HaRe does this,
and also retains comments, so that users can recognise
their source code after a refactoring. The current release
of HaRe supports 24 refactorings, and also exposes an
API [10] for defining Haskell refactorings and program
transformations.

3. Refactoring Erlang Programs

Figures 1 - 5 illustrate how refactoring techniques can
be used in the Erlang program development process.

-module (sample).
-export([printList/1]).

printList(L) ->
printList(fun(H) ->
io:format ("“p\n", [H]) end, L).

printList(F, [HIT]) ->
F(H),
printList(F, T);
printList(F,[]) -> true.

Figure 3. The program after generalisation

-module (sample).
-export([printList/1]).

printList(L) ->
forEach(fun(d) ->
io:format("~p\n", [H]) end, L).

forEach(F, [H|T]) ->
F(H),
forEach(F, T);
forBach(F, []) -> true.

Figure 4. The program after renaming

The example presented here is small-scale, but it is
chosen to illustrate aspects of refactoring which can
scale to larger programs and multi-module systems.

In Figure 1, the function printList/1 has been
defined to print all elements of a list to the standard
output. Next, suppose the user would like to define
another function, broadcast/1, which broadcasts a
message to a list of processes. broadcast/1 has a
very similar structure to printList/1, as they both
iterate over a list doing something to each element in
the list. Naively, the new function could be added by
copy, paste, and modification as shown in Figure 2.
However, a refactor then modify strategy, as shown in
Figures 3 - 5, would make the resulting code easier to
maintain and reuse.

Figure 3 shows the result of generalising the func-
tion printList on the sub-expression

io:format ("~p/n",~ [H])

The expression contains the variable H, which is only
in scope within the body of printList. Instead of
generalising over the expression itself, the transforma-

-module (sample).
-export ([printList/1, broadcast/1]1).

printList(L) ->
forEach(fun(H) ->
io:format("~p\n", [H]) end, L).

broadcast (Pids)->
forEach(fun(H) ->
H ! "The message" end, Pids).

forEach(F, [HIT]) —>
F(H),
forEach(F, T);
forEach(F,[]) -> true.

Figure 5. The program after adding a function

tion is achieved by first abstracting over the free vari-
able H, and by making the generalised parameter a
function F. In the body of printList the expression
io:format("~p/n", H]) has been replaced with F
applied to the local variable H.

The arity of the printList has thus changed; in or-
der to preserve the interface of the module, we create a
new function, printList/1, as an application instance
of printList/2 with the first parameter supplied with
the function expression:
fun(H) -> io:format(""p/n", [H]) end.

Note that this transformation gives printList a func-
tional argument, thus making it a characteristically
‘functional’ refactoring.

Figure 4 shows the result of renaming printList/2
to forEach/2. The new function name reflects the
functionality of the function more precisely. In Figure
5, function braodcast/1 is added as another applica-
tion instance of forEach/2.

Refactorings to generalise a function definition and
to rename an identifier are typical structural refactor-
ings, implemented in our work on both Haskell and Er-
lang.

3.1 Language Issues

In working with Erlang we have been able to com-
pare our experience with what we have done in writ-
ing refactorings for Haskell. Erlang is a smaller lan-
guage than Haskell, and in its pure functional part, very
straightforward to use. It does however have a number

of irregularities in its static semantics, such as the fact
that it is possible

e to have multiple defining occurrences of identifiers,
and

* to nest scopes, despite the perception that there is no
shadowing of identifiers in Erlang.

Erlang is also substantially complicated by its possi-
bilities of reflection: function names, which are atoms,
can be computed dynamically, and then called using
the apply operator; similar remarks apply to modules.
Thus, in principle it is impossible to give a complete
analysis of the call structure of an Erlang system stat-
ically, and so the framing of side-conditions on refac-
torings which are both necessary and sufficient is im-
possible.

Two solutions to this present themselves. It is pos-
sible to frame sufficient conditions which prevent dy-
namic function invocation, hot code swap and so forth.
Whilst these conditions can guarantee that behaviour
is preserved, they will in practice be too stringent for
the practical programmer. The other option is to artic-
ulate the conditions to the programmer, and to pass the
responsibility of complying with them to him or her.
This has the advantage of making explicit the condi-
tions without over restricting the programmer through
statically-checked conditions. It is, of course, possible
to insert assertions into the transformed code to signal
condition transgressions.

Compared to Haskell users, Erlang users are more
willing to stick to the standard layout, on which the
Erlang Emacs mode is based. Therefore a pretty-printer
which produces code according to the standard layout
is more acceptable to Erlang users.

3.2 Infrastructure Issues

A number of tools support our work with Erlang.
Notable among these is the syntax—tools package
which provides a representation of the Erlang AST
within Erlang. The extensible nature of the package
allows syntax trees to be equipped with additional in-
formation as necessary. For example, Erlang Syntax
Tools provides functionalities for reading comment
lines from Erlang source code, and for inserting com-
ments as attachments on the AST at the correct places;
and also the functionality for pretty printing of abstract
Erlang syntax trees decorated with comments.

The Distel infrastructure helps us to integrate refac-
torings with Emacs, and thus make them available
within the most popular Erlang IDE.

4. Our Approaches

Both University of Kent and E6tvos Lordnd Univer-
sity are now in the process of building a refactoring
tool for Erlang programs, however different techniques
have been used to represent and manipulate the pro-
gram under refactoring. The Kent approach uses the
annotated abstract syntax tree (AAST) as the internal
representation of Erlang programs, and program analy-
sis and transformation manipulate the AASTs directly;
whereas the Eotvos Lordnd approach uses relational
database, MySQL, to store both syntactic and semantic
information of the Erlang program under refactoring,
therefore program analysis and transformation are car-
ried out by manipulating the information stored in the
database.

One thing that is common between the two refac-
toring tools is the interface. Both refactoring tools are
embedded in the Emacs editing environment, and both
make use of the functionalities provided by Distel [8],
an Emacs-based user interface toolkit for Erlang, to
manage the communication between the refactoring
tool and Emacs.

In this section, we first illustrate the interface of the
refactoring tools, explain how a refactoring can be in-
voked, then give an overview of the two implementa-
tion approaches. A preliminary comparison of the two
approaches follows.

4.1 The Interface

While the catalogue of supported refactorings is slightly
different at this stage, the interfaces of the two refac-
toring tools share the same look and feel. In this paper,
we take the refactoring tool from University of Kent as
an example to illustrate how the tool can be used.

A snapshot of the Erlang refactorer, which is called
Wrangler, is shown in Figure 6. To perform a refactor-
ing, the source of interest has to be selected in the ed-
itor first. For instance, an identifier is selected by plac-
ing the cursor at any of its occurrences; an expression
is selected by highlighting it with the cursor. Next, the
user chooses the refactoring command from the Refac-
tor menu, which is a submenu of the Erlang menu, and
input the parameter(s) in the mini-buffer if prompted.

- i
i amacsetld]

Fla Edé Options Buffers Tools EFLSE Help
-modulefteat}) . Indent

»

-export([teat/D]).

TAGS
repeat (0) ->

ok: Skadetons
repeat (M) ->

losformat ("Heliiu"}, e
repeat (-1} . Comple

v ww v vewey

test() ->
repeat (5) . I Rename Veriabio Name
Renams Function Name
Rename Module Name

S e © g b [t

From Tuple To Record
Undo

Customize _j
-1\-- test.erl (Exlang EXT) ==LB==All~eom—— oo

New parameter name: A =%

Figure 6. A snapshot of Wrangler

After that, the refactorer will check the selected
source is suitable for the refactoring, and the param-
eters are valid, and the refactoring’s side-conditions are
satisfied. If all checks are successful, the refactoring
will perform the refactoring and update the program
with the new result, otherwise it will give an error mes-
sage and abort the refactoring with the program un-
changed.

T omacsiHL 4T

Flo Edt Options Buffers Tools Edang Help

-module {test) . e

-export ([test/0]).

repeat (4, 0) -> ok:

repeat (&, N) -> A(}, repeat(i, K - 1).

test({) -> repeat(fun {) -> io:fcrmat("tiz!lo") end, S).

==\-- test.erl {Eclang EXT) —L10==Ald———e—m e
=]

Figure 7. A snapshot of Wrangler showing the result
of generalising a definition

Figure 6 shows a particular refactoring scenario. The
user has selected the expression io: format ("Hello")
in the definition of repeat/1, has chosen the Gener-
alise Function Definition command from the Refactor
menu, and is just entering a new parameter name A in
the mini-buffer. After this, the user would press the En-
ter key to perform the refactoring. The result of this

refactoring is shown in Figure 7: the new parameter A
has been added to the definition of repeat/1, which
now becomes repeat/2, and the selected expression,
wrapped in a fun-expression because of the side-effect
problem, is now supplied to the call-site of the gener-
alised function as an actual parameter.

All the implemented refactorings are module-aware.
In the case that a refactoring affects more than one
module in the program, a message telling which un-
opened files, if there is any, have been modified by the
refactorer will be given after the refactoring has been
successfully done. The customize command from the
Refactor menu allows the user to specify the boundary
of the program, i.e. the directories that will be searched
and analysed by the refactorer.

Undo is supported by the refactorer. Applying undo
once will revert the program back to the status right
before the last refactoring performed.

4.2 The Kent Approach

In this approach, the refactoring engine is built on top
of the infrastructure provided by SyntaxTools [1]. It
uses the annotated abstract syntax tree (AAST) as
the internal representation of Erlang programs; both
program analysis and transformation manipulate the
AASTs directly.

4.2.1 The SyntaxTools Package

After having investigated the few available Erlang fron-
tends, we decided to build our refactoring tool on top
of the infrastructure provided by SyntaxTools. Syn-
taxTools is a library from the Erlang/OTP release.
This library contains modules for handling Erlang ab-
stract syntax trees (ASTs), in a way that is compatible
with the “parse trees” of the standard library module
erl_parse, together with utilities for reading source
files in unusual ways, e.g. bypassing the Erlang pre-
processor, and pretty-printing syntax trees. The data
types of the abstract syntax is nicely defined so that the
nodes in an AST have an uniform structure, and their
types are context-independent. We chose to build our
refactoring tool on top of SyntaxTools for the following
reasons:

© The uniform representation of AST nodes and the
type information (more precisely, the syntax cate-
gory of the syntax phrase represented by the node)
stored in each AST node allow us to write generic
functions that traverse into subtrees of an AST while

treating most nodes in an uniform way, but those
nodes with a specific type in a specific way. This
is a great help as both program analysis and trans-
formation involve frequent AST traversals.

The representation of AST nodes allows users to
add their own annotations associated with each AST
node. The annotation may be any terms. This facility
can be used by the refactorer to attach static seman-
tic information, or any necessary information, to the
AST nodes.

SyntaxTools also contains functionalities for attach-
ing comments to the ASTs representing a program,
and a pretty-printer for printing Erlang ASTs at-
tached with comments. This liberates us from the
comment-preservation problem, which is also crit-
ical for a refactoring tool to be usable in practice.
While a pretty-printer could produce a program that
has a slightly different appearance with the origi-
nal one, this does not seem to be a big problem in
a community where people tend to accept and use
the standard program layout rules.

L]

4.2.2 Adding Static Semantics, Locations, and
Type Information

SyntaxTools provides the basic infrastructure for source
to-source Erlang program transformation, even some
utility functions for free/bound variable analysis, AST
traversals, etc, to ease the analysis of source code struc-
ture. However, in order to make program analysis,
transformation, as well as the mapping from textual
presentation of a syntax phrase to its AST presentation
easier, we have annotated the ASTs produced by Syn-
taxTools with even more information, therefore comes
the Annotated Abstract Syntax Tree (AAST). What fol-
lows summaries the main information we have added,
or are trying to add, to the Erlang AST.

¢ Binding information. The binding information of
variables and function names is annotated in the
AST in terms of defining and use locations. For ex-
ample, each occurrence of a variable node in the
AST is annotated with its occurrence location in the
source, as well as the location where it is defined.
Locations are presented by the combination of file-
name, line number, and column number (the stan-
dard Erlang lexer and parser had to be modified in
order to get the column number). With the binding
information, we can easily check whether two vari-

able/function names refer to the same thing just by
looking at their defining locations.

¢ Range information. Each AST node is annotated
with its start and end location in the source code.
This makes it easier to map a syntax phrase selected
from the textual representation in the editor to its
AST representation.

e Category information. The original abstract Erlang
syntax does distinguish different kinds of syntax cat-
egories, such as functions, attributes, if-expressions,
etc. The category information introduced here is
mainly to distinguish expressions from patterns.

e Type information. Type information is necessary for
some refactorings, and some refactorings require
even more refined information than the basic data
types defined in Erlang. For example, suppose the
same atom, foo say, is used as both a module name
and a function name in the program. In this case,
renaming the module name foo may need to know
whether an occurrence of the atom foo refers the
module name being renamed or the function name;
therefore, simply knowing the type of foo is atom
is not enough. Adding type information to the AST
is currently work-in-progress; we are investigating
whether the functionalities provided by TypEr [11],
a type annotator for Erlang code, can be used to
retrieve the necessary type information.

4.2.3 The Implementation Architecture

Figure 8 summaries the implementation architecture of
Wrangler.

¥
1 Farse T
'mm‘.:“__lsmm F“.lSmmeh ﬁ. ST annottor PA5T R;lncmccjpsj
parner

Figure 8. The Implementation Architecture

leu-prim:!.[_1

4.3 The Eotvis Lorand Approach

Instead of annotating the ASTs with information that
is necessary for program analysis and transformation,
in this approach, we use a relational database, MySQL,,
to store both abstract Erlang syntax trees and the as-
sociated static semantic information, and use SQL to
manipulate the stored information. This approach is
mainly influenced by the experience from refactoring
Clean programs [17, 4].

In the relational database representation, there are
two kinds of tables: tables that store the AST, and tables

gcdzo(N1s, Mig) when Nig >=15 Mjg —
gcdas(Noa —15 Mog, Mog);

Figure 9. Source code of the example function clause.

information in the AST database quivalent
record
table name | in that
table
st parameter of clause 30 clause 30.0.1. 15
is node 15 T
the name of variable 15 is N name 15, “N”
ud pal‘ameter of clause 30 clause 30.0,2. 16
is node 16 T
clause 30 has a guard, node 22 | clause 30,1,1,22
the left and right operands
and the operator of the infix .
fix.expr | 20, 17,18, 19
expression 20 are nodes 17, Hnix-exp
19 and 18, respectively
the body of clause 30 is A 30,2, 1,29
node 29
application 29 applies node 23 | application | 29, 0, 23
the content of atom 23 is gcd name 23, “gcd”
1% param. of application m =
licati 29, 1,27
29 is node 27 i —

Table 1. The representation of the code in Figure 9 in
the database.

that store semantic information. The syntax-related ta-
bles correspond to the “node types” of the abstract syn-
tax of Erlang as introduced in the Erlang parser. Seman-
tic information, such as scope and visibility of func-
tions and variables, is stored separately in an extensible
group of tables. Adding a new feature to the refactor-
ing tool requires the implementation of an additional
semantic analysis and the construction of some tables
storing the collected semantic information. It is possi-
ble to store semantic information of different levels of
abstraction in the same database and to support both
low-level and high-level transformations.

As an example, consider the code in Figure 9. This
is one of the clauses of a function that computes the
greatest common divisor of two numbers. Each node of
the AST is given a unique id. Every module also has its
own id. These ids are written as subscripts in the code.

The database representation of the AST is illustrated
in Table 1. The table names clause, name, infix_expr
and application refer to the comresponding syntactic

categories. Without addressing any further technical
details, one can observe that each table relates par-
ent nodes of the corresponding type with their child
nodes.!

In order to make information retrieval faster, an aux-
iliary table, node_type was introduced. This table binds
the id of each parent node to the table corresponding
to its type. Semantic information about Erlang pro-
grams are stored in tables such as var_visib,fun_visib
and fun_def. The table var_visib stores visibility infor-
mation on variables, namely which occurrences of a
variable name identify the same variable. This table has
two columns: occurrence and first_occurrence. The for-
mer is the identifier of a variable occurrence, and the
latter is the identifier of the first occurrence of the same
variable. The table fun_visib stores similar information
for function calls, and fun_def maintains the arity and
the defining clauses of functions.

The rename variable and rename function transfor-
mation is supported with three further table, forbid-
den_names, scope and scope_visib. The first describes
names that are not allowed to use for variables (and for
functions). This table contains the reserved words in
Erlang, names of the built-in functions, and also user-
specified forbidden names. The scope table contains the
scope of the nodes, what is the most inner scope they
are in. The scope_visib table stores the hierarchy of the
scopes.

As you can observe the resulting data structure is not
a tree, but rather a graph, which represents more gen-
eral connections. We hope it makes easier to implement
the refactor steps.

4.3.1 The Implementation Architecture

Figure 10 summaries the implementation architec-
ture of this approach. The refactor step updates the

g [|5

nn Codde Huilder Program

SyntaxTools r_,_ pi: mnm.u _l_.
ﬂ)llﬂ:ﬂ
L s Plnc(

AST

Figure 10. The Implementation Architecture

database (which represents the AST and the seman-
tic information), but the position information might

Y The price for the separation of tables containing syntactic infor-
mation from tables containing semantic information is an increased
redundancy in the database. For example, the “names” table stores
the variable name for each occurrence of the same variable.

no longer reflect the actual positions in the program
source. In order to keep the position information up-
to-date, we build up the updated syntax tree from the
database and use the pretty-printer to refresh the code,
then the position information is updated by a simul-
taneous traversal of the syntax tree represented in the
database, and the AST generated by parsing the re-
freshed code.

4.4 Comparison

The major difference between the two approaches lies
in how the syntactic and semantic information is stored
and manipulated. Our first impression is that the sec-
ond approach needs more time and effort on database
designing and the migration of information from ab-
stract Erlang syntax trees to the database; whereas the
first approach is relatively light-weight. However, as
the second approach tries to avoid reconstruction of
the database between two consecutive refactorings by
incrementally updating the database so as to keep the
stored syntactic and semantic information up-to-date,
it may worth the etfort. At this stage, it is hard to say
which approach is better.

Once both of the two refactoring tools have had
support for a number of representative, module-aware
refactorings, we would like to test and compare them
on some large-scale Erlang programs, and find out the
pros and cons of each approach.

5. Refactorings: The Next Step

The refactorings implemented by both teams thus far
are structural by nature; we plan also to implement
module and data refactorings in line with our work in
HaRe. We are also investigating transformations of fea-
tures characteristic to Erlang, In this section we look at
one example, which changes the pattern of communi-
cation within a system. We first present a scenario.

A system is constructed in which communication
between processes is asynchronous; that is, messages
are sent and receipts are not required. It becomes possi-
ble to optimise processing within the network by chop-
ping out whole sections; this, however, requires send-
ing a reply back to the sender. As is the case in many
software developments, a refactoring can be the first
step in modifying the system; in this case, the first step
is to make the communication synchronous. In pictures,
one way communication

Q

7N
® ®

is replaced by a two-way, synchronous pattern:

O
O O

Such a transformation requires a message send to be
followed by a receipt, transforming

pid!{self () ,msg}
to

pid!{self() ,msg},
receive
{pid, ok}-> ok

and in the recipient the code
receive {Parent,msg} —-> body
is replaced by

receive {Parent,msg} —>
Parent!{self () ,ok},
body

We envisage implementing other concurrency-related
refactorings, and in particular we expect to support
transformations of concurrent systems written within
the OTP framework; we discuss some other Erlang-
specific refactorings now.

Built-in support for concurrency is one of the main
features of Erlang. In a well-designed Erlang program,
there should be a one-to-one mapping between the
number of parallel processes and the number of truly
parallel activities in the real world. The following refac-
toring allows to adjust the process structure in a pro-
gram.

¢ [ntroduce/remove concurrency by introducing or re-
moving concurrent processes so as to achieve a bet-
ter mapping between the parallel processes and the
truly parallel activities of the problem being solved.
For example, using processes and message passing
when a function call can be used instead is a bad
programming practice, and this refactoring should
help to eliminate the un-desired process and mes-
sage passing with a function call.

While defensive-style programming is a good pro-
gramming practice when a sequential programming
language is used, non-defensive style programming is
the right thing to do when programming with Erlang.
Erlang’s worker/supervisor error handling mechanism
allows a clear separation of error recovery code and
normal case code. In this mechanism, both workers
and supervisors are processes, where workers do the
job, and supervisors observe the workers. If a worker
crashes, it sends an error signal to its supervisor.

® From defensive-style programming to non-defensive
style. This refactoring helps to transform defensive-
style sequential error-handling code written in Er-
lang into concurrent error handling, typically using
supervisor trees.

Erlang programming idioms also expose various refac-
toring opportunities. Some examples are:

¢ Transform a non-tail-recursive function to a tail-
recursive function. In Erlang, all servers must be
tail-recursive, otherwise the server will consume
memory until the system runs of it.

® Remove import attributes. Using import attributes
makes it harder to directly see in what module a
function is defined. Import attributes can be re-
moved by using remote function call when a call
of function defined in another module is needed.

e From meta to normal function application by replac-
ing apply (Module, Fun, Args) with

Module:Fun(Argl, Arg2,..., ArgN)

when the number of elements in the arguments,
Args, is known at compile-time.

Refactoring non-OTP code towards an OTP pattern.
Doing this from pure Erlang code is going to be very
challenging, but the whole transformation can be de-
composed into a number of elementary refactorings,

and each elementary refactoring brings the code a
bit closer to the desired OTP pattern.

6. Conclusion

‘We conclude by surveying related work, and by looking
at what we plan to do next.

6.1 Related Work

Programmers used refactoring to make their code more
readable, better structured or more apt for further exten-
sions long before the first papers appeared on the topic
(e.g. [13]). The field was given much greater promi-
nence with the publication by Fowler’s [6], which par-
ticularly addressed a wide range of ‘manual’ refactor-
ings for Java.

Tool support for refactoring is available mostly to
object-oriented languages. The first tool was the refac-
toring browser for Smalltalk [16]. Most tools target
Java (Intellif Idea, Eclipse, JFactor, Together-J etc.),
but there are some for .NET (ReSharper, C# Refactory,
Refactor! Pro and JustCode!), C++ (SlickEdit, Ref++
and Xrefactory) and other languages as well. Common
refactorings offered by the tools include those that re-
name program entities (variables, subprograms, mod-
ules), those that extract or inline program units, or those
that change the static model of classes. A good sum-
mary of tools and refactorings can be found at [5],
and [12] is an exhaustive survey of the field of software
refactoring.

Marcio Lopes Cornelio formalizes refactorings in
an object-oriented language [2]. Some preconditions
of refactorings are not simple to compute from the
static program text in case of dynamic languages like
Smalltalk and Python [16, 15]. The Smalltalk refac-
toring browser applies dynamic analysis to resolve this
problem.

To improve the quality of a code according to a re-
design proposal or enforce coding conventions needs
support for complex refactoring operations. Planning a
sequence of refactoring steps needs refactoring analy-
sis and plan to achieve desirable system structure [14].
Frameworks and libraries change their APIs from time
to time. Migrating an application to a new API is te-
dious work, but typically some eighty percent of the
changes will be refactoring steps. Automated detec-
tion, record and replay of refactoring steps may sup-
port upgrading of components according using the new
API [3].

6.2 Future Work

It is a short-term goal for the teams to contrast their
approaches on example code bases, to compare the
utility of the two approaches. For instance, the ADT
approach has the advantage of being more lightweight,
but the database representation can offer versioning of
code and the concurrent handling of refactoring steps
in some cases.

In the medium term, each team will build support for
further refactorings, particularly those supporting prac-
tising Erlang programmers. In particular we will build
refactorings to support the transformation of data rep-
resentations, changes to patterns of concurrent commu-
nication and integration with the OTP framework.

In the longer term we look forward to machine-
supported refactoring becoming a valuable part of the
Erlang programmers’ toolkit.

References

[1] Carlsson, R. . Erlang Syntax Tools. http://
www.erlang.org/doc/doc~5.4.12/1ib/syntax.
tools-1.4.3/doc/html/.

[2] Cornélio, M.L.: Refactorings as Formal Refinements,
PhD thesis, Universidade Federal de Pernambuco, 2004.

(3] Dig, D.: Toward Automatic Upgrading of Component-
Based Applications, ECOOP 2006 Doctoral Symposium
and PhD Students Workshop, Nantes, Fance, 2006.
http://www.ecoop.org/phdoos/ecoop2006ds/.

[4] Divianszky, P. and Szabé-Nacsa, R. and Horvith, Z.
Refactoring via Database Representation. In L. Cséke,
P. Olajos, P. Szigetvéry, and T. Témécs, editors, The
Sixth International Conference on Applied Informatics
(ICAI 2004), Eger, Hungary, volume 1, pages 129-135,
2004.

[5] Fowler, M.: Refactoring Home Page, http://wuw.
refactoring.com/.

[61 Fowler, M. et. al., Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.

(7] Refactoring Functional Programs, http://www.cs.
kent.ac.uk/projects/refactor<fp/.

[8] Gorrie, L.. Distel: Distributed Emacs Lisp (for Erlang).

[9] Li, H. and Reinke, C. and Thompson, S., Tool Support
for Refactoring Functional Programs in, ACM SIG-
PLAN Haskell Workshop 2003, Uppsala, Sweden, Jo-
han Jeuring (ed.), 2003.

[10] Li, H. and Reinke, C. and Thompson, S., The Haskell
Refactorer, HaRe, and its API., Electr. Notes Theor.
Comput. Sci., 141 (4), 2005.

10 (10,

[11] Lindahl, T. and Sagonas, K. F.. TypEr: a Type
Annotator of Erlang Code. In ACM SIGPLAN Erlang
Workshop 2005, 2005.

[12] Mens, T. and Tourwé, T., A Survey of Software
Refactoring, IEEE Trans. Software Eng., 30 (2), 2004.

[13] Opdyke, W.: Refactoring Object-Oriented Frameworks,
PhD thesis, University of Illinois at Urbana-Champaign,
1992.

[14] Perez, J. Overview of the Refactoring Discovering
Problem, ECOOP 2006 Doctoral Symposium and
PhD Students Workshop, Nantes, Fance, 2006. http:
//wuw.ecoop.org/phdoos/ecoop2006ds/.

[15] Adventures in Refactoring Python. http://blogs.
warwick.ac.uk/refactoring/, Sep. 24, 2006.

[16] Roberts, D., Brant, J. and Johnson, R. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Sys-
tems (TAPOS), special issue on software reengineering,
3(4):253-263, 1997.

[17] Szab6-Nacsa, R. and Dividnszky, P. and Horvath, Z.
Prototype Environment for Refactoring Clean Programs.
In The Fourth Conference of PhD Students in Computer
Science (CSCS 2004), Szeged, Hungary, July 14, 2004,

HERIOT
gWATT

UNIVERSITY

Comparing C++ and Erlang for
Motorola Telecoms Software

Phil Trinder & HeanNystrﬁm
Computer Science Department Erlang Training & Consulting
Heriot-Watt University, UK

David King
Software & Systems Engineering Research
Motorola Labs, UK

High-Level Techniques for Distributed

Telecoms Software
* EPSRC (UK Govt) Project, Dec 2002 — Feb 2006

« Collaboration between
— Motorola UK Labs
— Heriot-Watt University

High-Level Techniques for Distributed

Telecoms Software
* EPSRC (UK Govt) Project, Dec 2002 - Feb 2006
* Collaboration between

— Motorola UK Labs

— Heriot-Watt University

* Aim: produce scientific evidence that high-level
distributed languages like Erlang or Glasgow distributed
Haskell (GdH) can improve distributed software
robustness and productivity

* Publication: High-Level Distribution for the Rapid
Production of Robust Telecoms Software: comparing C++
and Erlang, Concurrency and Computations: Practice &
Experience (forthcoming).

Erlang Comparisons

A number of sequential comparisons, e.g. Computer
Language Shootout

Very few distributed system comparisons published!

UIf Wiger [Wiger01] reports
* Erlang systems have between 4 and 10 times less code
than C/C++/Java/PLEX systems

+ Similar error rates/line of code
» Similar productivity rates
No direct comparative measurements

Jantsch et al compare 6 languages for hardware description
[JKS+01]

Research Questions: Potential Benefits

RQ1: Can robust, configurable systems be readily developed?
* Resilience to extreme loads

* Availability in the face of hardware & software failures

* Dynamic reconfigurability on available hardware

RQ2: Can productivity and maintainability be improved?

* How do the sizes of the C++ and Erlang components
compare & what language features contribute to size
differential?

Research Questions: Feasibility

High-level distributed languages:
» abrogate control of low-level coordination aspects, so
. RQ3 can the required functionality be specified?

+ typically pay space and time penalties for their automatic
coordination management.

. RQ4 can acceptable performance be achieved?

RQ5 What are the costs of interoperating with conventional
technology?

RQ6 Is the technology practical?

Research Strategy

* Reengineer some telecoms application
components in GdH and Erlang

~ Dispatch Call Controller [NTK04,NTKO05]
- Data Mobility component

» Compare high-level and Java/C++
implementations for

— Performance

— Robustness

— Productivity

— Impact of programming language constructs

15t Component Engineered:
Data Mobility Component (DM)

* Product Component

« Communicates with Motorola mobile devices

* 3000 lines of C++

* Uses 18,000 lines of Motorola C library functions

* Has a transmitter and a receiver, and 2 message types
* Interacts with 5 other components of the system

2rd Component Engineered:
Despatch Call Controller (DCC)

* Handles mobile phone calls
» A process manages each call
* Scalable with multiple servers

Two Erlang DM Implementations
1. Pure Erlang DM

2. Erlang/C DM
reuses some C DM libraries & drivers

Both interoperate with a C test harness

Combine
— Unix Processes
— Erlang processes
— C Threads (Erlang/C DM)

RQ3 Performance 1: Throughput

* Platform: 167MHz, 128Mb Sun Ultra 1, SunOS 5.8

C++ DM Erlang/C DM | Pure Erlang
DM
480 230 940

Maximum DM Throughput at 100% QoS

RQ3 Performance 1: Throughput

* Platform; 167MHz, 128Mb Sun Ultra 1, SunOS 5.8

C++ DM Erlang/C DM | Pure Erlang
DM
480 230 940

Maximum DM Throughput at 100% QoS

Pure Erlang DM is twice as fast as C++ DM (better
process management and marshalling)

Erlang/C DM is %2 speed of C++ DM, but still meets
nominal throughput

Performance 2: Round Trip Times

Pure Erlang is approximately 3 times faster

Erlang/C is 26% - 50% slower
[D C++ DM W Erlang/C DM (1 Pure Erlang DM

ms

© = N W A O O -

Query type 1 Query type 2 Broken query
ms

Performance Analysis

Pure Erlang DM is faster due to fast lightweight process
management

Erlang/C is slower due to additional communication to C
components

Performance 3: Memory Residence

|2 ERTS W Moto C lib O App C/C++ O App Erlang |

* Erlang DMs use 170%

more memory 7000

i 6000
* Erlang runtime sys 5000 = -
(ERTS) has a fixed 3 4000 —
size 3000 1

« =>would be a smaller 2900 1 I
0 1000 - [1
% of a larger app. 0 - : 1

C++ DM Erlang/C DM Pure Erlang
DM

RQ1 Robustness 1: Resilience

| Erlang A B C++ A 0 Pure Erlang A|

Throughput 1200

(queries/s) 1000
800 —

600 — —

= il et o

Load (queries/s)

RQ1 Robustness 1: Resilience

[Ei Erlang A l C++ A (I Pure Erlanﬂ]

1200

Throughput

(queries/s) 1000 I'

600

= il il bl

S SR I SR S S S & 5P
When overloaded: Nm;{que:m,)ép &P
C++ DM fails catastrophically
Pure Erlang & Erlang/C DMs:
* Throughput degrades
* Never completely fails, handling 48 q/s at peak load
(25000q/s)

- Recovers automatically after load drops

DCC Resilience

100

Call/s

Number of workers

Robustness 2: Availability

Erlang systems 2000 |

* remain available despite
repeated hardware &
software failures

1500

insued per 156
§

* performance doesn’t

degrade with repeated .|
failures

a L] L] kN [} [a a L
Ona warkar kiliad every § minuiea

DCC Throughput with Repeated Failures

Robustness 2: Availability

E_rlang Systems .resists the .. F“,X._u;,r,;wm'-ﬂw,;.-.JIJ_r-nI,-e.._n.e;x.,f,q‘.p;-.,1“..,;1\,_;‘-‘."'._!4-[,-“111\1}1}
simultaneous failure of

mulitiple components
When more components fail :
throughput drops lower & , -
recovery takes longer)

HE N mwde WULD B readben AERD B nmdew WETE 4 mades BETT B pedes
G wieher ML Lnd susry 3 minutes

5-processor DCC with Multiple Failures

/0

Robustness 3: Dynamic
Configurability

Erlang Systems dynamically .. .I_Lm[\%r*lur-hf‘v'-rr.rf‘L‘[:J]vr”thw:\r-m‘-;,-liirr'-llt;".nu\.lh.;‘rﬂlﬂm‘rf‘-“rL[
adapt to the available
hardware resources. -

5 processor system:
— remove a processor 4 times ¢
~ add a processor 4 times

DCC Throughput

with Varying Numbers of Processors

RQ2: Productivity & Maintainability

Shorter programs are

* Faster to develop

» Contain fewer errors [Wiger01]
» Easier to maintain

The metric we use is Source Lines Of Code (SLOC)

Productivity: Source Code Sizes

Lang. |CIC++ |Erlang | Total Lang. |C++ |IDL |Erl. |Total
C++ 3101 3101 C++ [(14.8K (83 14.9K
Erl.IC | 247 616 863 Erl. 4882 | 4882
Erlang 398 398
DCC Implementations
DM Implementations

Erlang DCC and DM are less than 1/3" of size of C++ impl.

Consistent with Wiger & folklore

Productivity: DM Source Code Sizes

3500
3000
2500
2000
1500
1000
500
0

e Erlang/C DM is 1/3rd of the size of the C++ DM

|0 C++/C M Erlang |

T T

C++ DM

Erlang/C DM Pure Eriang DM

e Pure Erlang DM is 1/7th of the size of the C++ DM

* Erlang/C DM is 1/18th of the size of the C++ DM +
libraries

7

Reasons for difference in Code Size

* Erlang programmers can
— rely on fault tolerance and code for the successful

~ and have
- automatic memory management (11% of C++ DM code)
* high-level communication (23% of C++ DM code)

* Telecom design pattern libraries

case (27% of C++ DM code is defensive)

DM Code Breakdown

100%

90% -—]

80%
70%

60%
50%

40%

30%
20% -

10% +—| . | -

0%

T T T

C++A Moto Clib Erang/C Erang

0O Defensive

B Defines

M Includes

B Type Delcarations

O Communication

O Memory Management
il Process Management

OApp

I3

Code Difference Example

C+H+

void

t
MSG_PTR meg_buf_ptr;
MM_DEVICE_INFO_MSG “msg_ptr;

RETURN_STATUS ret_siutus;
UINT18 msq_slze;

1/ Delermine size of ic! message
msy_size o slzeof(MM_DEVICE_INFO_MSG);

::cmu e mﬂm n:" u: 10 DMTX 80 il sends a Devics Info Erlang
lciMag &:4_meg_object(MM_DEVICE_INFO_OPC, ICI_DMTX_TASK_ID, msg_size); SZ_ dme_ d m tx: cas t (deVICe_In fO)
If Retriave IC| message buffer pointar

meg_bul_pir = kei_mg_siject geticMagButPir();

Typecas! polnter from (vold *) to (MM_DEVICE_INFO_MSG *)
meg_ptr = (MM_DEVICE_INFO_MSQ *)mag_buf_pir,

/i Populate message buffer

SET_MM_DEVICE_INFO_DEVICE_TYPE(g pir, SERVER);

SET_MM_DEVICE_INFO_NUM_VER_SUPPORTED{ meg_pir, NUM_VER_SUPPORTED),

SET_MM_DEVICE_INFO_FIRST_SUP_PROTO_VERS(meg_ptr, PROTO_VERSION_ONE);
/1 Bend msage 10 the DMTX trk

rol_sislus = m_iei_jo_pii-veasd{ici_mep_object);

41 Chock thst ynsage was som muczessfully

i€ {ret_status |= SUCCESS)

(

Repont problem when sending ICI

&z_err_msg(MAJOR, SZ_ERR_MSG_ERR_OFCODE, _ FILF,_, _LINE_,
il - failure aending ™

= devict info message to DMTX™),
)
)

Erlang DCC Reusability

Part SLOC No. Modules Percentage

Reusable 2994 26 61%
Platform

Specific 147 1 3%
Services

Testing/Stat.s 1741 1" 36%

Considerable potential for reuse

Summary

* Investigated high-level distributed language
technology for telecoms software

* Reengineered two telecoms components in Erlang

* Measured & compared the Erlang & C++ components

RQ1: Robust & Configurable
Systems

mproved resilience:

— Erlang DM and DCC sustain throughput at extreme loads

- Automatically recover when load drops

— C++ DM fails catastrophically (predict C++/CORBA DCC would)
* Improved availability:

— Erlang DCC recovers from repeated & multiple failures

- Predict C++/CORBA DCC would fail catastrophically
* Dynamic Reconfiguration

— Erlang DCC can be dynamically reconfigured to available
hardware

— C++/CORBA DCC can also be dynamically reconfigured using
CORBA

* Potential for hot-code loading (not demonstrated)

RQ2: Productivity & Maintainability

» Erlang DM and DCC:
— Less than 1/3 size of C++ implementation
— Erlang DM 1/18t size of C++ DM with libraries
— Good reusability
* Reasons:
— Code for successful case — saves 27%
— Automatic memory management — saves 11%
— High-level communications — saves 23%
— Telecom design pattern libraries

RQ3: Distributed Functionality

* Even though Erlang abstracts over low-level
coordination, the required DM and DCC functionality
is readily specified.

[6

RQ4: Performance

* Time:
— Max. throughput at 100% QoS:
* Pure Erlang DM is twice as fast as C++ DM

* Erlang/C is ¥z as fast as C++ DM, but still exceeds
throughput requirements

— Roundtrip times
* Pure Erlang DM is three times as fast as C++ DM
» Erlang/C is between 26% and 50% slower as C++ DM
* Space:
— Pure Erlang and Erlang/C both have 170% greater

memory residency due to (fixed size) 5SMb runtime
system

RQ5: Interoperation Costs

* Erlang DMs interoperate with a C test harness, and
Erlang/C DM incorporates C drivers & library
functions.

* Costs
— Low space cost: an additional 15% residency
— High time cost:

+ Erlang/C roundtrip times up to 6 times pure Erlang
» Erlang/C max. throughput % of pure Erlang

* Potential for incremental re-engineering of large
systems

RQ6: Pragmatics
 Erlang is available on several HW/OS platforms,

including the Sun/Solaris DM product platform

* Well supported with training, consultancy, libraries
etc.

Conclusions

 Erlang offers robustness & productivity benefits for
distributed telecoms software (RQs 1 & 2)

* High-level distributed languages like Erlang can
deliver the required telecoms functionality and
performance (RQs 3 & 4)

» Erlang can interoperate with existing technologies
and meets pragmatic requirements (RQs 5 and 6)

Further Information

Web sites/Seminars
Erlang Site: www.erlang.ora/
Project Site: www.macs.hw.ac.uki~dsqltelecoms/

References

[JKS+01] Jantsch A. Kumar S. Sander |. Svantesson B. Oberﬁ.l Hemanic A. Ellervee P. O'Nils
M. Comparison of Six Languages for System Level Descriptions of Telecoms Systems,
Electronic Chips and Systern esign, pp 181-192, Kluwer, 2001.

[NTKO04] Nystrom J.H. Trinder P.W. King D.J. Evaluating Erlang for Robust
Telecoms Software $35°04, Chicago, July 2004.

[NTK05] Nystrom J.H. Trinder P.W. King D.J. Are High-Level languages suitable for
Robust Telecoms Software? SafeComp’05, Fredrikstad, Norway, Sept. 2005.

[Wiger01] Ul Wiger, Workshop on Formal Design of Safety Critical Embedded

Systems, Munich, March 2001 http:l/www.erlang.se/publications/UIf Wiger.pdf

19(19)

Using GNU Autoconf to
Configure Erlang

Programs

Romain Lenglet
Chiba Shigeru Group
Tokyo Institute of Technology

EUC 2006, Stockholm
2006-11-09

Purpose of this talk

o | will show you
- How to use existing Autoconf macros to
configure Erlang programs
- How to extend Autoconf by defining new test
macros

[(13)

Overview of Autoconf

coigreac - Autoconf deals only
with configuration
detection
« Generates portable
e o configure Bourne
wintiar) I shell scripts that

e wpm — Check the

configuration

- Rewrite files to
substitute variables

- Generate C headers
defining constants

*
(Makefile,...)

Autoconf macros

«Autoconf is essentially a set of M4 macros
- Autoconf macros = M4 macros

- configure.ac = shell script with calls to M4
macros

- Macros are rewritten by Autoconf/M4 to produce
pure shell script code that tests configuration

«Autoconf also wraps around M4
- Caches macro files, etc.

A minimum configure.ac

]' AC_INIT: meta informations about the project E
AC INIT(GTK+ 2 wrapper library for Erlang, 0.20,
mats.crongvist@..., gtknode)

AC PREREQ(2.59c) | AC_PREREQ: minimum required version of Autoconf
- (2.59¢ was the first to contain macros for Erlang)

AC_COPYRIGHT (Copyright (C) 2005 Mats Crongvist)

The actual tests to perform,
as calls to test macros
AC_CONFIG_FILES([\

Makefile \ | AC_CONFIG_FILES: st of files to rewrite
src/Makefile \

1)

AC_OUTPUT AC_OUTPUT: mandatory at the end,
makes configure rewrite the files

What do tests do?

« What to test?

- Autoconf philosophy
« Test for the features that you actually need
« Do not test version numbers: this is not maintainable!

- Testable: programs, C features (headers, libs,
functions, constants...), etc.

» When executed, a test may
- Fail (display error message, exit with code > 0)
- Define substitutions of variables
« To be substituted in rewritten files (Makefile.in, ...)

- Define C constants
« Defined in generated confdefs.h file (cf. Autoheader)

AC_ERLANG_NEED_ERLC

« In configure.ac: » This macro
- Finds the path to erlc
AC_ERLANG NEED ERLC - Fails if it is not found
- Substitutes the
ERLC variable

« In Makefile.in:

SUFFIXES = .erl .beam
.erl.beam:
@ERLCR -b beam $<

Variables to substitute must
be enclosed in @...@

AC_ERLANG_CHECK_LIB(lib)

« In configure.ac: « This macro

- Finds the path to an
A(-J;ERLANG_CHECK_LIB(ic) Erlang library
o Macros can - Fails if it is not found

take arguments | _ gybstitutes the
ERLANG LIB DIR |/
ib variable

« In Makefile.in:

CFLAGS = -
T@ERLANG_LIB_DIR ic@/includ
e

AC_ERLANG_SUBST INSTALL
_LIB_SUBDIR(app, version)

- In configure.ac: « This macro

- Substitutes the
AC_ERLANG_SUBST INSTALL LIB_ variable for the path
SUBDRES% (G 2D) to install an Erlang
o application

« In Makefile.in:

install:
cp foo.beam
@ERLANG_INSTALL_LIB_DIR hi@
/ebin/
cp foo.erl
@ERLANG_INSTALL_LIB DIR hi@
/src/

Currently available Erlang-
related macros (1/2)

- Checks for programs
- AC_ERLANG_PATH_ERLC(...)
- AC_ERLANG_NEED_ERLC(...)
- AC_ERLANG_PATH_ERL(...)
- AC_ERLANG_NEED_ERL{(...)
 Substitutions for installed dirs
- AC_ERLANG_SUBST_ROOT DIR
- AC_ERLANG_SUBST _LIB DIR
« Checks for installed Erlang libraries
- AC_ERLANG_CHECK_LIB(...)

Currently available Erlang-
related macros (2/2)

« Substitutions for installation dirs
- AC_ERLANG_SUBST _INSTALL_LIB DIR
_ AC_ERLANG_SUBST INSTALL_LIB_SUBDIR.
.)
« Support of Erlang as a language to write
tests in configure scripts

How to write new test macros?

« Autoconf philosophy
- To test features, it is better to use directly the
programming language of the feature
. Autoconf defines a good framework for
supporting multiple languages
- Used only by writers of new support macros
- Tests can be written in
- Bourne shell (of course!)
_C/C++
- Fortran
- Erlang

How to add support for a new
language in Autoconf?

« Autoconf defines conventions for language

support macros, that define how to

- Call the pre-processor (if there is one for the
language) on the tests code

- Compile, and execute tests

- Pass data between test programs and the
configure script (using temporary files)

« | wrote those macros for Erlang
- AC_LANG(Erlang)
- AC_LANG_PROGRAM(Erlang)
- AC_LANG_COMPILER(Eriang)

Test if a function is exported

. Erlang code » Load the code file

{[$1], Beam, _Filename} = for MOdUIe ($1)

code:get_object code([$1]), o Get the list of

{ok, {I$1], [[{exports, exported functions

e » lterate and test if the
[texportsiD), Function ($2) (&

IsExported = lists:member (Arlty ($3)) is in there

{[$2], [$3]}, Exports)

The arguments of an M4 macro
are called $1, $2, $3, etc.

Test if a function is exported
(217)

» Erlang code

{Module, Beam, Filename} =
code:get_object code (Module),
{ok, {Module, [[{exports,
Exports}]]}} =
beam lib:chunks (Beam,
[[exports]]),

IsExported = lists:member (
{Function, Arity}, Exports)
S = if IsExported -> "yes";

true —> "no" end,

« Write the result
(“yes” or “no”) into
the conftest.out
temporary file

- Halt the Erlang VM

file:write file(
"conftest.out", S),
halt (0)

Using a “conftest.out” temporary file
for exchanging data is a convention
used in all Autoconf tests

Test if a function is exported
(3/7)

« Autoconf code

AC LANG PROGRAM ([}, [
{Module, Beam, _Filename} =
code:get_object_code (Module),
{ok, {Module, [[{exports,
Exports}]l}} =
beam lib:chunks (Beam,
[[exports]l]),
IsExported = lists:member (
{Function, Arity}, Exports)
S = if IsExported -> "yes";
true -> "no" end,
file:write file(
"conftest.out", 8S),
halt (0)
1

« Use Autoconf/Erlang
macro to generate
the Erlang module

The test code is the body of the 'start/Q’
function in the 'conftest' module

Test if a function is exported
(4/7)

« Autoconf code « Compile and
Rea A SR execute the Erlang
AC_RUN_IFELSE (test module

[AC—I‘mi Code to execute if the test executed normally; resp. failed [
(---1,
(...

AC_LANG_POP (Erlang)

Test if a function is exported

« Autoconf code « Set a shell variable
AC_CACHE_CHECK([if ...], with the r esul?
[erlang_cv_foo_$1_$2_$3], « Support caching of
[
AC_LANG_PUSH (Erlang) the test result
AC_RUN_IFELSE (- The test is executed
[AC_LANG_PROGRAM([], [...])] only if the variable is
['erlang_cv_foo_$ 182 33 not yet deﬁned_
="cat conftest.out’], o If test falled, prlnt a
[AC MSG FAILURE([...]1)1)
AC_LANG_POP (Erlang) test message, and
D exit the configure

script

Test if a function is exported
(6/7)

« Complete macro

AC DEFUN([FOO],

[

AC_REQUIRE (

[AC_ERLANG_ PATH ERLC])

AC_REQUIRE (

[AC_ERLANG PATH ERL])

AC_CACHE CHECK(...)

AS IF([test
“$erlang cv_foo $1 $2 $3"
= "no"], [$5], [$4])

1)

« Define the macro

« Make sure that erl
and erlc are
detected

« Execute user code if
the function is
exported; resp. if it is
not

Test if a function is exported
(717)

« Calls in configure.ac

FOO(file, write file, 2,
[AC_MSG_NOTICE([OK])1},
[AC_MSG_FAILURE ([NOT OK])1)

FOO(file, write file, O,
[AC_MSG NOTICE([OK])],
{AC_MSG_FAILURE ([NOT OK])]1)

« Output of ./configure

checking for erlec...
/usr/bin/erlc

checking for erl...
/usr/bin/erl

checking if file:write file/2
is exported... yes

configure: OK

checking if file:write file/O
is exported... no

configure: error: NOT OK

See “config.log' for more
details.

[0

Conclusion

« Currently: minimal support for Erlang
- Checks for erl, erlc, installed dirs
- Substitutions for installing new applications
- Support for Erlang as a test language
- Available since January 2006 (version 2.59¢)

- Relatively easy to extend
- By writing new test macros with Erlang code
- If you have macros, please send them to me!
« | can submit to GNU Autoconf for inclusion
« We may start a sub-category in the Autoconf Archive
— The quickly-written “FOO” macro will be
submitted soon (with a better name, of course!)

Please read my blog / Planet Erlang for news

http://www.csg.is.titech.ac.jp/~lenglet/
http://www.planeterlang.org/

)

Configuration Aware Distributed System Design in Erlang

Gabor Batori, Zoltan Theisz, Domonkos Asztalos
Software Engineering Group, Ericsson Hungary Ltd.
H1037 Laborc u. 1. Budapest, Hungary
{Gabor.Batori, Zoltan.Theisz, Domonkos.Asztalos}@ericsson.com

Abstract

In this paper a new system design concept is described and demonstrated which is based
on the innovative combination of meta-model assisted explicit component configuration
management and its run-time execution on a causally reflective robust reconfigurable
Erlang component system called ErlCOM. Rather than provide a monolithic run-time
application structure separate areas of functionalities are packaged into self-contained
components that can be individually deployed according to the available
hardware/software resources where they can be actively managed during the whole
lifetime of the application. The infrastructure extends the approach of ordinary code
reuse into higher level where in addition of the shared code base the run-time
configuration can be effectively reapplied.

1. Introduction

Future networked distributed systems will have to be able to cope with increased
complexity originating from the ever increasing demand of newer communication
protocols that should be able to operate in a highly distributed telecom environment and
still be able to remain compatible with the already established infrastructure or from
novel application fields of telecommunications like wireless sensor networks. The aim of
our RUNES [1] (Reconfigurable Ubiquitous Network Embedded Systems) project is to
provide the application developer with a proper system design model and a corresponding
heterogeneous middleware/platform that enable better application production for
networked embedded sensors, actuators and for more powerful devices like embedded
gateways or full-fledged application servers regarding time, efforts, maintainability and
quality. Our efforts have resulted in the development of ErlCOM [2], which is a causally
reflective reconfigurable Erlang component system running anywhere Erlang is available,
that is, on gateways and application servers in RUNES, and in the invention and
demonstration of a meta-model assisted component configuration management. The
component configuration management automatically generates component wrapping
code for any functionality written in Erlang and it deploys it later onto ErlCOM. The
component configuration is managed either locally by the deployed code or remotely via
the meta-modeling environment. Since both the source code and the current component
configuration of the running application are available in the meta-modeling environment
total application reuse (in contrast with only source code reuse) is easily attainable.

[(19)

In the remainder of the paper, Section 2 overviews ErlCOM then Section 3 introduces the
meta-model assisted component management. In Section 4 the implementation details of
the enabling technologies, namely the Deployment Tool and the notification pattern, are
explained and finally Section 5 concludes the paper.

2. EriICOM

ErlCOM provides a super-structure on top of the well-established Erlang/OTP
environment. The basic entities of ErlCOM are the components, which can be
dynamically created, loaded, updated, unloaded and destroyed, and the bindings, which
bind or unbind the receptacles - component egresses - to the interfaces - component
ingresses - of the communicating components. Components can be embedded into each
other hierarchically and both the components and the bindings are managed by a
hierarchical caplet structure where the root caplet - also called capsule - represents the
Erlang node. Any ErlCOM entity can possess an unlimited amount of metadata that are
stored in a fully distributed repository covering all the caplets. Component configurations
can be constrained by building a component framework, however, the constraint
enforcement policy is left for the programmer. Since also the component configuration is
stored in the distributed repository the component system can be easily reconfigured and
the reconfiguration changes are easily tracked. The components communicate to each
other via message passing — both synchronous and asynchronous — that can be intercepted
at the bindings.

ErlCOM’s implementation on top of Erlang is relatively light-weight as components,
bindings and caplets are ordinary gen_servers with supervisors, and component
communication relies on Erlang message sending. The distributed repository is based on
Mnesia, which makes it a little bit heavy-weight, however, it provides a fully distributed
robust database solution. ErlCOM’s API is described in details in [2].

Since ErlCOM extends the RUNES component meta-model and the middleware CRTK it
has been successfully deployed on Lippert [4] gateways and application server PCs in
order to deploy distributed applications for wireless sensor networks.

3. Meta-model assisted component configuration management

ErlCOM’s basic goal is to provide a useful packaging framework that enables
programmers to organize their applications written in Erlang in such a way that they
could be easily reconfigured either so that they could adapt in a rapidly changing run-
time environment (dynamicity in run-time) or they could be reused - already tested
source code and run-time configuration - to satisfy newer change requests for redesign
(dynamicity in design-time). However, extra packaging burden might intimidate the
programmer to use ErlCOM that’s why we have developed a meta-model assisted IDE [2]
based on GME [3] that incorporates the ErlCOM meta-model and automatically
generates packaging code. More precisely, the IDE contains three models, which are the
ErlCOM component meta-model (Figure 1), the componentized application source code
inside interconnected RUNES components - according to the logical decomposition of

the application - (Figure 2) and the deployed component configuration of the application
(Figure 3).

SnERGIL - [0 < [nbiel ARACOMU |

- sl al®1x|
PR R A MY AMEMEEER ? o @HEXow
IR T Hame et Wabdgriied hupoct[Candogam =] Saen [/A Zooee [110X 7]
u
o
®
by
&
S Ch w} Operation
<<Muodel>>
Encoy o I
: <<Model>>
* 1_Iu- jo1
Paramter Retumivalue
<eMorel>> <aModel>>
Pastion . fheld Kind: field
_I Kid fiekd
[Bindinghdocks!
¢m> <<hlndeiPrioy>> Interface Receptaci
NodeType enum L s<Model>>
address; field
.
PasieConpo iy
- rCOMC
<<Model>> <<htodal>>
L] | 2

Figure 1: ErlCOM component meta-model

EDIT 1i0% Mecalret [2:32 AW

st Falder)

Wt n = . S e e al¥lx)
VERMLTEY A4 2 b MEOEEIEN] e ow
N T Hooa [F5055F [Forcionablogd Augect[Freteal v s iR m[ﬁi‘ =]
}] - :
& :: "] . [
A _] L thamnal _.__(k-.i
oW ==
&l — I_c’_ ongsie_lag_chahasl T
:’ ! Mg chaanal
= =
o g
- .
uge_sarear Patwen_jog_thannal
_if:—‘-‘-:‘
e ey
" mede_liv_vopendaen
illm:w rynabes_num)_channs
; | § p _ a J =
0 B e channy —em mm
fen_dutectar_tnaanel
dorocer O rgdgteon_par_CRannBLaT
e b
L fre_datacior_chanas] st
Tonih_ori_ channetl uilp_emeetves, fuek
Q-
r_pite_thinge

#ang_ee_channat

el | nart_shannal

womy._ 2ot upd, chanml -

EDIT B2% ECOM 02110 FM

Figure 2: Componentized application source code inside RUNES components

Ready

I T =gl
Mo B Vom Wedw Wb _ o
1JAH-L-"!1 A 3NV ARBNESED Pl
X | B .mm (7 Friviary FIRRRE : lmiAl
: -ru.-li‘é'tm DR NGl Aspect[Dostomor =] Beoe A -rmﬁ_ B rnn-m- Avpest[Comporart. =] Bare: (VA Zoan 1T
®
Q]
&

" L
log [
= — console_tog_channel
=5
domo_control
| £ e SN, E i) 1| alti
T Hhawes [Py [Fosnciel Aspect [Comporir =) Wese [N Zoom [0 | -ru..lm_-,'_'ﬁm—amz——jum[_‘m ~ Zoom [N
B 4l
Jrocm
eilang_criic_kstenar
comp_con!_upd_chaanel
i-
feam
e .
] comp_cont_upd_nolifior_channel

L2

EDIT 40% DACOM Tharr i

Figure 3: Deployed component configuration

The models are in meta relationship to each other, that is, the deployed component
configuration instantiates the componentized application code which is an instance of the
ErlCOM component meta-model. Since the ErlCOM component meta-model is fixed in
the case of a particular EflCOM version the programmer can concentrate on and produce
the application code in his usual way and the IDE ensures that it will be properly put into
interconnected ErlCOM components. The packaging Erlang code is automatically
generated and it sets up a wrapper around the application code. After the deployable
source code base has been produced the programmer should establish the initial
component configuration snapshot of the distributed application by instantiating the
componentized source code on the available resources. The IDE provides all the
necessary facilities to easily distribute the components via its Deployment Tool, which
analyzes the initial component configuration snapshot and creates the EICOM elements
by activating the corresponding ErlCOM’s API operations. It should be emphasized that
we talk about only the initial component configuration snapshot since the deployed
application can easily reconfigure itself via ElCOM’s reflective API any time, therefore,
the initial configuration plays only a temporal role. After the initial deployment has been
set up the application starts running and ErlCOM’ CRTK administers all the changes of
the component configuration and it sends notifications about them to any listener which
has subscribed to the changes. The IDE is one of the listeners that’s why it is quite
straight-forward to show the actual component configuration of the running system.
Moreover, the component configurations — including Erlang source code — can be saved
from the IDE and later recreated to restore the application to a previous known state.

The novelty of our approach is the way how design-time and run-time software aspects
are intertwined. During the software development process the application code is
modularized in order to avoid the problems of producing “spaghetti-code”, that is, the
application code is put into communicating components. Since ErlCOM is causally
reflexive the components can be deployed onto it and their current configuration is
continuously available and modifiable. The same software development environment can
be used for application development and operation and maintenance purposes, too.
(Figure 4) Moreover, the approach eliminates the unnatural separation of the functionality
and the management aspects of the application; the management layer is anchored to the
deployed functionality layer and reflects it via the identity mapping thanks to the meta-
modeling environment where everything — including source code and component
configuration — is stored in a model database.

GME
NEetanmod ¢l Miodel

Code base

Node2

proc2

e | 5T

CRTK

CRTK

./Jr

Figure 4: Meta-model assisted component configuration management

The component management has three types of operation:

e Re-active component reconfiguration: The application’s control logic decides
how to reconfigure the currently deployed component configuration to adapt to
dynamically changing environmental factors. The IDE only tracks the changes;
the control intelligence lies on the side of the application code. The decision-
making is based both on the component configuration graph of the application and
the current execution state.

e Pro-active component configuration: The IDE continuously evaluates the actual
component configuration of the deployed application and decides when and how
changes should be carried out. The intelligence emanates either from one of the
plug-ins of the IDE or from any legacy tool connected to the IDE via a versatile
XML importer facility. The decision-making is only based on the component
configuration graph of the application.

e Component behavior change: The previous two reconfiguration types take
effect only on the component configuration, however, the functionality of the
component remains the same. The IDE has access to the model database,
therefore, the programmer or any intelligent plug-in can modify the Erlang code
of any of the components and via the automatic wrapper generation and
deployment the functionality of the relevant parts of the application can be
changed on the fly without even touching the current component configuration
graph. Both the intelligence and the decision-making lie on the IDE side.

Obviously, any of the three operation types can be used separately, however, in most of
the cases the pristine cases are combined seamlessly to match the environmental changes.

4. Component frameworks and the Deployment Tool

The main organization concept of the ErlCOM architecture focuses on the provision of
system robustness. Therefore, the system is structured hierarchically. The configuration
of the deployed components is represented by a graph whose branches are supervisors
and whose leaves are gen_servers (communicating entities) or processes (component
behaviors). Table 1 summarizes the mappings applied in ErlCOM.

ErlCOM Erlang
Capsule, Caplet, Supervisor
Component
Interface, Receptacle gen_server
Component behavior,
Notification listener, process
Pre/post action

Table 1 ErlCOM concepts mapping to Erlang

However, the static configuration of the supervisors does not seem to be sufficient to
describe the reconfiguration demands corresponding to the changing environment.
Furthermore, reconfiguration scenarios may involve ErlCOM entities from different
levels of the hierarchy, in which case the supervisor cannot be used. To be able to
categorize the reconfiguration scenarios the Component Framework (CF) concept has
been introduced into ErflCOM. A Component Framework is the container and manager of
logically coherent entities which can be deployed onto different parts of the system. An
example of the Component Framework can be seen on Figure 5. The solid lines represent
supervisor relationships, the dashed lines mean communication relationships and the
dotted lines represent relationships to a CF. A Component Framework always contains
two unit of functionality. The Notification Listener part is notified by the CRTK when a
reconfiguration action on the entities related to the actual CF has been executed. The
reconfiguration scenario which has to be executed in response to the CRTK action is
placed in the Reconfiguration Engine. The Reconfiguration Engine part depends heavily
on the actual function of the CF and it can apply very complex reconfiguration actions
which affect the whole deployment of the configuration graph. On the contrary, the
Notification Listener part depends on the CRTK commands so it can be templatized.

i Component Framework I‘
Capsule1 Capsulet =S |
P I G Totification
i |) \\Listene_rp/ h"//R_e_c;;;\
| i - A (Engine
. | 3 et
SlaveCapleti _ ‘ SlaveCaplet2
__F___.--—;-'I"_ -h'.'-“‘.-._‘___‘ 3 l // .h-“r“"‘“ﬂ-,.___
| Comp1 | Comp2 y Binding b Comp3
7 TS g B ;!,r \\ F N
[| Comp M Comp
" |lmehaviour| | Rec || F | |lBenaviour

Figure 5 Structure of the Component Framework
The following actions are valid CRTK reconfiguration commands:

- Load component

- Unload component

- Destroy component

- Migrate component to an other caplet

- Bind components

- Unbind components

- Migrate binding to an other caplet

- Add pre/post actions

- Remove pre/post actions

- Add metadata to an ErICOM entity

- Remove metadata from an ErlCOM entity
- Add a caplet

- Remove a caplet

- Add a new capsule to the ErlCOM system
- Remove a node from the ErlCOM system

Since only these 15 commands can happen on CRTK level a simple template code for
notification listeners can be defined. The template code enumerates the valid CRTK
commands and their corresponding parameters. The notification listener template code is
the following:

-module (notification_template).
-export ([start/0, loop/0]) .

start ()->
Pid=spawn (?MODULE, loop, [1),
register (notify gme, Pid),
Pid.
loop () ~->
receive
stop->true;

{Command, Parameters}->
prepare_command (Command, Parameters),
loop ()

end.

prepare command (load, Parameters)->
[CapletID, LoeaderID, ModuleName, CompID, IFIDs, RecIDs]=Parameters;

prepare_command (unload, Parameters) ->
[ComponentID]=Parameters;

prepare_command (migrate_component, Parameters)->
[OrigCapletID, OrigLoaderID, DestCapletID, DestLoaderID, CompID]=Parameters;

prepare_command (bind, Parameters)->
[CapletID,BinderID, IFID, RecID, ModuleName, BindingID]=Parameters;

prepare_command (unbind, Parameters)->
[IFID,RecID,BindingID]=Parameters;

prepare_command (migrate binding, Parameters)->
{OrigCapletID, OrigBinderID, DestCapletID, DestBinderID, BindingID]=Params;

prepare_command (addPreActionFirst, Parameters)->
[BindingID,ModuleName] = Parameters;

prepare_command (addPreActionLast, Parameters)->
[BindingID,ModuleName] = Parameters;

prepare command (addPreActionBefore, Parameters)->
[BindingID, ModuleName, NextModuleName]=Parameters;

prepare command (addPreActionAfter,Parameters)->
[BindingID,ModuleName, PreviousModuleName]=Parameters;

prepare_ command (deletePreAction, Parameters)->
[BindingID, PreActionName]=Parameters;

prepare_command (addPostActionFirst, Parameters)->
[BindingID,ModuleName] = Parameters;

prepare_ command (addPostActionlLast, Parameters)->
[BindingID,ModuleName] = Parameters;

prepare_command (addPostActionBefore, Parameters)->
[BindingID,ModuleName, NextModuleName]=Parameters;

prepare command (addPostActionAfter, Parameters)->
[BindingID, ModuleName, PreviousModuleName]=Parameters;

prepare command (deletePostAction, Parameters)->
[BindingID, PostActionName]=Parameters;

prepare command (putprop, Parameters)->
[MetaDataID,EntityID, PropName, PropType,Value]=Parameters;

prepare_command (deleteprop, Parameters)->
[MetaDataID,EntityID, PropName]=Parameters;

prepare_command (create caplet,Parameters)->
[CapletID,CapletName]=Parameters;

prepare_command (delete_caplet, Parameters)->
[CapletID]=Parameters;

prepare_command (create_capsule, Parameters)->
[CapsuleID,CapsuleName]=Parameters;

prepare_command (delete_capsule, Parameters)->
[CapsuleID]=Parameters;

prepare_command(_,)=->
unknown_command_error.

The earlier mentioned Deployment Tool is an aggregation of a specialized Notification
Listener and a CRTK actuator. The notification listener’s main tasks are listening to all
CRTK events and sending them to the IDE in appropriate format. The CRTK and the IDE
have different identifiers for the ErlICOM entities, therefore, the listener manage the IDE-
to-CRTK identifier mapping. The actuator receives the commands from the IDE and
evaluates them so that it could execute the correct sequence of CRTK commands.

5. Conclusion

The robust reconfigurability of ErlCOM and the versatile component configuration
enabled by the Deployment Tool and the notification architecture coupled with the meta-
modeling IDE realize the ideas behind our configuration aware distributed system design
approach. The approach enables the programmer to concentrate on the application logic
and the deployment adaptation logic separately and the infrastructure automatically
generates the “intelligent glue” in the form of a dynamically reconfigurable component
configuration which contains the application logic and behaves according to the
deployment adaptation logic. In the framework of the ongoing RUNES IST project we
have successfully used our approach and we hope that other Erlang projects will find the
technique valuable both inside and outside Ericsson.

References

[1] RUNES IST Project, http://www.ist-runes.org/

[2] G. Batori, Z. Theisz, D. Asztalos: Robust Reconfigurable Erlang Component System,
Erlang User Conference 2005, Stockholm, Sweden

[3] GME Documentation, http://www.isis.vanderbilt.edu/Projects/gme/

[4] Runes Hardware platform definition, http://www.ist-runes.org/docs/deliverables/

D3 _04.pdf

Eliminating overlapping of pattern matching when verifying

Erlang programs in uCRL

Qiang Guo and John Derrick
Department of Computer Science,
The University of Sheffield,
Regent Court, 211 Portobello Street, S1 4DP, UK
{Q.Guo, J.Derrick}@dcs.shef.ac.uk

September 4, 2006

Abstract

When verifying Erlang programs in the process algebra uCRL specification, if there exists over-
lapping between patterns in the Erlang source codes, the problem of overlapping in pattern matching
occurs when translating the Erlang codes into the pCRL specification. This paper investigates the
problem and proposes an approach to overcome it. The proposed method rewrites an Erlang program
with overlapping patterns into a counterpart program that has no overlapping patterns. Structure
Splitting Trees (SSTs) are defined and applied for pattern evaluation. The use of SSTs guarantees
that no overlapping patterns will be introduced into the rewritten Erlang code.

Keywords: Erlang language, uCRL specification, Verification, Translation, Pattern matching,
Overlapping, SSTs.

1 Introduction

Formal methods are often used for system design and verification. Formal methods are mathemati-
cally based techniques. Their mathematical underpinning allows formal methods to specify systems
in a more precise, more consistent and non-ambiguous fashion. Model checking [12] is an automatic
formal verification technique that has been widely used in verifying requirements and design for a
variety of real-time embedded and safety-critical systems.

When verifying systems using model checking based techniques, specification of the system under
development is often modelled by a formal specification language such as the process algebra. A
model checker is applied to examine the properties that should hold for the system over a finite state
system. If the model fails to satisfy some desired properties, faults are determined to exist in the
design.

The advantage of using model checking based techniques for system verification is that, when a
fault is detected, the model checker can generate a counter example. These faulty traces help system
designers to understand the reasons that cause the occurrence of failures and provide clues for fixing
the problem.

Two ways might be considered when using model checking based techniques for system verifi-
cation. In one way, one can use a specification language in combination with a model checker to
obtain a correct specification that is used to write an implementation in a programming language;
in the other way, one may take the program code as a starting point and abstracts that into a model
that can be checked by a model checker. In the second situation, an interpretation mechanism needs
to be defined in order that the source code of a programming language can be translated into the
formal specification language used for describing the system under development.

Recently, verification of Erlang programs in the process algebra uCRL specification has been
studied [10, 7, 8, 15]. The programming language Erlang [1] is a concurrent functional programming
language with explicit support for real-time and fault-tolerant distributed systems. The process

algebra pCRL (micro Common Representation Language) [14] is a formal specification language.
It is extended from the process algebra ACP [4] where equational abstract data types [14] are
integrated into process specification. When an Erlang program is translated into a pCRL spec-
ification, a Labelled Transition System (LTS) can be oblained by using some existing tools such
as the CESAR/ALDEBARAN Devclopment Package (CADP) [11]. The LTS is used to check the
properties that should hold for the system under development.

Benac Earle et al. [3, 6] studied the verification of Erlang programs in the process algebra
MCRL specification and defined a set of rules for the translation of an Erlang code into pCRL. In
their work, translation rules for communication, generic server, supervision tree, functions with side-
effects, higher-order functions and pattern matching are defined respectively. They also developed
a tool set, etomerl, which automatically translates Erlang codes into a uCRL specification.

However, in the tool set etomerl, pattern matching in an Erlang code are translated in a way
where overlapping is not considered. This, however, could cause misinterpretation when translating
an Erlang program into the pCRL specification.

In Erlang, evaluation of pattern matching works from top to bottom and from left to right.
When a pattern is matched, evaluation is terminated after the corresponding clauses are executed.
However, in uCRL, the tool set instantiator does not evaluate rewriting rules in a fixed order. If
there exists overlapping between patterns, the problem of overlapping in pattern matching occurs,
which could lead to the system being represented by a faulty model. More details about the problem
are explained in Section 4.2.

This paper investigated the problem and proposed an approach to overcome it. The proposed
method rewrites an Erlang program with overlapping patterns into a counterpart program that has
no overlapping patterns. In the counterpart program, functionalities defined in the original program
remain unchanged. Structure Splitting Trees (SSTs) are defined and applied for pattern evaluation.
The use of SST's guarantees that no overlapping patterns will be introduced into the rewritten code.

The rest of this paper is organized as follows: Section 2 introduces the Erlang programming
language; Section 3 describes the process algebra uCRL; Section 4 discusses the translation of Erlang
programs into the process algebra yCRL specification and the problem of overlapping in pattern
matching when translating the Erlang programs into pCRL; Section 5 looks at ways to eliminate the
problem of overlapping in pattern matching; Section 6 explains the model checking Erlang programs
in the uCRL specification with a case study; Conclusions are drawn in Section 7.

2 The Erlang language

The programming language Erlang [1] is a concurrent functional programming language with explicit
support for real-time and fault-tolerant distributed systems. Since being developed, it has been used
to implement some substantial business critical applications such as the Ericsson AXD 301 high
capacity ATM switch [9].

An Erlang program comnsists of a set of modules, each of which defines a number of functions. A
module is uniquely identified by its name as an atom. A function is uniquely identified by the module
name, function name and arity (the number of arguments). Two functions with the same name and
in the same module, but with different arities are two completely different functions. Functions that
are accessible from other modules need to be explicitly declared as ezport. A function named f-name
in the module module and with arity N is often denoted as module:f-name/N.

Erlang is a language with light-weight processes. Several concurrent processes can run in the
same virtual machine, each of which being called a node. Each process has a unique identifier to
address the process and a message queue to store the incoming messages. Communication between
processes is handled by asynchronous message passing. The receiving process reads the message
buffer by a receive statement. When reading a message, a process is suspended until a matching
message arrives or timeout occurs. A distributed system can be constructed by connecting a number
of virtual machines.

An advantage of Erlang is that it uses design patterns (provided by OTP) where a number
of generic components are encapsulated. The use of OTP helps to reduce the complexity of sys-
tem development and testing, while increases the robustness. Generic server and supervisor are
two commonly used generic components in system design. The following briefly reviews these two
components.

2.1 Generic server component

The Erlang Open Telecom Platform (OTP) supports a generic implementation of a server by pro-
viding the gen_server module. The gen_server module provides a standard set of interface functions
for synchronous and asynchronous communication, debugging support, error and timeout handling,
and other administrative tasks. A generic server is implemented by providing a callback module
where (callback) functions are defined specifying the concrete actions of the server such as server
state handling and response to messages. When a client wants to synchronously communicate with
the server, it calls the standard gen_server:call function with a certain message as an argument.
If an asynchronous communication is required, the gen_server:cast is invoked where no response is
expected after a request is sent to the server.

-module(client). -module(locker).
-export([start_link/3, init/3]). -behaviour(gen_server).
-export([start_link/1, init/1]).
start_link(Locker, Resources, Type)— > start_link(Request) — >
{ok, spawn_link(client, init gen _server:start_link({local, locker},
[Locker, Resources, Type])}. locker, [Request], {]).
init(Locker, Resources, Type) — > init(Args) — >
loop(Locker, Resources, Type). {ok, Args}.
handle_call(request, Client, Pending) — >
loop(Locker, Resources, Type) — > case Pending of
gen_server:call(Locker, {request, [] — > {reply, ok, [Client|};
Resources, Type}), - — > {noreply, Pending-++[Client]}
gen_server:call(Locker, release), end;
loop(Locker, Resources, Type). handle_call(release, Client, [_| Pending]) — >

case Pending of
[]- > {reply, done, Pending};
- — > gen.server:reply(hd(Pending), ok),
{reply, done, Pending}
end;
handle_call(stop, Client, Requests) — >
{ok, normal, ok, Request}.

terminate(Reason, Requests) — > {ok}.

A: Source code of client B: Source code of generic server

Figure 1: The source code of Erlang generic server and client.

Figure 1 illustrates a simple server-client system where a client can acquire the lock by sending
a request message and release it by sending a release message. In the example the server might be
called with a request or a release message. If the message is request and Pending is an empty list,
the server returns the client with ok, and the server comes to the new state [Client]; otherwise, the
reply is postponed and the server goes to a new state where the requesting Client is added to the
end of Pending list. If a release message is received, the server will send a reply to the first waiting
caller in the Pending list.

A terminate function is defined in the call back module. This function is called by the server
when it is about to terminate. It allows the server to do any necessary cleaning up. Its return value
is ignored.

2.2 Supervisor component

When developing concurrent and distributed systems using Erlang language, a commonly accepted
assumption is that any Erlang process may unexpectedly die due to hardware failure or software
errors in the code being executed in the process. Erlang/OTP supports fault-tolerance by using the
supervision tree design pattern.

[clientllcliun]|cliun||climl|

Figure 2: Supervisor tree for locker and clients.

Supervision tree is a structure where the processes in the internal nodes (supervisors) monitor
the processes in the external leafs (workers). A supervisor is a process that starts a number of child
processes, monitors them, handles termination and stops them on request. The children themselves
can also be a supervisor, supervising its children in turn. Figure 2 demonstrates the structure of a
supervision tree.

3 The process algebra yCRL

The process algebra uCRL (micro Common Representation Language) [14] is extended from the
process algebra ACP [4] where equational abstract date types [14] are integrated into process speci-
fication.

sort
Bool, N
func
T,F: — Bool
0: - N
S:N—- N
add, times: N X N - N
var
xy: N
rew
add(x,0) = x

add(x,5(y)) = S(add(x,y))

times(x,0) = 0

times(x,5(y)) = add(x, times(x,y))
comm

injout = com

proc

counter(x:N) = p

buffer = q

Figure 3: An example of a uCRL specification.

A pCRL specification is comprised of two parts: the data types and the processes. Processes are
declared using the keyword proc. A process may contain actions representing elementary activities
that can be performed. These actions must be explicitly declared using the keyword act.

Data types used in yCRL are specified as the standard abstract data types, using sorts, functions
and axioms. Sorts are declared using the key work sort, functions are declared using the keyword
func and map is reserved for additional functions. Axioms are declared using the keyword rew,
referring to the possibility to use rewriting technology for evaluation of terms.

A number of process-algebraic operators are defined in 4CRL, these being: sequential composition
(-), non-deterministic choice (+), parallelism (||) and communication (|), encapsulation (8), hiding

(7), renaming (p) and recursive declarations. A conditional expression true <l condition > false en-
ables that data elements influence the course of a process, and an alternative quantification operator
(3_) provides the possibly infinite choice over some sorts.

In pCRL, parallel processes communicate via synchronization of actions. The keyword comm is
reserved for communication specification. The communication specification describes which actions
may synchronize on the level of the labels of actions. For example, in comm injout, each action
in(t1,...,tx) can communicate with (mt(tll,...,t;) provided k¥ = m and t; and ¢; denote the same
element for 1 =1,..., k.

Figure 3 illustrates an example of a uCRL specification.

4 Translating Erlang into CRL

In order that an Erlang program can be translated into xCRL, Benac Earle et al. [3, 6] defined a set
of translation rules. In their work, translation rules for communication, generic server, supervision
tree, functions with side-effects, higher-order functions and pattern matching are defined respectively.
They also developed a tool set, etomerl, which automatically translates Erlang codes into a 1LCRL
specification.

4.1 Translation rules

The translation from Erlang to uCRL is performed in two stages. First, a source to source transfor-
mation is applied, resulting in Erlang code that is optimised for the verification, but has identical
behaviour. Second, this code is translated to pCRL.

In pCRL, a data type Term is defined where all data types defined in Erlang are embedded. The
translation of the Erlang data types to uCRL is then basically a syntactic conversion of constructors
as shown in Figure 4.

sort
Term

func
pid: Natural — Term
int: Natural — Term
nil: — Term
cons: Term # Term — Term
tuplenil: Term — Term
tuple: Term # Term — Term
true: — Term
false: — Term

Figure 4: Translation of data types in Erlang to pCRL

Atoms in Erlang are translated to uCRL constructors; true and false represent the Erlang
booleans; int is defined for integers; nil for the empty list; cons for a list with an element (the
head) and a rest (the tail); tuplenil for a tuple with one element; tuple for a tuple with more
than one element; and pid for process identifiers. For example, a list [F, E2, ..., Ey] is translated
to uCRL as cons(E1,cons(Ez, cons(...,nil)...)). A tuple {E, Ez, ..., E,.} is translated to xCRL as
tuple(En, tuple(E2, ..., tuplenil(Ey)...)).

Variables in Erlang are mapped directly to variables in uCRL. Operators are also translated
directly, specified in a uCRL library. For example, A + B is mapped to merlplus(A,B), where
merl_plus(A,B) = int(plus(term_to_nat(A), term_to_nat(B))).

High-order functions in an Erlang code are flattened into first-order alternatives. These first-order
alternatives are then translated into rewrite rules.

Program transformation is defined to cope with side-effect functions. With a source-to-source
transformation, a function with side-effects is either determined as a pure computation or a call to
another function with side-effects. Stacks are defined in uCRL where push and pop operations are
defined as communication actions. The value of a pure computation is pushed into a stack and is
popped when it is called by the function.

P

Communication between two Erlang processes are translated into two process algebra processes,
one of which is defined as a buffer, while the other implements the logic. The synchronous commu-
nication is modelled by the synchronizing actions of process algebra. One action pair is defined to
synchronize the sender with the buffer of the receiver, while another action pair to synchronize the
active receive in the logic part with the buffer. Figure 5 illustrates the translation rules.

handle_call({request,Resources,Type}, comm gen_server_call | gscall
Client, ...) ->» =buffercall ...
case check_availables(Resources, Type,Locks) of proc locker_serverloop@MCRLSelf: Term,State:Term)
true -> =
NewLocks = sum(Client:Term,
map(fun(Lock) -> ... sum(Resources:Term, ...
false -> locker_serverloop(MCRLSelE,
{locker _map_claim_lock(...)...}
case Type of <lequal(locker_check_availables(...)|>
exclusive -> .
shared -> .
<lequal(Type,shared)|>
end. delta)))))
A Erlang code B: pCRL

Figure 5: Translation of communication in Erlang to uCRL

4.2 The problem of overlapping in pattern matching

However, in the tool set etomerl, pattern matching in an Erlang code is translated in a way where
overlapping is not considered. This could cause misinterpretation when translating an Erlang pro-
gram into uCRL.

-module(checklist).
-export([check/1]).
check(List)— >
case List of
[1->
empty list;
L|J->
head_check;
[— | 2, 3] - >
tail_check
end.

Figure 6: An Erlang program with overlapping patterns.

In Erlang, evaluation of pattern matching works from top to bottom and from left to right. When
a pattern is matched, evaluation terminates after the corresponding clauses are executed.

However, the uCRL tool set instantiator does not evaluate rewriting rules in a fixed order. If
there exists overlapping between patterns, the problem of overlapping in pattern matching occurs,
which could lead to the system being represented by a faulty model.

Figure 6 illustrates an example where a list is checked. If List = [1,2, 3], the program returns
head_check when it is executed, although List matches [.|2,3] as well. However, when translating
the code into the uCRL specification, the uCRL tool set instantiator does not evaluate rewriting
rules in a fixed order. The return value from the uCRL model checker could be either head_check or
tail_check. The final uCRL specification could represent the Erlang program in an incorrect pattern.

To overcome this problem, guards need to be defined and applied in order that rewriting rules are
forced to be evaluated in a fixed order.

5 Eliminating overlapping in pattern matching

Two possible ways might be considered for the elimination of overlapping in pattern matching. In
one way, one may introduce a set of guards in rewriting rules and force the CRL tool set instantiator
to evaluate rewriting rules in a fixed order, while, in the other way, one may consider to transform
the Erlang source codes and rewrite the pattern matching clauses such as case into a series of
case_functions.

5.1 Applying guards in rewriting rules

Benac Earle [6] proposed a method to overcome the problem of overlapping in pattern matching by
introducing a set of guards into pCRL.

patterns_match(P,V, o)

[(true,0,U{P — V}, var(P) and P ¢ dom(o)
{equal(V, a(P)), 0), var(P) and P € dom(o)
(islist(VYAN ¢ A, 0¢), P=[H|T)
(¢, on) = patterns_match(H, hd(V), o)
(¥, 0v) = patterns_match(T, tI(V), o},)
={ (istuple(V)A ¢1,00) P={Pl,.., P}
(¢1,01) = patterns_match(Py, element(1,V), o)
(@2, 02) = patterns_match(Py, element(2,V),a1)

(Pn, on) = patterns_match(Py,, element(n, V), 0, 1)
{equal(P, V), o) otherwise

Figure 7: The definition of patterns_match function.

In the proposed method, a patterns_match function is defined (see Figure 7). This function has
three arguments: a pattern, an expression and a mapping from variables to expressions, and returns
a condition and a new mapping. Inside the function, an auxiliary function var(P) is defined to
returns the logic value true if P is a variable and false otherwise. A guard can then be defined in
the pCRL specification.

Figure 8 demonstrates the translation rules where function cond(P,V, o) is the projection of
patterns_match(P,V,0) and {V; — V'i} represents the mapping from {Vi, ..., V..} to {V4, ..., Vol

Note that in the pCRL specification (Figure 8-B), a case function case; is invoked when the
evaluation of pattern matching starts. Here, case; is functionally equivalent to the first case clause
in the Erlang code (Figure 8-A). Function case; calls another function cases where cond(Q1, E) is
evaluated. If cond(Q1, E) returns irue, it indicates that the first pattern is matched. Clause B; is
executed and the evaluation terminates; otherwise, if cond(Q1, E) returns false, function cases is
called where pattern @ is evaluated. The evaluation continues in such an order until all patterns
have been examined. It can be seen that, by introducing a guard cond, the pCRL instantiator
evaluates the rewriting rules from top to bottom, which is identical to the order by which the
patterns are examined in the Erlang code.

However, the proposed method is not applied in the tool set etomeri.

5.2 Rewriting Erlang source code

The other way to overcome the problem is to rewrite the Erlang code before the translation starts.
The rewriting operation rewrites all pattern matching clauses in the original code into some calling
functions. A calling function is activated by a guard that is determined by function patterns_match.

f-name(Vh, ..., Va)— > F-name(Vy, ..., V) =

case E of casel(Vh, ..., Vu, E).
Q11— > By;
gt case1(Vi, ..., Vo, Vag1) =
Qm— > Bn ca,sez(Vl, ety Vn,cond(Q1,Vn+1, {V; — V1}), Vn+1).
end.
casez(Vh, ..., Va, true, Q1) = Bu;
casez(Vi, ..., Va, false, Voy1) =
case3(Vi,..., Vo, cond(Qz, Vai1, {Vi = Vi}), Var1).
casen(Vi, ..., Va,true,Qm) = Brm.
A: Erlang source code. B: pCRL specification.

Figure 8: Translating Erlang code into 4CRL with guards.

Function patterns_match takes the predicate of the pattern matching clauses and one pattern as
arguments. If the predicate matches the pattern, function patterns_match returns true; otherwise,
false.

Figure 9 shows an example where case clauses are considered. One can easily extend the method
to other pattern matching statements such as if and when.

-module(check_liat). -module(check_list).
-export([check/1]). -export([check/1]).
check(Args) ->» check(Args) ->
Varl =1, check case_0_O(patterns match(Args, P1), Args, Var_List).
Var2 =12, .
case Args of check_case_0_O(true, Args, Var List)->
Bl,;
Pl -;1‘ check_case_0_O(false, Args, Var_List) -»
P2 -» | > check case_0_l(patterns_match(Args, P2), Args, Var List).
B2, check_case_0_I(true, Args, Var_List) ->
P3 ->» EZ, - -
B3 check_case_0_1(false, Args, Var List)->»
end. check case_0_2(pattetns_match(Args, P3), Var_List).
check case_D_2(true, Atgs, Var_List) >
B3.
A: Original code B: Reformed code

Figure 9: Rewriting the Erlang code.

Given an Erlang code with three patterns for matching, the program (shown in Figure 9-A)
is rewritten into the format as shown in Figure 9-B. Function check calls function check_case_0_0.
Function check.case_0-0 has three arguments. The first argument is the matching result between the
predicate Args and the first pattern P, ; the second argument is the predicate Args; the last argument
is a list of variables. It can be noted that, if patterns_match(Args, P,) returns true, clauses defined
in B; are executed; otherwise, function check._case 0.1 is called where P, is evaluated. Var_List
contains a list of variables that appears before the case clause and has been referred in B;. Before
constructing a case function, an analysis of variable dependency is required for the definition of
Var_List. If a variable appears before the case clause and is referred in the clauses of a pattern, it
should be added to Var_List. For example, if inside Bi, a clause like K; = 2 X Var, is defined, one
needs to add Var; to Var_List when constructing function check_case_00.

The problem now comes to define function patterns_match. The function cannot be simply defined
as case E of P — > true, as it will either introduce new overlapping patterns or cause exception in
the runtime.

patterns_match(E, P) — > patterns_match(E, P)— >
case E of case F of
P-> P—>
true; true
- - end.
false
end.
A: Code with overlapping. B: Code that causes exception.

Figure 10: Two faulty ways on defining patterns_match function in Erlang program.

Consider two examples shown in Figure 10, if patterns_match is defined as the one shown in Figure
10-A, new overlapping patterns will be introduced into the rewritten Erlang code (the question is,
if “_” is not considered as a pattern, can we find a suitable expression of P such that PN P = ¢ and
PU P = {all data sets}?).

If patterns_match is defined as the one shown in Figure 10-B, the code is syntactically correct
and no overlapping will be introduced. However, the structure of the program will cause system
exception if no pattern is matched, which reveals a semantic mistake of the program transformation.

In order to evaluate patterns effectively, we define a Structure Splitting Tree (SST).

Definition 1 Let D be a datum of complex type. Let D(y 5y is a member of D and Dy jy is a member
of Dqsy. D1, 38 called o first degree element of D and Dy ;) a second degree element of D. Let
D(n 1y be a first degree element of Din_11y, n > 2, D(qr) is called a n'" degree element of D.

It can be noted that a datum might contain more than one N** degree elements.

An SST is a dependent tree where a datum of complex type is graphically represented. In an
SST, each node is labelled with an ID denoted by N(; ;) where i indicates the layer and j the number
of the node. Each node contains a datum. The type of a datum is distinguished by a graphic shape.
In this work, atom is represented by circle, list by square and tuple diamond. The tree starts with
a root node that contains the complete set of data and terminates at a terminal node where the
datum is either an atom or a list that contains a “_” character.

Nll.1|

(a [[bL1, {c. _ d}. [_| ac]]. ([al], b}, b]
I

NL‘I. N.:_:. I Nn:,h N..‘h
(L1, 6. @) L ae] a1 @

Moo | N2 Niss | Nusaa Noseo !
3D W33 |

[lac] [ol] o i

|

|

| - i
OO® OO0 OF oy

Ny Nty Nus, Nuar Ny, Niio Nuz Nyg, Nuso, Ny,

Figure 11: Structure splitting tree of a complex type datum.

Except the root node and the terminal nodes, every node N;,5) has a parent node N(;_i,g)

and several children nodes. The connection between Ny; j; and Ny, indicates that the datum
contained in N ;) is a first degree element of Ny;_1 5 and an i" degree element of the root node.

Figure 11 illustrates an example where [a, [[b|.], {c, -, d}, [-|a, c]], {[al-], b}, b] is represented by an
SST. Note that node Nz1) contains a list that only the head element is cared. N(z,1) is split into
two nodes N4,1) (contains an atom b) and N3 2 (contains a list whose elements are not cared),
both being terminal nodes.

To check if P; matches Pz, one can build the SSTs of P; and P», and examines the SSTs from
top to bottom and from left to right. When a node in one SST is compared with the corresponding
node in the other SST, the type of datum is first compared. If two datum types do not match, the
evaluation returns false and the process of evaluation terminates; otherwise, the two data are further
checked. If the datum type is atom, and the values of two data are not equal, the evaluation returns
false and the process of evaluation terminates; otherwise the check of this node is finished and the
process of evaluation moves to another node.

[a [(b.c.d], {c, & 6}, [aacl), ([abel, b, b] | ™
N N, l_ I N, Moz,
° [Tbcdl {c a d}, [a acl] {[ab.c], b}

Nisa, [Ny Mz | Nisas —, N,
[b,c,d] {c,a,d} [a & c] [abc] %
O OOEOOEOO OO

Maz Nux Nasy Naaw Naoo Ny Nazo N N N, Nun Nea

Figure 12: Structure splitting tree of [a,[[b, ¢, d], {c, a, d}, [a, a,]}, {[a, b, c], b}, b].

For example, to check if P, = [a, [[b, ¢, d], {c, a,d}, [a, a,c]], {[a, b, c], b}, b] matches Po = [a, [[b]-],
{c, -, d},[-a, d], {[al-], b}, b], the SSTs of P, and P, are constructed, shown in Figure 12 and Figure
11 respectively. Nodes in Figure 12 are compared with the corresponding nodes in Figure 11 from
top to bottom and from left to right. Root nodes of the SSTs are compared first. It can be seen that
both root nodes contain a non-empty list, which indicates that the first layer comparison is matched.
The evaluation moves on to the second layer where nodes N(z,1y, N(z2,2), N(z2,3) and N(z 4) in Figure
12 are checked in sequence. N(z:) contains an atom datum and its value needs to be compared
with that of Ny 1y in Figure 11. Once the checking for the second layer is completed, the evaluation
moves on to the next layer.

Note that, when evaluation comes to the fourth layer, the checking upon nodes N(4,2) and N(4,3)
should be ignored since node N4) in Figure 11 contains a list whose elements match any possible
data.

The process of evaluation continues until all nodes in Figure 12 have been examined. It can be
seen that, since the evaluation only check datum type (two types are the same or not) and the values
of atoms (the values are equal or not), there should be no overlapping in the pattern matching and
no exception will be caused during the runtime.

It is easy to see that the problem of evaluating the pattern of an SST is equivalent to that of
searching nodes in a tree. A breadth-first search algorithm [5] or a depth-first search algorithm 5]
can therefore be applied to solve the problem.

5.3 Comparison between two methods

It is easy to see that the two methods proposed above are functionally equivalent but realize the
elimination of overlapping in pattern matching at different stages.

10

[0

In the tool set, etomcrl, before translation starts, some pre-processes are made where an Erlang
program is transformed into a pErlang program. The structure of the uErlang program is closer to
that of uCRL specification, which makes the translation easier.

The first method discussed in Section 5.1 considers the use of guards in the translation rules.
The use of guards forces the rewriting rules to be evaluated in a fixed order. The first method copes
with the problem at the stage of translation

The second method discussed in Section 5.2 considers the transformation of an Erlang pro-
gram with overlapping patterns into one without overlapping patterns. Pattern matching clauses
in the original code are replaced by a series of case functions. These functions are guarded by a
patterns.match function. The second method tackles the problem at the stage of pre-process.

In this work, the second method is used as it involves in less effort in modifying the source codes
of etomerl.

6 Model checking Erlang in CRL

Once Erlang programs are translated into a pCRL specification, an LTS can be derived by using
some existing tool sets such as CADP. The properties of the system can then be examined through
checking all transitions in the LTS.

We took a case study where a simplified version of resource manager is used. The resource
manager is based on a real implementation in the control software of the AXD 301 ATM switch. It
contains a locker and a number of clients. Locker provides access to an arbitrary number of resources
for an arbitrary number of client processes. The clients may ask access to the resources either in a
shared way or an ezclusive way. For more about the resource manager, see [9].

Before translating the Erlang programs into the pCRL specification, some pre-processes are made.
All functions that contain overlapping patterns are rewritten as discussed in Section 5.2. We also
added an additional function (shown in Figure 6) to the original code. This is intended to evaluate
the function patterns_.match defined in Section 5.

After applying the etomerl tool set to the rewritten codes, a pCRL specification file is obtained.
An LTS is then generated by using CADP. Total 120 states and 193 transitions are explored by
CADP. Figure 13 shows the LTS derived from the uCRL specification. The checking result implies
that the model is correct, which suggests that the method proposed in this paper is capable of coping
with the problem of overlapping in pattern matching.

7 Conclusions and future work

When verifying Erlang programs in the process algebra uCRL specification, if there exist overlapping
patterns in the Erlang source codes, the problem of overlapping in pattern matching occurs when
translating Erlang codes into the process algebra uCRL. The problem is caused due to the fact that
the CRL instantiator does not evaluate rewriting rules in a fixed order. This problem could lead
to the Erlang programs being represented by a faulty pCRL model.

This paper investigated the problem and proposed an approach to overcome the problem. The
proposed method rewrites an Erlang program with overlapping patterns into a counterpart program
that has no overlapping patterns. The functionalities defined in the original program remain un-
changed in the counterpart program. SSTs are defined and applied for pattern evaluation. An SST
graphically represents a complex datum in a dependent tree.

When evaluating whether pattern P, matches pattern Py, the SSTs of P, and P, are constructed
and compared. If the pattern of F,’s SST is identical to that of B,’ SST, the pattern matching
evaluation returns true; otherwise, false. During the comparison of two SSTs, only the types of
complex data and the values of atom data are evaluated. This guarantees that no overlapping
pattern will be introduced into the rewritten Erlang codes.

A case study was carried out to evaluate the effectiveness of the proposed method. The evaluation
result suggests that the proposed method is capable of coping with the problem of overlapping in
pattern matching.

The evaluation of the proposed method in this paper considered the use of a comparatively
simple example. More complicated systems are required to experimentally evaluate this method.
This, however, remains a research topic in the future work.

11

[

12

A ,
?; I _"a@ mu sty

| ”
callthocker. P rh 0\
welion Treeipi 0 A
Q)
(0.0

OGO
ct..lllp “! 6‘

"N

Cker duplol reguest.gy

iy 11D packis(in)

iliexe J r m
-\" " .' ‘.r M "'iuﬁl;ll_ll.t\
. | o, . NN LB
| i iz A LT ‘ o “’
W@wﬁg mcms:wm.;:i.k
BN O 0 Ny e s
14 o V3 -
3 F= " g

llilockgriupleirequestupl i 1y o/’~ ! netion_lne = O0.constboil))

Liom
{1

T .
ac
anchaom_ s pidd T, (b il e xelisive Lyl | focker et
A Ll 1 :
9

Figure 13: Labelled transition system generated from the locker system

12

Acknowledgements

We would like to thank Clara Benac Earle for her generous help throughout this work. We would
also like to thank the developers of the tool sets of uCRL and CADP for allowing us to use the tool
sets for system verification. This work is funded by the Engineering and Physical Sciences Research
Council (EPSRC) under grant number EP/C525000/1.

References

1]
2
3l

(4]
[5]
(6]
[7]
[8]
(9]
[10]

[11]
[12)
13)

[14]

[15]

J. Armstrong, R. Virding, C. Wikstrém, and M. Williams. Concurrent Programming in Erlang.
Prentice-Hall, second edition, 1996.

T. Arts, C. Benac Earle, and J. Derrick. Verifying erlang code: A resource locker case-study.
In FME, pages 184-203, 2002.

T. Arts, C. Benac Earle, and Juan José Sdnchez Penas. Translating erlang to pcrl. Proceed-
ings of the Fourth International Conference on Application of Concurrency to System Design
(ACSD’04), pages 135-144, 2004.

J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. Report P9008,
University of Amsterdam, 1990.

J. Bang-Jensen and G. Gutin. Digraphs: Theory Algorithms and Applications. Springer- Verlag,
London, 2001.

C. Benac Earle. Model check the interaction of Erlang components. PhD thesis, The University
of Kent, Canterbury, Department of Computer Science, 2006.

C. Benac Earle and L. A. Fredlund. Verification of language based fault-tolerance. In EURO-
CAST, pages 140-149, 2005.

C. Benac Earle, L. A. Fredlund, and J. Derrick. Verifying fault-tolerant erlang programs. In
Erlang Workshop, pages 26-34, 2005.

J. Blau, J. Rooth, J. Axell, F. Hellstrand, M. Buhrgard, T. Westin, and G. Wicklund. Axd
301: A new generation atm switching system. Computer Networks, 31:559-582, 1999.

J. Blom and B. Jonsson. Automated test generation for industrial erlang applications. In Erlang
Workshop, pages 8-14, 2003.

CADP. hitp://www.invialpes.fr/vasy/cadp/.
E. Clarke, O. Grumberg, and D. Long. Model Checking. MIT Press, 1999.

L. A Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A verification tool for
erlang. International Journal on Software Tools for Technology Transfer., 4:405-420, 2003.

J. F. Groote and A. Ponse. The syntax and sematics of ucrl. In Algebra of Communicating
Processes 1994, Workshop in Computing, pages 26-62, 1995.

F. Huch. Verification of erlang programs using abstract interpretation and model checking.
ACM SIGPLAN Notices, 34(9):261-272, 1999.

13

12(13)

.
.
i

L
B .
.

ErlHive
Safe Erlang Reloaded

An angle on community web
development

UIf Wiger, Ericsson AB

The Goal

Web-based multi-user information
management

Blog, forum, wiki, chat, access control, ...

What set of abstractions could allow us to
treat these as convenient building blocks?

(Not having to install a separate web
server + unique version of perl for each)

The Frustration

Installed and tested lots of blogs, wikis and
forums

Surprisingly difficult

Not particularly modular

Picky about perl/python/php/mysql versions
Esp. multi-user versions worked poorly

Obvious room for improvement
But with Erlang, lots of assembly required also.

The Tuple Store

Joe Armstrong'’s idea =

. . o O HTTP
A simple on-line
database for web [Authentication, etc. |
development tu:ne
Storing objects, sets and store DB
streams per user 6/
Joe wrote the front-end

| wrote the back-end

Stored modules extend the vision

Safe, web-based
community web

e—— pe—
application development o O = B
-
| Public code and data !c}s.?__....|..ﬁ.‘.‘.‘f!?!?““?‘f?ﬂ:.‘_’E‘.’:._I__‘___.-.-__._,
— MR [|
%] 78] [T [Re
’W&;ﬁmem erlhive DB

4

Back-end Concepts

 Each account contains:

— Variable declarations

(scalars, arrays, streams, and modules)
— Areas
(public and private)

Classes of Variable

e Scalar — can be of any type
(a type grammar exists and is enforced)

* Array — an associative array (ordered set)

« Stream - like an inbox
(append, lookup, delete)

* Module — a safe-compiled Erlang module

Access control

In the public area:

Owner Other Users
Scalars & arrays Read/write/delete Read
Streams Append/read/delete Append
Modules Read/write/delete/call Read/call

* Data and code in the private area
accessible only to the owner

* The owner’s public modules can call the
owner’s private modules

Safe code execution

* Only side-effects allowed are through the

erlhive API

 Allow calls to modules/functions known to
be safe (lists, ordsets, calendar, etc.)

* No spawn, send, receive, link, etc.
* Meta calls filtered at run-time (and

possibly blocked)

* Everything runs in mnesia transactions
* Otherwise, no restrictions

-module(ex3_pub) .
-export([f/0]).
fO -

[{'?MODULE’, ?MODULE},
{time, calendar:universal_time()},
{caller, erlhive.user:caller()},
{from_module, erlhive.user:from_module(Q},
{owner, erlhive.user:ownerQ},

{ex3_priv, ex3_priv:fQ}].

Code example
1

-module(ex3_priv).
-export([f/0]).
fO >

[{’?MODULE’, ?MODULE},

N

-module(ex3_joe).
-export([f/0]).
fQO -

[{’?MODULE’, ?MODULE},

{ex3_pub, erlhive.ulf.ex3_pub:fO}].

Owned by user <<"ulf’>>

ﬁhﬁﬁﬁﬁﬁﬁhﬁﬁﬁﬁ‘“ﬁaﬁh

1> erlhive:with_user(
<"ulf’>>,
fun(M) >

Owned by user <<"joe">>

M:put_schema(ex3_pub, [{class, module},{area, public}]),
M:store_module(ex3_pub, "-module(ex3_pub).\n...”)

end).

-module(ex3_pub) .

-export([f/0]1).

fO >
[{’?MODULE’, ?MODULE},
{time, calendar:universal_time()},
{caller, erlhive.user:caller(Q)},
{from_module, erlhive.user:from_moduleQ},
{owner, erlhive.user:owner()},
{ex3_priv, ex3_priv:f(1].

Code example
l

-module(ex3_priv).
-export([f/0]).
fQO ->

[{"?MODULE’, ?MODULE},

-module(ex3_joe).
-export([f/0]).
fQO >

[,

[{’?MODULE’, ?7MODULE},

"Meta functions” for introspectiorﬂ

{ex3_pub, erlhive.ulf.ex3_pub:fOM1.

J

Package syntax for calling
other users’ modules

Execution

-module(ex3_pub).

-export([f/0]).

fQ ->
[{’?MODULE’, ?7MODULE},
{time, calendar:universal_time(Q},
{caller, erlhive.user:callerQ},
{from_module, erlhive.user:from_moduie()},
{owner, erlhive.user:owner()},

|

—tlodu'l e(ex3_priv).
-pxport([f/0]).
flo -
[{’?MODULE’, ?MODULE},
R I

{ex3_priv, ex3, 2> erlhive:with_user(

<<”j°e">>,
-module(ex3_joe). fun(M) >
-export([f/0]). M:apply(erihive joe.ex3_joe, f, [I)
fO -»> end).

[{'?MODULE", 7M(

ié).(é_pub, erlhi {caller, <<"joe">>},

{owner, <<"joe">>},

[{’?MODULE’, 'erlhive.joe.ex3_joe'},
{from_module, ’erlhive.user'},

{ex3_pub, [{'?MODULE’, ’erlhive.ulf.ex3_pub’'},

{time, {{2006,11,9},{16,53,17}},

{caller, <<"joe">>},

{owner, <<"ulf’>>},

{ex3_priv, [{"?MoDULE’, ’'erlhive.ulf.ex3_priv’'},
{caller, <<"ulf">>},
{from_module, 'erlhive.ulf.ex3_pub’},
{owner, <<"ulf">>}1}1}]

Execution

-module(ex3_pub). =i .
-export([£/01). —hodule(ex3_priv).
fO -»> -E;tn?:t([f/01).

[{'7?MODULE’, ?MODULE},

{caller, erlhive.user:callerQ},
{from_module, erlhive.user:from_module(Q},
.user:ownerQ},

{owner, erlhive

[{’?MODULE', ?MODULE},
e I

{ex3_pr-iv' ex3_ P ITIE Tt |

-module(ex3_joe).

-export([f/0]).

fO -»
[{’7MODULE’, ?M(

i;a).(é_pub , erlhi

2> erfhive:with_user(
<<”jog">>,
fun(m) >
M:apply(erihive.ulf.ex3_priv, f, [I)
d).

** exited: {aborted, {{undef,[{{’erlhive.ulf.ex3_priv’,
<<"joe">>,
'erlhive.user'}, f, 0},
{erlhive,with_watchdog, 1},
.21,)

Cannot call another user's private modules.
Restricted calls appear as undefs.

Profiling

-moduTe(ex3_pub) . ! .
-export([f/0]). -|uodu“le(ex3_pr1v).
f()p—> (te/on -export([f/0]).
[{'?MODULE’, ?MODULE}, fiO -> ,
{caller, erlhive.user:caller(}, [{’?MODULE’, ?MODULE},
{from_module, erlhive.user:from_module()}, ...l
{owner, erlhive.user:owner(Q},
{ex3_priv, ex3jasmin-£011
2> erfhive:profile(
-module(ex3_joe). <<"Jog">>,
-export([f/0]). fun(m) >
fO —» d)Mmpply(exa_loe, 0

[{’?MODULE’, 7M(

ié;(é_pub, erlhi

{[{’?MODULE’, "erThive. joe.ex3_joe’},

[{trace,<0.403.0>,call, {erlhive_user,apply,4}},
{trace,<0.403.0>,call, {’erlhive.joe.ex3_joe',f,1}},
{trace,<0.403.0>,call, {"erlhive.ulf.ex3_pub’',f,1}},
{trace,<0.403.0>, return_to, {"erlhive.ulf.ex3_pub’,f,1}},
{trace ,<0.403.0>,return_to,{’erlhive.ulf.ex3_pub’,f,1}}1}

A censored call trace. Can be followed by a specific
trace on 'visible' modules. (work in progress...)

Status

» Beta version at Sourceforge
http://erlhive.sourceforge.net

» Authenticating web server front-end

 Components
— Simple web-based management front-end
— Blog with threaded comments
— Wiki code syntax library
— Role-Based Access Control library

3(2)

EUC 05 presentation 20056-11-02

/(1)

ERLANG

Erlang/OTP Development at
Ericsson

ERICSSON 2

TAKING YOU FORWARD

[‘-q OTP R11B-2 released

ERLANG

* Emulator

- Kernel poll support can now be combined with SMP
support. Currently the following kernel poll versions exist:
Idev/poll, epoll, and kqueue. Linux kpoll has been replaced
with epoll. Some time in the future there will also be a
kernel poll version using Solaris event ports.

- The SMP emulator now avoids locking for the following
operations: atom_to_list/1, atom comparision, atom
hashing, erlang:apply/3.

2 EUC 05 presentalion 20051102 ERICSsON

EUC 05 presentation 2005-11-02

9

[OTPR11 B-2 released

ERLANG

= Stdlib and Compiler

— Option 'strict_record_tests’ in now made default
that is, reading a field from a record using the
Recordffrecord tag.field syntax will fail if
Record is not a record of the correct type.
Can be shut off with option 'no_strict_record_tests’ or with
environment variable ERL_COMPILER_OPTIONS.

* |nets
— Enhancements regarding aynchronous HTTP-request
— New option to support PROXY-Authorization

— Bug corrections regading parsing of URI's, chunked
decoding, empty body, ...

3 EUC 05 prasentstion 2005-11-02 nicsson §

[".,] OTP R11B-2 released

ERLANG

« Dialyzer
- Dialyzer's building of PLT is now based on a different type inference algorithm. More
spelmlhcally, Dialyzer uses inferrence of refined success typings to infer function
prototypes.
As a result, Dialyzer bases its analysis on a significantly more powerful basis and thus
is able to detect more discrepancies. In particular, Dialyzer is now able to find more
discrepancies in the form of malformed uses of Erlang/OTP library functions. The
downside is that building the PLT is a considerably slower process. We will work on
improving that, but let us assure you that the time building the PLT is well spent.

~ Dialyzer takes into account the BEAM compiler directive - .
compile({nowarn_unused_function, {F,A}}). and suppresses the warning that function
FIA will never be called,

— Dialyzer's default initial PLT now also includes "mnesia".

* QLC now with support for faster join of 2 tables.
— Support for two kinds of join:
s lookup join, that uses existing Indices
» merge join, that takes 2 sorted inputs
— Several other enhancements

4 EUC 08 presentation 2005-11-02 ERICSSON

EUC 05 presentation

[o4 Ongoing work

ERLANG

Documentation

* Plan to release "Docbuilder” as an application in OTP
together with the OTP documentation sources in XML.
Docbuilder is pure Erlang and produces HTML.

» Edoc is better integrated to get the same format as all
other OTP documentation.

2005-11-02

1 EUC 05 prasentation

[o4 Ongoing work

ERLANG

SMP support

* Removing the big lock around |0 is ongoing, allowing
for parallell execution in drivers.
A new API for drivers which support parallell invokation
will be introduced. Old driver API still supported.

* Probable release in Q2 2007.

2005-11-02

L] EVUC 05 presentation

2005-11-02

3

EUC 05 presentation

[- Ongoing work

ERLANG

Misc

= Constant pool per module e.g.
f() -> {a,b,c,[10,20,...],.......very big constant term...}.
The term will be built by the compiler once and for all.
Today the term is built every time function f is called.

» Support for Bitstr (bit sized binaries i.e not a multiple of
8 bits) and binary comprehensions in the compiler

= XMERL with XMLschema validation

7 EUC 05 presentslion

2005-11-02 EnICSSON £

[ed Multiprocessor support

ERLANG

Erlang runtime system R11B (n schedulers)

Pick next
runnable or
next 10-pol
job

runqueue

Put 10-port
jobs into
rungugste

/ select/poll

File io threads

2005-11-02

b ()

Downloads/month from www.erlang.org or bundled with Wings

70 000
60 000 ——Windows I
—— Unix J'
50 000 Total J ‘.E
— + Wings b
40 000 AW
30 000
20 000
10 000
0 -
dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun-
98 99 99 00 00 01 O1 02 02 03 03 ©04 04 05 05 06

hd

Requests/month to www.erlang.org

1 200 000

1 000 000

800 000

600 000

400 000

200 000

o L] L] L] L) ¥ L) L] L] L) L] L) L]
dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun-
98 99 99 00 00 01 01 02 02 03 03 04 04 05 05 06

EUC participation

—a— Univ/Inst
—o— Others
—e— Ericsson

/.

140

. ./ \l\ - Total
100 \
N e
40 /M .
20 A. . /r\‘

1999 2000 2001 2002 2003 2004 2005 2006

160

(V)
w
N’

ErlangLOTP User Conference 2006

Speakers and chairman

John Hughes Chalmers University of'-l'echno[ogy Goteborg ~Sweden john.hughes@quvig.com

Bjarne Décker cs-lab.org Segeltorp Sweden bjarne@cs-lab.org

Domonkos Asztalos Ericsson Budapest Hungary Domonkos.Asztalos@ericsson.com

Gabor Batori Ericsson Budapest Hungary Gabor.Batori@ericsson.com

Zoltan Theisz Ericsson Budapest Hungary Zoltan.Theisz@ericsson.com

Ulf Wiger Ericsson Stockholm Sweden ulf. wiger@ericsson.com

Kenneth Lundin Ericsson OTP team Stockholm Sweden kenneth.lundin@ericsson.com

Jan Henry Nystrém Erlang Training and Consuliting Uppsala Sweden jan@erlang-consulting.com

Thomas Arts IT University of Géteborg Goteborg Sweden arts@ituniv.se

Erik Stenman Kreditor Stockholm Sweden Erik.Stenman@kreditor.se

Mickagl Rémond Process-one Paris France mickael.remond@process-one.net

Christophe Romain Process-one Paris France

Jérébme Sautret Process-one Paris France

Romain Lenglet Tokyo Institute of Technology Tokyo Japan rlenglet@users.forge.objectweb.org

Zoltan Horvath University E6tvés Lorand Budapest Hungary hz@inf.elte.hu

Vincenzo Nicosia University of Catania Catania Italy me@katolaz.homeunix.net

Huiqing Li University of Kent Canterbury England H.Li@kent.ac.uk

Simon Thompson University of Kent Canterbury England S.J. Thompson@kent.ac.uk

John Derrick University of Sheffield Sheffield England J.Derrick@dcs.shef.ac.uk

Qiang Guo University of Sheffield Sheffield England Q.Guo@dcs.shef.ac.uk

Dale Harvey vixo.com Edinburgh Scotland harveyd@gmail.com

Conrad Levitt vixo.com Edin@gh Scotland benefitsdragon@gmail.com
Participants

Dmitri Girenko Akumiitti Oy Helsinki Finland Dmitri. Girenko@akumiitti.com

Patrik Winroth bwi systems Stockholm Sweden patrik@bwi.se

Tee Teoh Canadian Bank Note Co Ottawa Canada tteoh@cbnco.com

Geoff Cant Catalyst IT Wellington New Zealand geoff@catalyst.net.nz

Pascal Brisset Cellicium Bagneux France pascal.brisset@cellicium.com

Dominic Williams Cellicium Bagneux France dominic.williams@cellicium.com

Matthias Lang Corelatus Stockholm Sweden matthias@corelatus.se

uif Svarte Bagge Corelatus Stockholm Sweden ulf@corelatus.se

Mikael Karlsson Creado Systems Stockholm Sweden mikael.karisson@creado.com

Taavi Talvik Elisa Tallinn Estonia taavi.talvik@elisa.ee

——
/—\
N

Participants cont.

Ola Andersson Ericsson Stockholm Sweden ola.a.andersson@ericsson.com
Joe Armstrong Ericsson Stockholm Sweden joe.armstrong@ericsson.com
John-Olof Bauner Ericsson Stockholm Sweden john-olof. bauner@ericsson.com
Eva Bihari Ericsson Budapest Hungary eva.bihari@ericsson.com

Mats Crongvist Ericsson Budapest Hungary mats.cronqvist@ericsson.com
Graham Crowe Ericsson Stockholm Sweden graham.crowe@ericsson.com
Anders Danne Ericsson Stockholm Sweden anders.danne@gmail.com
David Haglund Ericsson Linkdping Sweden david.xa.haglund@ericsson.com
Hakan Huss Ericsson Stockholm Sweden hakan.huss@ericsson.com
Joakim Johansson Ericsson Stockholm Sweden joakim.l.johansson@ericsson.com
Angela Johansson Ericsson Linkdping Sweden angela.xa.johansson@ericsson.com
Bengt Kleberg Ericsson Stockholm Sweden bengt.kleberg@ericsson.com
Tomas Langer Ericsson Stockholm Sweden tomas.langer@ericsson.com
Leslaw Lopacki Ericsson Goteborg Sweden leslaw.a.lopacki@ericsson.com
Hans Nilsson Ericsson Stockholm Sweden hans.r.nilsson@ericsson.com
Lars Thorsén Ericsson Stockholm Sweden lars.thorsen@ericsson.com
Andras Vajda Ericsson Jorvas Finland andras.vajda@ericsson.com
Chris Williams Ericsson Stockholm Sweden chris.williams@ericsson.com
Peter Andersson Ericsson OTP team Stockholm Sweden peppe@erix.ericsson.se

Ingela Andin Anderton Ericsson OTP team Stockholm Sweden

Gunilla Arendt Ericsson OTP team Stockholm Sweden gunilla@erix.ericsson.se

Hans Bolinder Ericsson OTP team Stockholm Sweden

Jakob Cederlund Ericsson OTP team Stockholm Sweden jakob@erix.ericsson.se
Bjoérn-Egil Dahlberg Ericsson OTP team Stockholm Sweden bjorn-egil.dahlberg@ericsson.com
Niclas Eklund Ericsson OTP team Stockholm Sweden

Richard Green Ericsson OTP team Stockholm Sweden

Dan Gudmundsson Ericsson OTP team Stockholm Sweden

Bjorn Gustavsson Ericsson OTP team Stockholm Sweden bjorn@erix.ericsson.se

Micael Karlberg Ericsson OTP team Stockholm Sweden micael.karlberg@ericsson.com
Bertil Karlsson Ericsson OTP team Stockholm Sweden

Hakan Mattsson Ericsson OTP team Stockhoim Sweden hakan@erix.ericsson.se

Raimo Niskanen Ericsson OTP team Stockholm Sweden raimo@erix.ericsson.se

Patrik Nyblom Ericsson OTP team Stockholm Sweden pan@erix.ericsson.se

Goran Stupalo Ericsson OTP team Stockholm Sweden

Martin Carlson Erlang Training and Consulting London England

Participants cont.

Alfonso Rivero Cebrian F:'rlang Training and Consulting London England

Francesco Cesarini Erlang Training and Consulting London England francesco@erlang-consulting.com
Francesca Gangemi Erlang Training and Consuiting London England

Mazen Harke Erlang Training and Consulting London England

Oscar Hellstrém Erlang Training and Consulting London England

Andreas Hillkvist Erlang Training and Consulting London England

Ludvig Johanson Erlang Training and Consulting London England

Lukas Larsson Erlang Training and Consuiting London England

Adam Lindberg Erlang Training and Consulting London England

Laurent Picouleau Erlang Training and Consulting London England

Michal Slaski Erlang Training and Consulting London England

Marcus Taylor Erlang Training and Consulting London England marcus@erlang-consulting.com
Gillan Ward Erlang Training and Consulting London England

Yariv Sadan erlyweb.org Boston USA yarivww@gmail.com

Gordon Levitt Heriott-Watt University Edinburgh Scotland gl20@hw.ac.uk

Niklas Hanberger HiQ Stockholm Sweden Niklas.Hanberger@hiq.se
Magnus Froberg Kreditor Stockholm Sweden

Mikael Lindmark Kreditor Stockholm Sweden

Daniel Luna Kreditor Stockholm Sweden

Hakan Stenholm Kreditor Stockholm Sweden

Torbjérn Tornkvist Kreditor Stockholm Sweden

Jane Walerud Kreditor Stockholm Sweden jane@walerud.com

Marcus Arendt Marcus Arendt AB Stockholm Sweden marcus@arendt.se

Nils Decker Media Consult International GmbH Hamburg Germany n.decker@mci-broadcast.com
Thomas Lindgren Millpond Services Ltd London England thomasl|_erlang@yahoo.com
Bahram Bahar Mobile Arts Stockholm Sweden bahram.bahar@mobilearts.com
Johan Blom Mobile Arts Stockholm Sweden johan.blom@mobilearts.com
Goran Bage Mobile Arts Stockholm Sweden goran.bage@mobilearts.com
Jonas Falkevik Mobile Arts Stockholm Sweden jonas.falkevik@mobilearts.com
Alexander Harju Mobile Arts Stockholm Sweden alexander.harju@mobilearts.com
Dragan Havelka Mobile Arts Stockholm Sweden dragan.havelka@mobilearts.com
Rikard Johansson Mobile Arts Stockholm Sweden rikard.johansson@mobilearts.com
Martin Kjellin Mobile Arts Stockholm Sweden martin.kjellin@mobilearts.com
Thomas Mattison Mobile Arts Stockholm Sweden thomas.mattisson@mobilearts.com
Goran Oettinger Mobile Arts Stockholm Sweden goran.oettinger@mobilearts.com

Participants cont.

Esbjémn Domingue Optirnobile_AE Stockholm ‘Sweden

Pekka Hedqvist Optimobile AB Stockholm Sweden Pekka.Hedqvist@Optimobile.se
Johan Montelius Royal Institue of Technology Stockholm Sweden johanmon@kth.se

Amir Payberah Royal Institue of Technology Stockholm Sweden payberah@kth.se

Fatemeh Rahimian Royal Institue of Technology Stockholm Sweden rahimian@kth.se

Filippo Pacini S.G. Consulting Rome ltaly pacini@sgconsulting.it

Gosta Ask SalveLinus Stockholm Sweden g.ask@telia.com

Lennart Ohman Sjoland & Thyselius Telecom AB Stockholm Sweden lennart.ohman@st.se

Morgan Eriksson SoftCM Stockholm Sweden morgan.eriksson@comhem.se
Robert Virding Swedish Defence Materiel Administration Stockholm Sweden robert.virding@telia.com
Kristoffer Andersson Synapse Mobile Networks Stockholm Sweden toffe@synap.se

Per Hallin Synapse Mobile Networks Stockholm Sweden perhal@synap.se

Peter Lund Synapse Mobile Networks Stockholm Sweden peterl@synap.se

Johan Bevemyr Tail-f Stockholm Sweden jb@tail-f.com

Martin Bjorkiund Tail-f Stockholm Sweden mbj@tail-f.com

Joakim Grebené Tail-f Stockholm Sweden

Per Hedeland Tail-f Stockholm Sweden

Hakan Millroth Tail-f Stockholm Sweden hakanm@tail-f.com

Ola Samuelsson Tail-f Stockholm Sweden

Sebastian Strollo Tail-f Stockholm Sweden seb@strollo.org

Claes Wikstrém Tail-f Stockholm Sweden klacke@tail-f.com

Adnan Shafi Telegia Technologies Stockholm Sweden adnan@optimobile.se
Peter-Henry Mander T-Mobile Hatfield England erlang@manderp.freeserve.co.uk
Chandrashekhar Mullaparthi T-Mobile Hatfield England Chandrashekhar.Mullaparthi@t-mobile.co.uk
Fredrik Thulin University of Stockholm Stockholm Sweden ft@it.su.se

Per Gustafsson University of Uppsala Uppsala Sweden per.gustafsson@it.uu.se

Tobias Lindahl University of Uppsala Uppsala Sweden Tobias.Lindahl@it.uu.se
Gordon Guthrie Edinburgh Scotland gordonguthrie@backawinner.gg
Per Einar Stréomme Stockholm Sweden stromme@telia.com

Goran Ostlund Stockholm Sweden goran.may@chello.se

Updated 2006-11-02

()7

